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Abstract: Coronavirus disease 19 (COVID-19) has affected over 112 million people and killed more
than 2.5 million worldwide. When the pandemic was declared, Spain and Italy accounted for 29%
of the total COVID-19 related deaths in Europe, while most infected patients did not present severe
illness. We hypothesised that shared genomic characteristics, distinct from the rest of Europe, could
be a contributor factor to a poor prognosis in these two populations. To identify pathways related
to COVID-19 severity, we shortlisted 437 candidate genes associated with host viral intake and
immune evasion from SARS-like viruses. From these, 21 were associated specifically with clinically
aggressive COVID-19. To determine the potential mechanism of viral infections, we performed
signalling pathway analysis with either the full list (n = 437) or the subset group (n = 21) of genes.
Four pathways were significantly associated with the full gene list (Caveolar-mediated Endocytosis
and the MSP-RON Signalling) or with the aggressive gene list (Hepatic Fibrosis/Hepatic Stellate Cell
(HSC) Activation and the Communication between Innate and Adaptive Immune Cells). Single nucleotide
polymorphisms (SNPs) from the ±1 Mb window of all genes related to these four pathways were
retrieved from the dbSNP database. We then performed Principal Component analysis for these SNPs
in individuals from the 1000 Genomes of European ancestry. Only the Hepatic Fibrosis/HSC Activation
pathway showed population-specific segregation. The Spanish and Italian populations clustered
together and away from the rest of the European ancestries, with the first segregating further from
the rest. Additional in silico analysis identified potential genetic markers and clinically actionable
therapeutic targets in this pathway, that may explain the severe disease.

Keywords: COVID-19; in silico; risk variant; population studies; hepatic fibrosis/hepatic cell stel-
late pathway

1. Introduction

Pandemics and deadly endemics have become more frequent in past decades [1–5].
COVID-19 is an infectious disease caused by the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2). It was first identified in China in December 2019 [6], and it has
spread to 192 countries [7]. In Europe alone, nearly 26 million infected people and over
650 thousand killed have been reported as of February 2021 [7]. Not long after the begin-
ning of the pandemic, the scientific community started to report relevant data related to
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this novel virus at the epidemiological and clinical levels [8–20], but it was unclear why
some patients developed very severe diseases while most presented mild symptoms.

Ancestry studies have previously shown some populations are more susceptible to
certain diseases [21–23]. Germline mutations have been associated with an increased risk
of SARS-CoV-1 infection [24]. Furthermore, some populations initially appeared to be more
severely hit than others with higher COVID-19-related deaths when the virus strains had
not significantly evolved and were not divergent in different parts of the world, providing
a platform to discover distinct genetic features in these populations. This was the case
within the Spanish and Italian populations, which together accounted for nearly a third of
the COVID-19 related deaths in Europe [25] and in spite of both countries implementing
the first hard lockdowns in Europe [26]. Despite face masks and different restrictions
of movement mandatory in Spain and Italy for many months after the beginning of the
pandemic [27,28], and with high vaccination rates (~70%), both countries remained in
the top ten European countries with the highest COVID-19 fatality rates accumulated
18 months later [25]. Some reports also suggest the initial death rate was underestimated
and may have been 50% higher in Italy [29].

In this context, we hypothesised a list of candidate genes associated with SARS-like
infections would build a valuable platform to which multiple in silico tools could be applied
using the readily available genomic data from the European populations. Our analysis led
to the identification of hepatic fibrosis/ hepatic stellate cells activation as the key pathway
associated with the aggressive COVID-19, as indicated by the fact that Spanish and Italian
populations clustered together and away from the rest of European ancestries for the SNPs
in the genes related to this pathway. Our additional analysis shortlisted IFNAR1 and
SERPINE1 as key genes influencing this pathway.

2. Methods
2.1. Identification of Candidate Genes for Analysis

PubMed was accessed between the 31st of March and the 25th of May 2020. The aim
was to consolidate all empirically and predicted human genes reported to have a role during
SARS-CoV-2 infection to date. This included those human genes that assisted with the
viral entry, evasion of the host’s immune system and the SARS-CoV-2—human interactome
(Figure S1). Those studies whose results did not include human genes interacting directly
or indirectly with SARS-CoV-1 or SARS-CoV-2 or being affected by the disease they caused
were excluded. After completing the literature research, all the genes identified were
curated for the subsequent pathway and PC analyses. For example, when the literature
reference did not specify the gene isoform (e.g., NF-κB), all those available (e.g., NFKB1
and NFKB2) were included in the analysis.

2.2. Canonical Signalling Pathway Analysis, Protein Interactions and GO Enrichment
Pathway Analysis

Signalling pathway analysis was conducted using Ingenuity Pathway Analysis (IPA,
QIAGEN) [30]. Gene symbols were entered for the Core Analysis Expression, with the
Ingenuity Knowledge Base as reference. The top 20 signalling pathways were checked for
gene overlap. For an easier visualisation, only those pathways with a minimum of five
common genes were selected.

Those 21 up-regulated genes reported in COVID-19 severe patients were entered in
the open database STRING (http://string.embl.de/ Last accessed on 20 June 2020) [31].
Data from Biocarta, BioCyc, GO, KEGG and Reactome databases are regularly curated and
updated in this collection, which includes both physical and functional (non-direct) protein
interactions. Our settings for the analysis sourced data from genomic context predictions,
high-throughput assays, co-expression (conserved) and knowledge from existing databases.
The default medium confidence score (0.4) was entered. The network was “zoom out” by
allowing STRING to add immediate interactions. The network was clustered following the

http://string.embl.de/
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Markov Cluster Algorithm (MCL) clustering algorithms, as recommended by STRING’s
users’ documentation [32].

