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Abstract: Delins, as known as complex indel, is a combined genomic structural variation formed by
deleting and inserting DNA fragments at a common genomic location. Recent studies emphasized
the importance of delins in cancer diagnosis and treatment. Although the long reads from PacBio CLR
sequencing significantly facilitate delins calling, the existing approaches still encounter computational
challenges from the high level of sequencing errors, and often introduce errors in genotyping and
phasing delins. In this paper, we propose an efficient algorithmic pipeline, named delInsCaller, to
identify delins on haplotype resolution from the PacBio CLR sequencing data. delInsCaller design a
fault-tolerant method by calculating a variation density score, which helps to locate the candidate
mutational regions under a high-level of sequencing errors. It adopts a base association-based contig
splicing method, which facilitates contig splicing in the presence of false-positive interference. We
conducted a series of experiments on simulated datasets, and the results showed that delInsCaller
outperformed several state-of-the-art approaches, e.g., SVseq3, across a wide range of parameter
settings, such as read depth, sequencing error rates, etc. delInsCaller often obtained higher f-measures
than other approaches; specifically, it was able to maintain advantages at ~15% sequencing errors.
delInsCaller was able to significantly improve the N50 values with almost no loss of haplotype
accuracy compared with the existing approach as well.

Keywords: sequencing data analysis; variant calling; variant phasing; delins; complex indel

1. Introduction

Genomic structural variations (SVs) generally include deletions, tandem duplications,
insertions, inversions, translocations, and their combinations [1,2]. Delins, as known as
complex indel, is one of those combinations formed by simultaneously deleting and in-
serting DNA fragments of different sizes at a common genomic location [3,4]. Delins are
widely reported in different researches, some of which are considered functional or suscep-
tible [5,6]. For example, some delins may be inherited which are identified and validated
from familial research [7,8]. While the germline delins are observed in populations, some
somatic delins are reported potentially druggable [9,10]. Thus, identifying delins from
sequencing data is a necessary task for data analysis.

Several approaches, such as Pindel-C [3], SV-Bay [11], INDELseek [12], have been
developed for identifying delins from the second generation sequencing data. However,
the relatively short read length limits the alignment and assembly, thus affecting the per-
formance on variant calling, genotyping and phasing. With the rapid development of
sequencing technologies, long read enables high-confidence mapping across a greater per-
centage of the genome [13,14]. The PacBio SMRT sequencing technology, as a representative
of the third generation sequencing technology, has been attracting more and more attention
since its commercial release in 2010 [15]. With long reads, structural variations that are
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previously undetectable in the second generation data can be accurately detected [16].
Currently, the detection algorithm of delins for long reads is SVseq3 [17]. SVseq3 identifies
a series of suspicious regions from the aligned reads mapped by BLASR [18]. Although the
SVseq3 can process the third generation sequencing data with better f-measure, it can only
tolerate up to 3% of sequencing errors. However, PacBio SMRT sequencing technology pro-
duces two types of reads: (i) continuous long reads (CLR) (long reads with high error rates)
and (ii) circular consensus sequencing (CCS) reads (short reads with low error rates) [19].
For CLR reads, the sequencing error rate is up to 15%, which would result in a quite mix of
true and false positive variations. When SVseq3 is processing such data, it always fails due
to its inability to distinguish between true and false positive variations.

In addition to variant calling, estimating haplotypes is another important task [20].
For example, recent studies suggest that the patients with the same level of mutation loads
may lead to different clinical manifestation when the loads on haplotypes are significantly
different. Benefiting from the CLR reads with the length ranging from 15,000 to 40,000 bps,
we are empowered to estimate each haplotype by identifying these variations that are
co-located on the same read/contig. Currently, the tools for haplotype estimation based on
variant detection results include hapcut2, whatshap, etc. However, these tools are prone to
incorrect splicing due to the false positives introduced by high sequencing errors.

To summarize above, the existing methods often encounter the following two computa-
tional problems. delins is difficult to detect accurately due to the interference of sequencing
errors. In addition, the false positives introduced by sequencing errors often mislead contig
splicing. But we do need the read length advantage of CLR sequencing in some scenarios.
Motivated by this, we propose an efficient algorithmic pipeline, named delInsCaller, to
identify the delins on haplotype resolution from the PacBio CLR sequencing data with high
sequencing errors. delInsCaller design a fault-tolerant method by calculating a variation
density score, which helps to locate the candidate mutational regions under a high-level
of sequencing errors. It adopts a base association-based contig splicing method, which
facilitates contig splicing in the presence of false-positive interference. The experiments
showed that delinsCaller was effective in identifying delins on haplotype resolution, and
outperformed several state-of-the-art approaches.

