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Abstract: The human microbiome is a dynamic community of bacteria, viruses, fungi, and other
microorganisms. Both the composition of the microbiome (the microbes that are present and their
relative abundances) and the temporal variability of the microbiome (the magnitude of changes in
their composition across time, called volatility) has been associated with human health. However, the
effect of unbalanced sampling intervals and differential read depth on the estimates of microbiome
volatility has not been thoroughly assessed. Using four publicly available gut and vaginal microbiome
time series, we subsampled the datasets to several sampling intervals and read depths and then
compared additive, multiplicative, centered log ratio (CLR)-based, qualitative, and distance-based
measures of microbiome volatility between the conditions. We find that longer sampling intervals
are associated with larger quantitative measures of change (particularly for common taxa), but not
with qualitative measures of change or distance-based volatility quantification. A lower sequencing
read depth is associated with smaller multiplicative, CLR-based, and qualitative measures of change
(particularly for less common taxa). Strategic subsampling may serve as a useful sensitivity analysis
in unbalanced longitudinal studies investigating clinical associations with microbiome volatility.

Keywords: microbiome volatility; longitudinal microbiome; temporal variability; qualitative changes;
quantitative changes

1. Introduction

The human microbiome is a dynamic community of bacteria, viruses, fungi, and other
microorganisms that has been associated with a wide range of human diseases, including
irritable bowel disease, graft-versus-host disease, bacterial vaginosis, and Alzheimer’s [1–4].
With improvements in sequencing technologies and reductions in cost, longitudinal mi-
crobiome studies have become increasingly common in recent years. Longitudinal studies
of microbiome composition have been used to investigate temporal changes in healthy
individuals [5–8] and to understand the association of changes in microbiome composition
with clinical changes during disease progression or treatment [9–13]. In addition to clinical
associations with the abundance of specific taxa, microbiome volatility, which we define as
the degree of compositional change over time [14], may have a separate and potentially
bidirectional association with health [10,15].

Microbiome volatility does not have a single, formal mathematical definition. There
are two major approaches to quantifying and comparing microbiome changes over time:
distance-based and taxon-level approaches. In distance-based approaches, rather than
defining an explicit volatility metric, investigators compute ecological distance metrics
such as Bray–Curtis or UniFrac distances between samples [16], then compare the dis-
tributions of intraindividual and interindividual distances [14,15,17–19]. For example,
Bastiaansen et al. [14] defined volatility as the Aitchison distance travelled over the course
of a study and concluded that stressed mice had higher volatility than the controls; similarly,
Halfvarson et al. [15] computed weighted and unweighted UniFrac distances between
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consecutive samples, set a boundary they called the “healthy plane” to represent the vari-
ability within healthy individuals, and found that participants with IBD had “considerable
volatility away from the healthy plane”. Distance metrics may also be computed directly
based on qualitative or quantitative taxon-level measures of change [20]. Formal taxon-
level approaches to characterizing microbiome volatility are less common and typically
require a long, dense microbiome time series. For example, measures related to microbiome
volatility can be extracted from temporal models such as dynamic linear models [21] and
the linear mixed model based approach called MTV-LMM [22]. The intraclass correlation
coefficient has also been used to quantify stability [7,23]. In some cases, investigators
combine these two conceptual approaches by associating the abundance of specific taxa
with intraindividual variability [17].

However, there are several features of longitudinal microbiome studies that may pose
challenges to volatility quantification and comparison. First, similar to most longitudinal
studies, even microbiome studies that are designed to collect samples at balanced time
points are afflicted by missing, mistimed, or QC-failed samples, so the sampling interval is
rarely consistent for all intraindividual pairs of samples. In addition, sampling intervals
for gut microbiome profiling are often tied to a biological mechanism such as a bowel
movement, so timing cannot be precisely controlled by investigators. Second, the perennial
difficulty posed by differences in sequencing read depth comes to the fore for comparisons
of taxon presence across time points. The absence of rare taxa in a sequencing-based
microbiome profile may represent true biological absence or insufficient sampling depth
to detect the taxon. Hence, variability in the total read count across repeated samples
may result in higher qualitative volatility estimates than would be supported based on a
perfect knowledge of the microbial community. Third, microbiome data are compositional,
so changes in a taxon’s relative abundance may be driven by changes in that taxon’s
absolute abundance, but they may also be induced indirectly by changes in the abundance
of other taxa.