GO analysis was done using Cytoscape plugin ClueGO [33]. This platform connects
GO terms with pathway annotation networks such as KEGG, Biocarta, Reactome and
WikiPathways. The 21 genes associated with severe COVID-19 phenotype were uploaded
to generate the networks that reflect non-redundant relationships with the genes. The
additional plugin CluePedia [34] allows visualising for interactions between the enriched
pathways from reported experimental data. The regular and automated update of the
networks makes this tool an up-to-date resource for the category analysed. The Kappa
score was set to 0.5 and the functional enrichment analysis was based on the cut-off value of
p-value < 0.05, with a hierarchical layout. All genes in the shortlisted signalling pathways
were considered for further analysis.

2.3. Mortality Rate Frequency Calculation

The cause-specific death rate was measured using the formula provided by the Centers
for Disease Control and Prevention [35], and the data are presented per 100,000 individuals.
The total COVID-19 associated deaths, defined by the WHO International Guidelines (based
on ICD) [36], were outsourced from the daily updated Coronavirus disease (COVID-2019)
situation reports [25]. Every country’s population size was obtained from the Eurostat Data
Browser [37] as of the 1st of January 2020. Public health data from the European populations
studied here was searched for the most common COVID-19 comorbidities reported. Aging
has been broadly identified as the main one [38–40], followed by cardiovascular disease
(CVD), diabetes, chronic obstructive pulmonary disease (COPD) and cancer history [38,41].
Liver dysfunction, smoking status, chronic kidney diseases and immunodeficiency have
also been reported [8,41,42].

2.4. Principal Component (PC) Analysis of Genomic Variants in Genes Identified by Pathway
Analysis in European Populations

Genomic locations were annotated for all the genes from UCSC, GRCh37/hg19 built
(genome.ucsc.edu/index Last accessed on 20 June 2020), and four lists were generated to
include SNPs from the flanking regions of ± 1 Mb of the genes. Duplicates were removed,
while all the transcript variants for any given gene were included for the selection of SNP
and PC analysis, if available.

The genome-wide germline data of 2506 individuals were obtained from the 1000 genomes
phase III v.5 b project, the latest release of the data (May 2013) (https://www.internationalgenome.
org/ Last accessed on 20 June 2020). Starting from the genotype file vcf.gz formats pro-
vided by the 1000 genomes projects, standard quality control methods using PLINK v1.9 b
(http://pngu.mgh.harvard.edu/purcell/plink/ Last accessed on 20 June 2020) [43] were per-
formed to remove individuals with more than 3% missing genotypes, SNPs with a call
rate < 97%.

PC analysis was conducted for the samples to determine population stratification. PCs
were computed using PLINK software v1.9b for all samples of the 1000 Genomes (1 KG)
project, phase 3 version 5b, to infer the ancestry of the samples based on the whole genome
data. PLINK [43] was used to extract subsets of regions for a 1 Mb window of genes of
our interest. PC1 and PC20 values > 6 standard deviations from five European ancestries;
Great Britain (England and Scotland), CEU (Utah Residents with Northern and Western
European Ancestry), Tuscany (Italy), Iberian (Spanish population) and Finland participants
were used in the analysis.

2.5. Differential Allele Frequencies Analysis and Functional Annotations of SNPs

The allele frequencies were retrieved using the –freq command in PLINK software
(as described above). A standard case/control association analysis using Fisher′s exact
test was performed. In this analysis, Spanish and Italian samples were defined as cases,
and other European samples were defined as controls (dummy variables). Consequent
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SNP pruning was performed with PLINK to calculate the LD between each pair of SNPs
in the ±1 Mb window of the selected genes and to remove one of a pair of SNPs when
the LD was high (r2 > 0.9). Next, in silico functional annotations of those P-significant
variants were studied to identify the possible functional variants in those regions that were
highly significant between cases (Spanish/Italian) and controls (the rest of Europe) and a
RegulomeDB probability score was given [44]. This score ranges from 0 to 1, with 1 being
the most likely to represent a regulatory variant, including those in non-coding regions [44].

3. Results
3.1. Shortlisted Candidate Genes and Their Role during Viral Infection

In May 2020, a total of 291 studies were shortlisted from an extensive literature search
by entering the search terms shown in Figure S1. After removing duplicates, 95 abstracts
were screened, and 50 studies were excluded due to falling the inclusion criteria. Finally,
45 publications were included to generate a candidate gene list for further pathway and
genetic analysis.

From our first search, we identified 84 genes to have a role during SARS-CoV-1 and
SARS-CoV-2 infections (Tables 1 and 2) and 21 to be associated with COVID-19 aggressive-
ness (Table 3). In addition, 332 genes identified in the SARS-CoV-2–human interactome [11]
were included. The remaining genes, reported in one study only, can be found in Table S1.

Table 1. Host cell candidate genes associated with the viral entry. Only those genes reported in more
than one reference are depicted in this table. For the full list see Table S1.

Candidate Genes Virus Host Cell Response/Viral Mechanism ASSAY Methods Refs.