2. Materials and Methods

The proposed analysis pipeline consists of the following components. First, it de-
termines the approximate region of a variant by calculating a series of variation density
fractions. Then, the candidate variant is classified by multiple machine learning models. A
local re-alignment component then locates the exact breakpoints according to the soft clip
alignments and estimates the possible source of the inserted fragments. Finally, it estimates
the haplotypes for the identified variants.

2.1. Identifying Regions of Variations

We extract variant signatures from the SAM file to identify the genomic structural
variation region. Due to the sequencing errors, these variant signatures imply not only the
true variants, but the false positives as well. Previous studies report that the sequencing
errors of CLR reads are almost uniformly distributed, dominated by the fake insertions
and deletions [21]. Therefore, the unmatched base density on the reads mapped to a
normal region usually locates in a low level. In contrast, the reads mapped to the region
with variations may have a relatively higher density. According to this experience, we
propose to calculate the variation fraction, which measures the unmatched base density in
different regions.

The core idea is as follows: (1) we define a value called variation aggregation degree,
which measures the mutation load on a specific region. According to the error model, for
any site, we are not sure whether it is a variant or not, but the surrounding sites provide
more information. When there are many unmatched sites around, it indicates that this
region has a higher variation aggregation degree, and then it has higher probability of
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being a variation region. (2) In addition, we borrow the idea that the loci in close proximity
may have a stronger linkage. The linkage strength sometimes decays exponentially as the
physical distance becomes larger [22]. Thus, the mapping status of the surrounding sites
are assigned different weights according to the distance from the central site. The closer
the site locates to the central, the higher weight is assigned. Now, we calculate a variation
score for each site.

Specifically, when traversing sites, we set a sliding window with the size of win-
dows_len and calculate the proportion of unmatched bases at any site k in the window,
that is, the proportion of the number of reads harboring unmatched bases to the number of
reads covered this site. The formula is as follow:

pc(k) =
u
d

(1)

where c represents the central site of this window, u represents the number of reads
containing unmatched bases, and d represents the total number of reads covering this site.
For any site k in the window, we define the weight coefficient to measure its influence on
the central site. Two conditions are satisfied: (1) The value of k is inversely proportional
to the distance between k and c; (2) When the unmatched rate of all sites in the window
(c − windows_len, c + windows_len) is 1, the variation score is defined as 1. The formulas
are as follows:

wc(k) ∝
1

lk−c
(2)

c+windows_len

∑
k=c−windows_len

wc(k) = 1 (3)

where lk−c represents the distance between k and c. Since standard normal distribution
meets the formula

∫ 3
−3 f (x)dx = 0.9974 (approximate to 1), we simply adopt the standard

normal distribution as the weight coefficient function here. The calculation of the weight
coefficient wc(k) is:  f (x) = 1√

2π
e(−

x2
2 )

wc(k) = 3
windows_len f

(
3|k−c|

windows_len

) (4)

Now, we obtain the calculation formula of the variation score as:

Scorec =
c+windows_len

∑
k=c−windows_len

wc(k)pc(k) (5)

This variation score has the following features: (1) For any site, the value of variation
score is not only related to itself, but related to the surrounding sites as well; (2) If all the
sites in the window are mutations, the variation score is approximately equal to 1; while
if all the sites are matched to the reference, the variation score is equal to 0; (3) The sites
around site c have different effects on the variation score, which depends on the distance to
site c. Figure 1 shows an example of the variation scores on a region, when the sequencing
error rate reaches 15%.

According to Figure 1, the portion where the variation score is significantly higher
than the surrounding area is the approximate region where we have tentatively identified
possible variations. To refine the range of the variation interval, we traverse site i in turn
and smooth the curve to eliminate some noise:

smoothScorei =
1

2 ∗windows_len + 1

i+win

∑
j=i−win

Scorei (6)
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Figure 2 shows the smoothed variation score graph. Obviously, we are able to obtain a
clear candidate interval of a structural variation.
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Figure 2. The smoothed variation scores on the same region under a 15% sequencing error rate.