Using four publicly available microbiome time series datasets, we investigated the
potential impact of sampling interval length and sequencing read depth on several mea-
sures of change in microbiome composition. We used temporal subsampling and several
rarefaction approaches to systematically vary the sampling interval and read depth, then
computed additive, multiplicative, centered log ratio (CLR)-based, and qualitative (pres-
ence/absence) changes in the taxon abundance between time points along with the typical
intraindividual distance-based analysis. This exploration reveals patterns in the measures
of microbiome volatility across the study and sample characteristics, with implications for
the design and analysis of microbiome volatility studies.

2. Materials and Methods
2.1. Datasets

The four microbiome time series datasets selected for use in this study varied in
their sampling interval, overall study time frame, and body site. We focused on internal
body sites (as opposed to the skin, for example, which directly interacts with the external
environment) with different microbiome characteristics: the healthy gut microbiome tends
to be diverse, whereas the healthy vaginal microbiome tends to have one or a few heavily
dominant species. Selected study characteristics are summarized in Table 1 and visualized
in Supplemental Figure S1.

Caporaso et al. (2011) generated the densest and longest-running time series of the
human gut microbiome to date, called the Moving Pictures study [5]. They sampled two
healthy individuals almost daily for 6 months (female subject F4) or 15 months (male
subject M3), sequencing the V4 region of the 16S rRNA gene to generate microbiome
profiles. We used genus-level taxonomic profiles.

In the Student Microbiome Project (SMP), Flores et al. (2014) sampled 85 college-
aged adults at four body sites (gut, forehead, palm, and tongue) weekly for 3 months,
sequencing the V4 region of the 16S rRNA gene and clustering sequences into OTUs at 97%
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similarity [24]. We used only gut microbiome samples. Demographic, lifestyle, medication,
and health status data were also collected weekly; subjects who took antibiotics during the
study period were excluded from this analysis. Neither subjects nor samples were excluded
on the basis of sickness during the study period (37 out of 58 subjects) or menstruation
status. There were 10509 unique OTUs across all the samples, which we aggregated at the
genus level for computational tractability.

Gajer et al. (2012) sampled the vaginal microbiome of 32 healthy women twice weekly
for 16 weeks, sequencing the V1-V2 region of the 16S rRNA gene [25]. Participants reported
menstrual bleeding, sexual activity, medications, contraceptives, and other characteristics
in daily diaries. Taxon counts were computed based on the original study’s reported
taxon proportions and total read counts, rounded to the nearest whole number. Taxonomic
assignments were at the species level for the Lactobacillus species and genus level otherwise.

Ravel et al. (2013) characterized the vaginal microbiome daily for 10 weeks in 4 women
without bacterial vaginosis (BV), 6 women with asymptomatic BV (ABV), and 15 women
with symptomatic BV (SBV), sequencing the V1-V3 regions of the 16S rRNA gene and
generating species-level taxonomic assignments [26]. For women with episodes of ABV or
SBV, we included only samples prior to the BV episode. Notably, women later diagnosed
with ABV or SBV typically had Lactobacillus-depleted vaginal microbiomes at earlier time
points, despite the lack of an active BV diagnosis based on their Nugent score. We excluded
women with fewer than 20 time points prior to their first active BV diagnosis.

Table 1. Characteristics of studies included in this investigation. Sample sizes and time points after
all necessary exclusions.