ACE2 SARS-CoV-1,
SARS-CoV-2

High S binding affinity. Facilitating
host cell recognition. Multiple in vitro and in silico analysis. [12–14,45–47]

TMPRSS2 SARS-CoV-1,
SARS-CoV-2

S protein activator, leading to viral
membrane conformational change and

facilitating SARS virus.
Multiple in vitro and in silico analyses. [13,46,48,49]

BSG
SARS-CoV-2,
malaria, HIV,

HepB and HHV

Basigin genes encode CD147
transmembrane glycoprotein

recognised by several pathogens.
CD147 directly binds to SARS-CoV-2 S

protein affecting viral replication.

Review and in vitro. SARS-CoV-2
strain isolated from COVID-19 patients.

Direct in vitro infection, Co-IP and
ELISA.

[18,50]

HAT SARS-CoV-1,
HCoV (229E)

Histone acetyltransferases family,
encoding for a family of cell nuclear

enzymes. They contribute to
SARS-CoV-1 entry, but are not essential

for S protein activation.

In vitro. Both studies: gene cloning,
lentiviral expression system, protein

expression and cell-cell fusion analysis.
[46,48]

CLEC4M

SARS-CoV-1,
EVD, Dengue,

HCV, CMV,
Sindbis, HIV

C-type lectin domain family 4 member M
genes encode for L-SIGN membrane
receptor, recognised by the S protein.

Homozygous L-SIGN associated with
SARS disease protective role.

In vitro. Infection of SARS-CoV-1
human cells, gene expression, cDNA

library, IHC assays. Genetic risk
association from SARS patients and

controls.

[24,51–53]

ANPEP, ENPEP,
DPP4 (or CD26)

ACE2 studies,
HCoV-22944,
MERS-CoV45

Closest co-expression of these three
peptidases (R > 0.8) with ACE2 in

different human tissues. HCoV-22944
binds to ENPEP while MERS to DPP4.

Single cell in silico ligand-receptor
affinity assays. Data sourced from

GEO, Human Cell Atlas, Viral
Receptor and Membranome databases.

[2,49,54]

Cathepsin-B-L
SARS-CoV-1,
SARS-CoV-2,
MERS-CoV

Facilitates SARS-CoV-2 cell entry by
virus–cell membrane fusion

mechanisms but its inhibition does not
disable virus entry.

In vitro. SARS-CoV-2 S protein
pseudovirus system in the human lung

cell model.
[13,14]
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Table 2. Host cell candidate genes associated with viral immune system evasion. Only those genes
reported in more than one reference are depicted in this table. For the full list see Table S1.

Candidate
Genes Virus Host Cell Response/Viral Mechanism Research Assay Ref.

40s Nsp1 studies
Encoding for ribosomal protein S3, interacts with

viral Nsp1, inhibiting the host’s protein translation
by capping the 5′mRNA.

In vitro. Reporter gene assays followed by
transcriptomics, RNA immunoprecipitation and

proteomics assays.
[55,56]

CCL5, CCL3,
CXCL10 SARS-CoV-1,

These genes encode for IP-10 * protein. Increased
levels in lung epithelial cells after Nsp1-direct

activation of the NF-kB pathway. IP-10 showed
specific uP-regulation in the COVID-19 lung
model (when compared to SARS patients).

In vitro. Gene cloning, mRNA and protein
expression analysis. Ex vivo. Lung tissue

transfected with COVID-19 and gene expression
analysis.

[10,57]

STING1,
TRAF3, TBK1,

IKKε

SARS-CoV-1,
HCoV (NL63)

The SARS-CoV-1 PLP transmembrane protein
interacts with STING, TRAF3, TBK1 and IKKε,
disrupting the STING/TBK1/IKKε complex
formation and suppressing the production of

IFN-α and IFN-β, vital for initial innate immune
response. PLP protein is highly conserved in both

SARS-CoV viruses, highlighting the use of
potential agonists for this protein as treatments.

In vitro. SARS-CoV-1 propagation, and plasmids
expressing genes of interest’s co-transduction.
Co-IP and ubiquitination signalling detection.
In silico. Homology alignments of both SARS

viruses, approved compounds database screening
and homology models predictions.

[58,59]

ADP-ribose ssRNA
After binding to Nsp3, post-translational

modification of PARP15, PARP14 and PARP10 is
associated with anti-viral response.

In vitro. Cloning, gene expression, mutagenesis,
protein purification and crystallization. In silico,

sequence alignments, glycosylation sites’
predictions and 3D mapping.

[60–62]

40s: 40 subunit, CCL5: C-C motif chemokine ligand 5, CCL3: C-C motif chemokine ligand 3, CXCL10: C-X-C Motif
Chemokine Ligand 10, STING1: stimulator of interferon response cGAMP interactor 1, TRAF3: TNF Receptor
Associated Factor 3, IKKε: inhibitor of nuclear factor kappa-B kinase subunit epsilon, Nsp1: non-structural protein
1, SARS: Severe acute respiratory syndrome, HCoV: human coronavirus, ssRNA: single strand RNA, * previously
known as IP-10, now CXCL10: C-X-C Motif Chemokine Ligand 10, NF-kB: nuclear factor-kB, PLP: papain-like
protein, COVID-19: coronavirus disease 2019, PARP genes: Poly(ADP-Ribose) Polymerase.