We further set a threshold T for variation scores to determine whether a region, after
smoothing, is a candidate region or not. For interval (l , r), when it satisfies:

smoothScorei > T
smoothScorel−1 < T i ∈ (l , r)
smoothScorer+1 < T

(7)

We select (l , r) as the candidate region for a structural variation. According to this
pipeline, the approximate ranges of variations can be located quickly, in the case of high
sequencing errors.

2.2. Classification of Variations

When we have the candidate regions, we have to further identify the type of structural
variations. The variation could be delins, insertion, deletion, or some other type of structural



Genes 2023, 14, 4 5 of 13

variation. Due to the sequencing errors, we cannot use the hard-filters to identify the types
of variations, because the differences among these variations in the space of features are
confused. Thus, we trained multiple SVMs to implement a multiple classifications. An
SVM classifier is trained between each of the two variation types. For m types of variations,
a total of m(m−1)

2 SVM classifiers were trained. We take the variation type with the largest
count according to the results of all classifiers.

To obtain a better classification performance, we study the features of various regions
harboring different variations. Since the insertions and deletions often have higher insertion
rates and deletion rates, respectively, while delins have higher transition ratios, these
features are selected as a group. Since the unmatched sites in insertions and deletions are
generally continuous, while the continuity of the unmatched sites in delins is poor, we
select the maximum ratio of consecutive unmatched bases and the corresponding ratios
as features.

2.3. Locating the Start and End Sites of the Variation

In this step, we are trying to locate the specific start and end sites of a variation. First,
we locate the start site of a variation: (1) Cluster all reads with soft clips at the right end and
the length of the soft clip greater than 50 bp in the variation interval defined in the first step.
(2) Calculate the starting site of each read in the cluster according to the cigar value of each read
to obtain a candidate set of the starting site. (3) Outliers in the candidate set are eliminated by
the box diagram method. (4) The mean value of the starting site candidate set is calculated
as the starting site for the variation. Next, we locate the end site of the variation: (1) Cluster
all reads with soft clips at the left end and the length of the soft clip greater than 50 bp in the
variation interval defined in the first step. (2) Calculate the ending site of each read in the cluster
according to the cigar value of each read to obtain a candidate set of the ending site. (3) Outliers
in the candidate set are eliminated by the box diagram method. (4) The mean value of the
ending site candidate set is calculated as the ending site for the variation. A simple flow chart
explains this algorithm is shown in Figure 3.
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Figure 3. The flow chart of the key steps for locating the start and end sites of a variation.

2.4. Finding the Source of the Inserted Fragment

After obtaining the start and end location of the mutation and the type of the mutation,
the algorithm traces the source of inserted fragments in the delins variant and insertion
variant. The approximate steps, shown in Figure 4, include: (1) The reads containing soft
clips in the interval of the variation are cut to obtain the base sequence of the soft clip part,
and the base sequence is written into a new FQ file as artificial reads. (2) The new FQ file
is matched back to the reference genome, and the BAM file is generated. (3) The longest
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continuous matching fragment is selected from the sequence mapping results to determine
its mapping site. If soft clips are still included, back to step (1). Otherwise, the algorithm
is terminated.
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2.5. Estimating Haplotypes

We have obtained the identification results of insertions, deletions, and delins through
the previous steps. To further estimate haplotype, we introduce information about single
point variation in the sequenced samples (the information about single point variation
can be obtained with software such as deepvariant, clairvoyante, NanoCaller [23], and so
on) and split the variation into two sets by splicing reads containing the same variations
(the HapCUT2 can extract variation information from VCF file and splice them into con-
tigs). For intervals that could not be spliced, we estimate their correlations using linkage
disequilibrium value. The formula is as follows:

L =
m

∑
i=1

n

∑
j=1

lq ∗ p (8)

where L represents the correlation of two contigs, lq represents the linkage strength of
two variants, p represents the frequency of variants, and m and n represent the number
of variants in the two contigs, respectively. For two contigs that need to be spliced, first,
we calculate the correlation strength of the first polymorphic site base in the posterior
contig based on the bases of each polymorphic site in the anterior contig. Then, the same
operation is repeated for each posterior base until the correlation calculation is completed
for each polymorphic site of the posterior base, and finally, the correlation strengths of the
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two contigs are accumulated. We select the posterior contig with the higher correlation
strength to splice with the anterior contig. The splicing schematic is shown in Figure 5.
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Figure 5. The schematic of estimating a haplotype. The different colored circles represent differ-
ent variants.