Caporaso et al.,
2011 [5]

Flores et al., 2014
[24]

Gajer et al., 2012
[25]

Ravel et al., 2013
[26]

Basic Study Information

Study name Moving Pictures SMP - -
Body site Gut Gut Vagina Vagina
Number of subjects 2 58 32 6
Percent female 50% 63.7% 100% 100%
Percent white - 75.9% 40.6% 16.7%
Age (years): Mean (SD) - 24.1 (6.4) 37.1 (8.1) 27.2 (6.3)
Age (years): Range 32–33 18–55 22–53 21–38

Sampling Frequency and Study Duration

Number of time points 131–336 7–10 25–33 23–38
Sampling interval Daily Weekly Twice-weekly Daily
Study duration 6–15 months 3 months 16 weeks 10 weeks

Summaries of Taxa and Reads

Read count: Median 36,114 43,282 2403 5195
Read count: Range 15,355–60,847 11,393–188,192 556–6619 145–15,972
Number of unique taxa 3962 632 331 122
Taxon analysis level Genus Genus Genus/Species Species

2.2. Measures of Volatility

We considered five approaches to quantifying changes in the microbiome between
pairs of time points. The four taxon-level measures of change were additive, multiplicative,
CLR-based, and qualitative measures, as summarized in Table 2. We also considered
intraindividual global dissimilarities.

Since the logarithm of zero is undefined, the CLR transformation requires replacing ze-
ros with small non-zero values. There are a variety of methods for zero replacement [27–30];
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we followed the common approach of adding a pseudocount of 1 to all counts [31]. Notably,
dc is related to dm through a ratio of geometric means:

dc
ijtk−1tk

= log
( p̃ijtk

GM( p̃itk )

)
− log

(
p̃ijtk−1

GM( p̃itk−1
)

)
(1)

= log

(
p̃ijtk

p̃ijtk−1

/
GM( p̃itk )

GM( p̃itk−1
)

)

= log

(
dm

ijtk−1tk
×

GM( p̃itk )

GM( p̃itk−1
)

)
,

where p̃ijt is the relative abundance of the taxon j for subject i at time t computed after
pseudocount addition and GM() is the geometric mean. For taxa absent at both time points
in a rarefied dataset,

p̃ijtk−1
= p̃ijtk =

1
Rarefied Read Count + Num. Taxa

. (2)

In this case, dc simplifies the log of the ratio of geometric means, so there is often a nonzero
CLR-based difference even when the taxon is not detected at either time point.

Table 2. Taxon-level measures of change. For subject i and taxon j at consecutive time points, tk−1

and tk, dijtk−1tk
indicates the measure of change in taxon abundance between the two-time points.

Relative abundance is indicated by pijt and the centered log ratio (CLR) transformation is defined

as CLR( p̃ijtk
) = log

(
p̃ijtk

/GM( p̃itk
)
)

where p̃ represent proportions computed after pseudo count

addition, and GM() is the geometric mean.

Definition Requirements Possible Values

Additive da
ijtk−1tk

= pijtk
− pijtk−1

- [−1, 1]

Multiplicative dm
ijtk−1tk

= log
(

pijtk
/pijtk−1

)
pijtk

> 0, pijtk−1
> 0 (−∞, ∞)

CLR-Based dc
ijtk−1tk

= CLR( p̃ijtk
)−CLR( p̃ijtk−1

) p̃ computed after zero-replacement (−∞, ∞)

Qualitative dq
ijtk−1tk

= I
(

pijtk
> 0

)
− I
(

pijtk−1
> 0

)
- −1 (present→ absent), 0,

1 (absent→ present)

Intraindividual dissimilarities were calculated using existing ecological distance met-
rics. For the Moving Pictures dataset, which includes a phylogenetic tree, we considered
unweighted UniFrac, generalized UniFrac with α = 0.5, weighted UniFrac, and Bray–Curtis
dissimilarities. The UniFrac dissimilarities account for phylogenetic relationships among
taxa, whereas Bray-Curtis only considers taxon abundance [16]. Unweighted UniFrac only
uses presence/absence data; weighted UniFrac only uses abundance data; and generalized
UniFrac is an intermediate version [32]. For the other three studies, because phylogenetic
trees were unavailable, we only calculated the Bray–Curtis dissimilarity.