Table 3. Dysregulated genes reported in first COVID-19 hospitalised patients.

Candidate genes Disease Reported observations Ref.

IL1β, IFN-γ, CXCL10, and MCP-1 SARS and COVID-19 Increased in SARS and COVID-19 patients. Associated with Th1
cell immunity aberrant response and ARDS [20]

IL4 and IL10 COVID-19 Increased in COVID-19 patients. Associated with Th2 cell
immunity response, facilitating further ARDS [20]

IL2R and IL6 COVID-19 High expression levels positively correlated with the severity of
the disease [10,20,63]

CXCL10, MCP-1 and TNF-α. COVID-19 COVID-19 ICU patients have increased serum levels of these
genes when compared to non-ICU COVID-19 patients [10,64]

IL1β, IL6, cRP COVID-19 High levels of IL1β are associated with a poor prognosis. IL6
and cRP are potential early risk biomarkers [63]

SERPINE1 * COVID-19 High levels of this protein is associated with vascular
inflammation and a higher risk of thrombosis. [63]

LDH-hsCRP-lymphocyte COVID-19 Very accurate (>90%) predictive mortality biomarker signature [65]

IL: interleukin, IFN: interferon, MCP-1: monocyte chemoattractant protein 1, CXCL10: C-X-C Motif Chemokine
Ligand 10, hsCRP: high-sensitivity C-reactive protein, LDH: lactic dehydrogenase, SARS: Severe acute respiratory
syndrome, COVID-19: coronavirus disease 2019, Th: T helper type, ARDS: Acute respiratory distress syndrome,
ICU: intensive unit care, * encodes PAI-I protein.

3.2. Signalling Pathways Involved in SARS Infection

The list of the above-identified genes was curated for the subsequent signalling path-
way analysis. The two most significant canonical pathways associated with these genes
were the Caveolar-mediated Endocytosis and MSP-RON Signalling pathways (p = 2 × 10−19

and p = 6.1 × 10−19, respectively). The full report of the analysis is listed in Table S2.
The Caveolar-mediated Endocytosis signalling pathway (Figure S2) controls different cel-

lular processes such as endocytosis, cellular signalling and lipid recycling, which regulates
the internalisation of different particles, including virus and bacteria [66]. The MSP-RON
Signalling pathway (Figure S3) contributes to the macrophage-induced immune response,
to assist the host in the viral recognition via the Macrophage Stimulating Protein (MSP)
and the transmembrane receptor kinase RON Protein Tyrosine Kinase/Receptor [67].



Genes 2023, 14, 22 6 of 19

3.3. Protein Interactions and Signalling Pathways Associated with COVID-19 Aggressiveness

Of the above shortlisted 84 genes, 21 coding genes were identified to be specifically
associated with COVID-19 severe disease (Table S3). Figure 1 shows nine clusters of
proteins and their inter- and intra-protein interactions with these 21 genes. Seven clusters
had strong connections (based on STRING’s sourced data), as shown by the thickness of
the lines. Three clusters remained independent (APO1/APO2 and LDH genes) and CRP
did not cluster. Some proteins showed high connectivity with other clusters, such as IL4R,
IL2RA, IL2RG, IL2RB, TNF, CCL2, IL4, IFNA2, IL1B, IL10, TYK2 and VEGFA, placing them
as potential therapeutic targets to reduce the cytokine storm seen in severe COVID-19.
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Figure 1. Protein–Protein Interaction network built from 21 candidate genes associated with COVID-
19 aggressiveness. The 21 genes were entered in STRING (string-db.org/, accessed on 20 June 2020)
and the network was enlarged to determine inter-cluster connections (dashed lines). The thickness of
the lines is determined by the strength of the data support. Clusters were generated with the MCL
algorithm with an inflation parameter of 3. Red squares mark the 21 backbone genes associated with
COVID-19 severity.

GO analysis with these 21 genes is shown in Figure 2. Here, certain pathways show
higher intra-connectivity, such as “regulation of chronic inflammatory response to antigenic
stimulus”, “negative regulation of natural killer cell chemotaxis” and “regulation of IL-21
production”. These results correlate with the initial observations in COVID-19 severe
patients, where there was an overproduction of cytokines/interleukins and a subsequent
immune overreaction to the pathogen.
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Figure 2. Enriched pathway analysis associated with COVID-19 aggressive-related genes.

Signalling pathway analysis identified the Hepatic Fibrosis/Hepatic Stellate Cell (HSC)
Activation and the Communication between Innate and Adaptive Immune Cells (Figure S4) as the
two most significant signalling pathways (p = 2.5 × 10−18, p = 1.6.1 × 10−14 respectively).
The activation of HSCs was the pathway representing the highest number of genes reported
in severe SARS-CoV-2 infections (highlighted in purple in Figure S4). These include
IL6, IL1β, TNF-α, IL10, and IFN-γ and VEGF, MCP-1 as up- or down-stream regulators,
respectively. The Communication between Innate and Adaptive Immune Cells (Figure S5) is
the process in which both the immune and adaptive responses interact with each other to
defend the host from infection [68].