The steps of the algorithm are as follows: (1) Introduce the information of variants and
incorporate them with insertions, deletions, and delins identification results. (2) Find the
source of each variation by walking through the cigar value of each read recorded in the
same file. (3) Sequentially splice the reads containing the same variations to obtain a splicing
sequence as long as possible. (4) Divide the variations into different sets according to the
sequence obtained by splicing. (5) Perform secondary splicing based on the correlation
strength between contigs. The program flow chart is shown in Figure 6.
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2.6. Experimental Methods

The performance of the proposed algorithm was validated with artificial data sets
and an independent validation data sets. Since the SVseq3 algorithm can be used for
PacBio sequencing data and can detect delins and the position information of the inserted
segment, we compared the delInsCaller and SVseq3 under different sequencing errors. In
the experiments, precision, recall, and f-measure were used to measure the performance of
the algorithm. What’s more, we compared it with the state-of-the-art haplotype estimation
tool, HapCUT2. To measure the experimental performances, we selected two widely used
haplotype estimating metrics, haplotype accuracy (including switch and mismatch rates),
and N50, where switch rate means switch errors as a fraction of possible positions for
switch errors, mismatch rate means mismatch errors as a fraction of possible positions for
mismatch errors, and N50 means the N50 metric of haplotype completeness.

2.6.1. Simulation Data Sets Experiments

To generate the simulation data sets, a 10 Mbp region was randomly sampled from
chromosome 1 of the human reference genome hg19. Then we randomly selected the
variation sites on the reference, delete and insert approximately equal-length fragments
to simulate the delins variations, and obtain the variant DNA sequence. In the process of
simulating the delins, we randomly chose the length of the deletion and the position of the
insertion on the reference. To simulate the reads, we used the commonly used simulation
tool for the third-generation sequencing data, the PBsim simulator, which can simulate the
sequencing process on a DNA sequence file (.fasta) to obtain the read file (.fastq). PBsim
simulator can specify the sequencing depth, the mean, and the variance of the read length,
the sequencing error rate, and other data characteristics.

2.6.2. Independent Validation Data Sets Experiments

To further verify the results and prove the advantages of the method, we conducted
independent validation data sets experiments. We used the sample-fastq function of PBsim
to sample data from the real subreads data sets of the NA12878 individual (HG001). The real
data were downloaded from GIAB (https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/,
accessed on 28 January 2022). Here, we designed two groups of experiments. First,
we generated independent validation data sets and performed experiments at different
sequencing depths. We set the read length as N (15,000, 1500), the sequencing error rate as
15%, and varied the sequencing depth from 5× to 25×. Again, haplotype estimating metrics,
haplotype accuracy (including switch and mismatch rates), and N50 were selected and
compared to the state-of-the-art haplotype estimation tool, HapCUT2. Then we compared
the precision, recall, and f-measure of delInsCaller on the previous validation data sets and
the independent validation data sets, considering that there are too many combinations of
read lengths, sequencing depth, delins length, etc. Here, we set the length of delins as 500
bp, the length of read as N (20,000, 2300), the sequencing error rate as 15%, the sequencing
depth as 25×, and the number of delins as 100, as an example to generate independent
validation data sets.

3. Results and Discussion
3.1. Experiments under Different Data Characteristics
3.1.1. Experimental Results under Different Sequencing Depths

We varied the sequencing depth from 5× to 25× and set the read length as N (20,000, 2300),
the sequencing error rate as 15%, the length of delins as 500 bp, and the number of delins as 100.
For each value of the sequencing depth, we performed ten repeated experiments and drew box
diagrams, as shown in Figure 7. From Figure 7, we can conclude that with the increase in the
sequencing depth, the recall and f-measure also rise. The reason for this may be that at lower
sequencing depth, the reads may not contain enough delins variation signals. However, as the
depth deepens, more and more variation signals can be collected.

https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
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3.1.2. Experimental Results under Different Lengths of Delins