2.3. Sampling Interval and Sampling Depth Investigations

We considered four sampling intervals: 1 day, 3 days, 7± 1 days, and 28± 4 days,
with the acceptable time lag between the samples designed to keep the observed sampling
intervals to within 15% longer or shorter than the desired sampling interval. Once the pairs
of samples at the desired sampling interval were identified, all samples were rarefied to the
minimum read count in that study, the four taxon-level measures of change (da, dm, dc, dq)
were calculated for each taxon in each pair of samples, and the global dissimilarity was
calculated between the sample pairs. Because the minimum read count was very small
for the Ravel study, we treated 500 reads as the “minimum read count” for rarefaction
purposes (leaving 5 samples unrarefied). The summary statistics included the standard
deviation of da, dm, and dc and the proportion of time pairs for which dq 6= 0 were used to
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compare the magnitude of taxon-level changes based on sampling interval and average
taxon relative abundance.

We also considered four rarefaction-based approaches to explore the impact of differ-
ential sampling depth. Specifically, we: (1) kept all of the original reads (no rarefaction),
(2) adopted the conventional approach of rarefying to the minimum read count across all
samples, (3) rarefied to 80% of the minimum read count, and (4) rarefied to 60% of the
minimum read count. Using these four versions of each dataset with weekly sampling
(7± 1 day sampling interval), we repeated the summaries described above. As before,
100% of the minimum read count was considered 500 reads for the Ravel study.

Finally, to assess whether samples that originally had higher read counts had different
estimated volatility even after rarefaction, we fixed the sampling interval for each study to
a seven-day interval, rarefied to the minimum total read count, and calculated all measures
of volatility. We averaged the two original read counts for each time point pair and explored
associations of the taxon-level measures of change with the pairwise average read count.

3. Results
3.1. Sampling Interval Investigations

In the absence of systematic microbiome transitions to a new stable state over the
course of a study, each measure of quantitative change (additive, multiplicative, CLR-based)
should be centered around zero. For the most part, this is what Supplemental Figure S2
shows, although the CLR-based changes for abundant taxa at long sampling intervals (time
lags) had a positive mean. Therefore, because comparing the centre of the distribution of
log fold changes is not highly informative, we instead compared distributions based on the
spread, where larger standard deviations (SDs) indicate larger increases and decreases in
relative abundance.

The SDs for additive changes in relative abundance are shown in the top row of
Figure 1 and in Supplemental Table S1. In all four studies, the overall SD was larger for
longer time lags, and more abundant taxa had much larger SDs than rarer taxa. Taxa with
relative abundances greater than 0.001 followed the overall association of higher SDs for
longer sampling intervals. However, for rare taxa, the opposite was true: longer sampling
intervals had smaller SDs.

For multiplicative changes, shown in Figure 1 (middle row) and Supplemental Table S2,
the results were similar to additive changes. For rare taxa, smaller SDs were observed at
longer time lags, whereas for common taxa, larger SDs were observed at longer time lags.
The multiplicative SDs were shrunk less strongly towards zero than the additive SDs due
to rare taxa that are absent at most pairs of time points, which have additive changes of
zero but undefined multiplicative changes.

The results for CLR-based changes (bottom row of Figure 1; Supplemental Table S3)
revealed consistent increases in SDs both with increasing taxon abundance and with
increasing time lag within each relative abundance category. The two factors together had a
synergistic effect: the ratio between the SDs of CLR-based changes for larger versus smaller
time lags was greater for more abundant taxa.

Sampling interval was relatively unassociated with the probability of qualitative
changes in taxon abundance, as seen in Figure 2. Qualitative changes were most common at
intermediate taxon abundances, which is consistent with biological expectations: extremely
rare taxa will almost never appear, and extremely common taxa will be present at nearly all
time points, so qualitative changes are unlikely at both extremes. In the Moving Pictures
dataset, the probability of qualitative change was noticeably higher for a 28-day lag than for
the three shorter lag times, and similarly, for the Ravel dataset, the probability of qualitative
change monotonically increased with increasing sampling interval. Although the SMP and
Gajer datasets descriptively followed the same pattern, the differences are smaller.
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Figure 1. Standard deviations of quantitative taxon-level measures of change by time lag, taxon
abundance category, and study. Top row: additive changes. Middle row: multiplicative changes
(log fold changes). Bottom row: centered log ratio based changes.