3.4. Mortality Rate and Common COVID-19 Comorbidities Data in European Populations

Calculations of the mortality rates were done for the 27 countries that form the Euro-
pean Union (EU) [69]. This was first calculated on the 7th of April 2020 and updated later
(26th of February 2021, Table S5). The UK was also included for its relevance to this study.
To illustrate if the most reported COVID-19 comorbidities at the beginning of the pandemic
(aging, heart disease, diabetes, smoking and liver disease) [8,38,41,42] were demographi-
cally homogeneous in Europe, we investigated the latest European reports available and
where Spain and Italy appear on these reports. While Italy has the oldest population,
Spain ranks 20th, with another 16 European countries in between [70]. Heart disease, the
second most common COVID-19 comorbidity [39,64], is comparable between Northern and
Southern European populations [71]. Next, we checked the status of diabetes. Both types
I and II diabetes are slightly higher in North than South Europe [72,73]. Smoking habits
studies done in European countries [74] place Spain in 4th place of incidence (combined
current and ex-smokers, 52.2%), while Italy is the last one (30.2%).
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3.5. PC Analysis Reveals Genetic Variants in Hepatic Fibrosis/HSC Activation Pathway Segregates
Differently in European Populations

All SNPs located within ± 1 Mb flanking regions of the genes related to the top
four pathways identified above—Caveolar-mediated Endocytosis MSP-RON Signalling
Hepatic Fibrosis/ Hepatic Stellate Cell Activation and Communication between Innate
and Adaptive Immune cells—were retrieved (Tables S6–S9). To investigate the minor allele
frequency (MAF) of the SNPs located within these genomic regions, the allele frequencies
of 1,121,451 variants were tested in European samples of the 1000 Genome study. A total
of 81,271,745 genetic variants from 2504 people were included in the analysis after QC for
the regions of interest. The minor allele of around 10% of these SNPs (before pruning)
presented significant differences in Spanish/Italian populations when compared to other
European populations (Table S10).

The PC analysis results are depicted in Figure 3a–d. Out of the four pathways analysed,
only the genetic variants related to the Hepatic Fibrosis/HSC Activation (Figure 3c) repre-
sented a genetic differentiation for some of the populations tested, with the Spanish/Italian
populations clustering together and the Finnish population segregating independently.
The divergent segregation of the latter could reflect its well-known unique genetic back-
ground [75,76]. However, the fact that it is only segregated in one of the four pathways
gives us a degree of confidence that the results observed here harbour a potential clinical
significance with the symptoms associated with COVID-19 severe disease.
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Figure 3. Principal component analysis from five European ancestries for the following canonical
signalling pathways: (a) Caveolar-mediated Endocytosis (b) MSP-RON Signalling (c) Hepatic Fibro-
sis/ Hepatic Stellate Cell Activation (d) Communication between Innate and Adaptive Immune cells.
The populations include CEU: Utah residents with Northern and Western European Ancestry, FIN:
Finnish population, GBR: Great Britain (England and Scotland), IBS: Iberian (Iberian Population in
Spain), TSI: Tuscany (Tuscany in Italy). Genes obtained from pathway analysis (IPA, Qiagen) and
gene locations (GRCh37/hg19 built) included a ± 1 Mb window. Genome data outsourced from
1000 G phase III v.5b. PC analysis. PC analysis was performed using PLINK software v1.9b.
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Next, the 20 top signalling pathways associated with 21 genes initially reported
in aggressive COVID-19 disease were overlapped with a cut-off of five common genes
(Figure S6). Interestingly, the Hepatic Fibrosis/HSC Activation pathway was the only canonical
pathway that shared common genes with the host’s Coronavirus Pathogenesis signalling
pathway. These common genes, CCL2, IL6, SERPINE1, IL1β and IFNAR1 are highlighted
in purple in Figure S7. Briefly, it shows the nuclear downstream effects of cytoplasmatic
SARS proteins (SARS 3A, SARS 3b and SARS 7A) interfere in the transcription of IL6, CCL2
and IL1β via the activation of transcription factors such as FOS-JUN and NFkB, leading to
hypercytokinemia, tissue inflammation and fibrosis.

3.6. Functional SNPs within Genes Associated with Severe COVID-19

In order to identify functional SNPs responsible for genetic predisposition to aggres-
sive COVID-19 disease, an in silico analysis was undertaken for SNPs (including in linkage
disequilibrium) that showed significant MAF differences in Spanish/Italian populations
(case sample set) versus the rest of Europe (control sample set) (Table S10). This analysis
revealed 26 functional SNPs in genes associated with COVID-19 aggressiveness (Table 4).
SNPs in IL1B and TNF presented the highest significant MAF differences between cases and
controls (CHISQ = 37.73 and 36.98, respectively) and RegulomeDB score (0.6–0.7). Addi-
tionally, significant MAF differences between cases and controls also identified rs60075147
in Interferon α and β receptor subunits 1 and 2 (IFNAR1/IFNAR2), which was the only SNP
that scored the highest possible RegulomeDB score. Genes SERPINE1 had six functional
SNPs (rs75339477, rs79520712, rs62465617, rs62465619, rs62465620, rs376313468) and the
LDH had three functional SNPs (rs56357050, rs10841699, rs2196017).

Table 4. Functional SNPs within genes associated with severe COVID-19 and significantly different
MAF in Spanish/Italian populations when compared to other European populations.