We altered the length of delins from 500 bp to1000 bp and set the read length as
N (20,000, 2300), the sequencing error rate as 15%, the sequencing depth as 15×, and the
number of delins as 100. For each value of the delins length, we performed ten repeated
experiments and drew box diagrams, as shown in Figure 8. From Figure 8, we can see that
the precision, recall, and f-measure of the delins detection remain almost unchanged as the
length of the delins increases. It indicates that the length of delins has little influence on the
precision, recall, and f-measure.
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3.2. Haplotype Phasing Experiments

In order to test the performance of haplotype estimation, we performed experiments
under different sequencing depths and set the read length as N (15,000, 1500) and the
sequencing error rate as 15%. We varied the sequencing depth from 5× to 25×. Then
a series of experiments were performed for the sequencing data at each depth, and the
experimental results are shown in Figure 9. From Figure 9, we can see that at different
sequencing depths, our proposed algorithm can be able to improve the N50 values with
almost no loss of haplotype accuracy. Moreover, as the depth increases, the advantages
become more and more obvious.
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3.3. Comparison Experiment with SVseq3

We set the sequencing errors in the experiment as 15%, 10%, 5%, 3%, 2%, and 0%, the
read length as N (15,000, 1500), the length of the delins as 500~1000 bp, and the number
of delins as 100. The experimental results are shown in Figure 10. As can be seen from
the figure, the detection performance of delInsCaller for delins without sequencing errors
is similar to that of SVseq3, but delInsCaller is significantly better than SVseq3 if there
exist sequencing errors, especially in the case of high sequencing errors. As the sequencing
error rate increases, the detection performance of SVseq3 decreases rapidly. However, the
increase in sequencing error rate has less effect on delInsCaller, whose f-measure is stable,
and the f-measure value of delInsCaller can be reached above 80% in some tests, even when
the sequencing error rate reaches 15%. Therefore, the algorithm has a higher tolerance for
sequencing errors.
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value; (b) recall value; (c) f-measure value.

3.4. Independent Validation Data Sets Experiments

First, we set the read length as N (15,000, 1500), the sequencing error rate as 15%,
and varied the sequencing depth from 5× to 25×. The experimental results are shown
in Figure 11. From Figure 11, we can also see that at different sequencing depths, our
proposed algorithm can be able to improve the N50 values with almost no loss of haplotype
accuracy. Moreover, as the depth increases, the advantages become more and more obvious.
The result is consistent with the previous experimental results on the validation data sets.

We set the length of delins as 500 bp, the length of read as N (20,000, 2300), the
sequencing error rate as 15%, the sequencing depth as 25×, and the number of delins as
100 to generate independent validation data sets. Then, we compared the precision, recall,
and f-measure of delInsCaller with the previous validation data sets and the independent
validation data sets. The experimental results are shown in Figure 12. From Figure 12, we
can see that there is little difference in the performance of delInsCaller on the previous
validation data sets and the independent validation data sets. In particular, the validation
results on both data sets are largely consistent under the f-measure metric.
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4. Conclusions

In this paper, we focus on identifying delins on haplotype resolution from the PacBio
CLR sequencing data. Recent studies emphasized the importance of delins in cancer diagno-
sis and treatment. Although the CLR reads significantly facilitate delins calling, the existing
approaches still encounter computational challenges from the high level of sequencing
errors, and often introduce errors in genotyping and phasing delins. So, we proposed
an efficient algorithmic pipeline, named delInsCaller, to identify the delins on haplotype
resolution from the PacBio CLR sequencing data. delInsCaller has a good tolerance for
sequencing errors and can still maintain a high f-measure under a 15% sequencing error
rate. It uses a fault-tolerant method by calculating a variation density score, which helps to
locate the candidate mutational regions under a high-level of sequencing errors. And it
adopts a base association-based contig splicing method, which facilitates contig splicing in
the presence of false-positive interference.. We carried out a set of experiments to prove that
delInsCaller has a good performance by changing the delins length, sequencing depth, and
other data features on the simulation data set. Moreover, we also conducted comparative
experiments with several state-of-the-art approaches, e.g., SVseq3, HapCUT2. It is proved
that delInsCaller outperformed the existing algorithms. Specifically, it maintained the
advantages at ~15% sequencing errors. Therefore, the proposed algorithm is very effective
in identifying the delins on haplotype resolution from the PacBio CLR sequencing data
with high sequencing errors.
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