LD Gene SNP
Chromosome Position p-Value Odds Ratio CHISQ® Regulome DB Score(GRCh37/hg19 Built)

IL1B rs79750333 chr2:114515437–114515438 2.68 × 10−10 2.96 37.73 0.67

TNF rs2853982 chr6:31378750–31378751 4.59 × 10−10 3.15 36.98 0.6

IL6 rs10237482 chr7:22475177–22475178 2.57 × 10−8 0.46 31.87 0.8

LDHA, LDHC rs56357050 chr11:18785334–18785335 5.68 × 10−8 0.46 30.56 0.6

CXCL10 rs114493545 chr4:123766808–123766809 3.11 × 10−7 6.24 22.82 0.8

IFNAR1,
IFNAR2 rs60075147 chr21:33660824–33660825 4.31 × 10−7 2.74 24.48 1

LDHB rs10841699
rs2196017

chr12:21060248–21060249,
chr12:21061314–21061315 1.51 × 10−6 0.39 24.77 0.59,0.72

IL10 rs7530746 chr1:206712542–206712543 6.92 × 10−6 1.82 20.72 0.6

IFNG rs741347 chr12:68631372–68631373 9.37 × 10−6 0.42 20.33 0.98

VEGFA rs9381273 chr6:43976267–43976268 9.75 × 10−6 2.29 19.08 0.6

IL4 rs2243268 chr5:132013962–132013963 1.19 × 10−5 0.47 19.83 0.6

PLAUR rs2356437
rs7258485

chr19:44352664–44352665,
chr19:44353241–44353242 1.46 × 10−5 2.03 18.65 0.6

CRP rs3806187 chr1:159750628–159750629 2.14 × 10−5 0.48 18.69 0.7

CCL2 rs1431994 chr17:32771454–32771455 3.01 × 10−5 1.9 17.14 0.6

APOA2 rs17381453 chr1:160514986–160514987 3.05 × 10−5 1.85 17.55 0.6

IL2 rs11937337 chr4:122373527–122373528 3.99 × 10−5 0.32 17.73 0.6
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Table 4. Cont.

LD Gene SNP
Chromosome Position p-Value Odds Ratio CHISQ® Regulome DB Score(GRCh37/hg19 Built)

LDHD rs147230411 chr16:74390997–74390998 7.65 × 10−5 6.9 13.77 0.69

SERPINE1 *

rs75339477

chr7:101012169–101012190 2.17 × 10−4 0.6 13.91 0.59

rs79520712
rs62465617
rs62465619
rs62465620

rs376313468

CDH1 rs696587 chr16:68546471–68546472 5.78 × 10−3 0.67 7.841 0.6

* The six SNPs are in high LD within 23 nucleotide regions presenting similar p-value, OR and RegulomeDB
Score. p-values from Fisher’s exact test. ®Basic allelic test chi-square (1df) resulted from association analysis using
PLINK. LD: linkage disequilibrium.

Our previous overlapping analysis between the 20 top pathways associated with aggressive
disease identified IFNAR1 and SERPINE1 as common genes between the Host-Coronavirus
Pathogenesis and the Hepatic Fibrosis/ HSC Activation. These combined with our MAF analysis
and a regulatory function analysis suggest an important role of these genes and the SNPs in
these genes in the Spanish/Italian populations’ severe responses to SARS-CoV-2.

4. Discussion

The viral SARS-CoV-1 and SARS-CoV-2 spike (S) receptor binds with the highest affinity
to the human receptor angiotensin-converting enzyme II (ACE2) [12–14,18,24,45–47,50–53],
assisting viral host recognition and cellular entry, with studies showing a greater affinity with
the novel SARS-CoV-2 than its predecessor, SARS-CoV-1 [77]. After binding, the transmembrane
protease serine 2 (TMPRSS2) is the most common S protein co-activator [13,46,48,49]. Several
additional human transmembrane receptors and co-activators have also been identified in vitro
and in silico [2,13,14,18,24,49–54,78–80], indicating SARS-like viral RNA entry into the host cell
can occur through a different molecular mechanism. The novel SARS-CoV-2 specific furin-like
cleavage site on its S protein has been associated with a higher pathogenicity [63,81].

To escape immune detection and/or suppression, SARS-like viruses interfere with the
host’s protein translation [55,56] (including those associated with antiviral response) and hijack
key immune response regulators such as interleukins (IL) and chemokines [10,57–62,82–86].
Additional strategies to replicate, assemble and release viral particles have also been
reported [16,47,87]. The most common immune signalling pathways affected by SARS-like
viruses are those regulated by interferons (IFN) and NF-κB [10,57–59].

Finally, a correlation between cytokine and IL imbalances with COVID-19 sever-
ity was reported at the beginning of the pandemic [10,20,63], with early lymphopenia
(low blood lymphocyte counts) identified as early markers of disease severity and low
survival [63,64,88–90].

Since the beginning of this study, an exponential growth of knowledge regarding SARS-
CoV-2 and the disease it causes has been observed, with over 44K publications related to
COVID-19 by April 2021 (pubmed.ncbi.nlm.nih.gov). However, during the first months of
the pandemic, available clinical information regarding the first COVID-19 patients and the
specific characteristics of SARS-CoV-2 were only starting. At that time, we consolidated a list
of candidate genes to bind the S protein [12–14,18,24,45–47,50–53] or to prime it [13,46,48,49]
in SARS-CoV-1, SARS-CoV-2 or other related coronaviruses. Additional candidate genes
were included for their role in assisting viral immune evasion [10,57–62] and promoting an
aggressive COVID-19 clinical phenotype [10,20,63–65].

In silico protein interaction analysis (physical and functional) with those 21 genes
associated with severe COVID-19 disease showed that most of the respective encoded
proteins act as links that crosstalk between functionally related clusters such as TNF, IL-1B,
IL-2, IL-6, IL-10, IFNAR1/2 and VEGFA. Similarly, ClueGO analysis showed TNF, several
interleukins and cytokines, as well as IFNG, actively interact through certain pathways.
The pathways that showed greater interconnection were Regulation of Chronic Inflammatory
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Response (typically seen in severe patients in several tissues), Negative Regulation of Natural
Killer Cells, which reduces the successful inhibition of microbial infections [91] and Positive
Regulation of Calcidiol 1-monooxygenase Activity. Calcidiol 1-monooxygenase enzyme, also
known as the VDR gene, regulates the active form of Vitamin D. Vitamin D is an active
regulator of the immune response and Vitamin D deficiency has been associated with a
more aggressive form of COVID-19 and poor prognosis [92].

Our signalling pathway analysis identified the Caveolar-mediated Endocytosis as the
most significant cascade associated with all the candidate genes and the Hepatic Fibrosis/HSC
Activation as the canonical pathway most significantly associated with COVID-19 severe
disease, respectively. From the four PC analyses of the genetic variants located in the four
pathways previously identified, only the Hepatic Fibrosis/ HSC Activation signalling showed
segregation amongst the populations studied. The Spanish/Italian populations clustered
together and away, while the Finnish did so independently. Nevertheless, these results
have their own limitations. Additional tools, such as fastStructure (Raj et al., 2014) or
Admixture (Alexander et al., 2009), can be used to validate if the SNPs in the genes with
this pathway can identify the same population structure.

Initially, we found it slightly surprising that Hepatic Fibrosis/HSC Activation was the
most associated pathway to aggressive disease, but the liver and HSCs play an important
immunological role to protect themselves from infections [93]. For instance, cytokines
(TNF-α, TGF-β, IFN-γ), IL (IL6) and chemokines (CCL21) are released from the liver to
activate HSCs and resolve liver injury (Figure S4a). When the external strain resolves,
activated HSCs undergo apoptosis and become quiescent. But if the liver is under severe or
repeated damage, such as during a viral infection, HSCs constitutively proliferate, leading
to liver fibrosis [93–95] or becoming immunoreactive [96]. As an example, both HCV and
HBV promote liver fibrosis by these very molecular mechanisms [96,97], with both viruses
being the major cause of chronic liver disease [98].

Liver injury as a comorbidity in severe COVID-19 patients has been recently reported,
further supporting our research outcome [99–103]. Liver tissue damage after SARS-CoV-2
infection has been reported as the second most common organ damage after the lung [104].
However, it is also conceivable that this incidence may be even higher. COVID-19 patients
with no pre-existing liver conditions can present 22–71% higher levels of AST (aspartate
aminotransferase) and alanine transaminase increase (ALT) [105], both of which are liver
damage biomarkers. It is plausible, then, that in the case of the Italian population, with
the highest European incidence of HBV/HCV [106], individuals previously infected by
either of these two viruses are more prone to develop liver damage after a subsequent
SARS-CoV-2 infection, leading to a more severe response.

Following the PC analysis results, and in the context of presenting the highest
COVID-19 related deaths in Europe at the time of the study, we looked at data from
Spanish/Italian studies with available hepatic clinical and pathological features. A ret-
rospective study from Spain with hospitalised COVID-19 patients (N = 1393) showed
only 1.3% of the total cohort had liver cirrhosis [107]. Interestingly, after analysing only
those patients admitted to the Intensive Care Unit (ICU), we found that 97% (N = 575)
of them had above-normal AST levels, compared to those not admitted to the ICU„ and
patients < 65 years showed significantly higher AST levels (p < 0.001) [107]. ALT values
were not significantly higher. A different Spanish study observed that while 4% (N = 48)
of COVID-19 patients were reported to have a chronic liver disease at the time of hospi-
tal admission, 45% of the cohort that died from COVID-19 presented liver failure [108].
We then searched for clinical data from COVID-19 Italian patients. A study with over
480 COVID-19 patients reported liver disease and high levels of LDH (another common
liver damage marker [109,110]) as the 6th and 7th clinical predictors of deaths in hospitals,
respectively [111]. Despite this, only 1.7% of the patients were clinically classified with
chronic liver disease at the time of admission. Finally, a retrospective study of COVID-19 in
Lombardy (N = 3988), the first European epicentre of the pandemic, showed only 2.7% of
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the COVID-19 patients presented liver disease at hospitalisation [112], but almost half of
the ones that presented it (47%) passed away later on.

Liver tissue damage as a direct consequence of SARS-CoV-2 infection may be partially
explained by the high expression levels of ACE2 in some liver-specific cells (hepatocyte and
cholangiocytes), with some studies showing similar levels to those observed in alveolar
T2 (AT2) lung cells, albeit fewer in number [17,49,113]. Also, a very high expression of
two S protein co-activators, furin and TMPRSS2, have been reported in hepatocytes, with
furin additionally showing high expression in macrophages and endothelial liver cells [113].
This could be one of the key molecular links that explain why the Hepatic Fibrosis/HSC
Activation pathway scored the highest level of significance in severe COVID-19 patients.

As a note, clinical trials with COVID-19 vaccines either included a very small number
of patients with liver disease (<0.6%) or were specifically excluded [114]. Since liver disease
from different aetiologies are shown to be associated with immune reactivity or immune
suppression [96], even in today’s mass immunisation context, our data suggest hospitals
around the world, and perhaps particularly in Spain and Italy, should consider regular
follow-ups of those past COVID-19 patients that presented high levels of liver damage
markers (ALT, ASD or LHD) after vaccination.

To determine if specific genetic polymorphisms shared between Spanish/Italian popu-
lations were partially associated with severe disease, we performed a frequency analysis
of functional SNPs in relevant loci. This analysis showed rs79750333 and rs2853982 in
LD, with IL1B and TNF as the functional SNPs with the most significantly different MAF
between Spanish/Italian and European populations. Six nearby risk variants have been identi-
fied by a GWAS in COVID-19 patients [115] (rs74209081, rs61339327, rs113970174, rs76925104,
rs78033025, rs76422048—located with genome.ucsc.edu/ accessed on June 2020). Similarly,
close to rs2853982, four COVID-19 SNPs have been reported in hospitalised COVID-19 patients
(rs12206131, rs34441152, rs71563335, rs71563325—genome.ucsc.edu/). Interestingly, at the same
time, our data pointed towards the risk variant rs79750333 (IL1B) having the most significant
MAF difference between the populations of interest (p = 2.68 × 10−10). IL6-inhibitors in severe
COVID-19 patients were being tested [116]. Recent data from several multi-national studies
later showed these drugs have little effect in reducing COVID-19-related deaths and/or
severe symptoms [117]. Instead, a recent clinical trial where an Italian cohort (N = 392) was
treated with IL1 or IL6 inhibitors showed a reduction in the death risk when treated with
the first one only (HR = 0.45, 95%CI 0.20–0.99, p = 0.047) [118], supporting the valuable
output from our study.

Our second most significant SNP, rs2853982 (p = 4.59 × 10−10), points to TNF. The
anti-TNF treatment results have been promising in multi-national clinical trials, with
patients showing less COVID-19-related mortality [119] in several clinical studies done in
Spanish/Italian patients with rheumatic diseases [120].

Next, we looked at the functional SNP rs60075147 (in the vicinity of IFNAR1/IFNAR2).
As mentioned previously, interferons are mediators of the early antiviral signalling path-
ways and their receptors, therefore, play an important role in initiating the initial immune
response. GWAS studies have identified rs13050728 and its closest gene, IFNAR2, to be
in the five most significant risk variants associated with critically ill COVID-19 patients
(p = 1.045 × 10−16, app.covid19hg.org/variants, accessed June 202o). This has also been
reported in another GWAS, where the IFNAR2 locus was associated with severe disease
(rs2236757, OR = 1.3, 95%CI = 1.17–1.41, p < 0.00009); by increasing the levels of IFNAR2,
the risk of developing severe disease was reduced (p = 0.0043) [121]. Furthermore, inherited
autosomal deficiencies (both recessive and dominant) in IFNAR1/2 have been identified
in highly severe COVID-19 patients [122]. Although some clinical trials showed IFNβ1a
treatment did not have any effect on mortality [123], additional considerations, such as
time of treatment, IFN-isoform specific therapies or the patient’s genetic background,
should be taken into account. For instance, co-treatment with currently used antivirals
(lopinavir/ritonavir and/or chloroquine) and subcutaneous injections of IFNα2b was re-
ported to decrease the in-patient days if offered earlier (25 ± 8.5 days vs 10 ± 2.9 days,
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p = 0.001) [124], to delay the need of ICU admissions (p < 0.02), to increase survival
(p < 0.0001) [125] and to provide a faster full recovery by day 15 (p < 0.05) [126].

While our study presents a workable model to identify key pathways and genes asso-
ciated with a pandemic in its early days, there are limitations, including the limited access
to genomic data from a broader variety of European populations, the lack of a validation
cohort and the not-yet-available ancestry-specific germline data from COVID-19 patients.
Recent GWAS in Spanish/Italian cohorts identified 3p21.31 and 9q34.2 susceptibility loci
associated with aggressive COVID-19, both of which were not discovered in our study [127].
In addition, the genes list used in the current analysis is constantly updating and the analy-
sis needs to be repeated to identify additional pathways associated with the severe disease.
Further, functional validation of our identified pathways using in vitro and in vivo models
will make a valuable contribution to the Covid research.

To conclude, our in silico multi-approach study carried out in the early stages of the
current COVID-19 pandemic led to main findings and additional speculations. The Hepatic
Fibrosis/HSCs Activation pathways play an important role in developing severe COVID-
19 disease. SNPs in the chromosomal loci related to this pathway group together the
Spanish/Italian populations away from the European countries and Finland, independently.
Hospitalised patients from the first populations presenting minor alleles of rs79750333 and
rs2853982 may ameliorate severe symptoms if offered either IL1β inhibitors or anti-TNF
treatments, respectively, in their early stages. Also, Spanish/Italian hospitalised patients
presenting rs60075147 may reduce disease severity after treatments to increase IFN-specific
isoforms. Additional in vitro assays to elucidate cross-talk between SARS-CoV-2 and above-
mentioned genes/proteins may assist in discerning one of the host’s molecular responses
that lead to severe disease and provide potential prognostic biomarkers and/or therapeutic
targets, with a special value in male patients for the latter.
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