Figure 2. Proportion of time point pairs for which a taxon’s binary presence in the sample changes as
a function of study, time lag, and the log of the taxon’s average relative abundance across all samples.

Finally, for intraindividual global dissimilarities, there was a mild increase in the
median Bray–Curtis dissimilarity between time point pairs as time lag increased for each
of the four studies (Figure 3). The differences were most noticeable for the Moving Pictures
dataset, particularly on day 28 (which was also the scenario with the highest rate of qualita-
tive change). Both observations may result in part from the higher diversity of the Moving
Pictures dataset, which has far more unique taxa than the other three datasets. To confirm
that similar results hold in other common dissimilarity metrics, Supplemental Figure S3
compares four measures of global dissimilarity by time lag in the Moving Pictures dataset.
Similar patterns across time lags were seen for each dissimilarity: the distribution of the
dissimilarity value for lags of 1 and 3 days were similar, the distribution at 7 days had
slightly fewer high outliers, and the distribution at a 28-day lag had higher variability
(indicated by a larger interquartile range and heavier right tail).
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Figure 3. Distribution of intraindividual Bray–Curtis dissimilarity across time lags for each of the
four studies.

3.2. Read Depth Investigations

Another key question in longitudinal microbiome studies is how much of an effect dif-
ferences in read depth has on measured qualitative and quantitative change in microbiome
composition and whether that effect persists even after rarefying the data to a common
total read count. As in the previous section, the centre of each distribution of changes (with
different rarefactions, at a fixed 7-day time lag) is zero, so we again compare SDs.

The SDs of additive changes in taxon relative abundance were similar regardless
of taxon abundance category, study, and rarefaction procedure (top row of Figure 4;
Supplemental Table S4). For CLR-based changes (bottom row of Figure 4;
Supplemental Table S6), the SD decreased monotonically with increasing strength of rar-
efaction in each study and across all taxon abundance categories. As expected given the
high variability in read counts within each study, the difference between no rarefaction and
standard (100%) rarefaction is larger than differences between rarefaction levels. Multi-
plicative changes (middle row of Figure 4; Supplemental Table S5) matched CLR-based
changes almost exactly, with the exception of rare taxa in the vaginal datasets (which often
disappeared from the dataset entirely after rarefaction).

Figure 4. Standard deviations of quantitative taxon-level measures of change by rarefaction procedure,
taxon abundance category, and study. Top row: additive changes. Middle row: multiplicative changes
(log fold changes). Bottom row: centered log ratio based changes.

Differences in the frequency of qualitative change at each relative abundance occurred
only between the unrarefied and rarefied versions of each dataset; the level of rarefaction
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did not make a notable difference (Figure 5). In the Moving Pictures, SMP, and Gajer
studies, the shape of all four curves was similar, but the unrarefied curve was shifted to the
left relative to the rarefied curves so that the maximum probability of qualitative change
occurred at a lower abundance. The Ravel study showed a similar pattern but with larger
standard errors around the LOESS curve. Because subsampling investigations focus only on
sampling zeros (biologically present taxa that have zero counts due to undersampling), not
structural zeros (zero counts due to biological absence), these results confirmed that more
frequent intermittent sampling zeros, as seen with reduced read counts, were associated
with higher estimated qualitative volatility.

The distribution of dissimilarities was nearly identical regardless of rarefaction choices,
so mild shifts in the estimates of taxon abundance did not have much impact on the distance-
based measures of intraindividual change over time (Figure 6 and Supplemental Figure S4).
The only noticeable differences in dissimilarity distributions occurred when unweighted
UniFrac is used. In that case, the intraindividual dissimilarity tended to be very slightly
higher with lower read counts (increasing rarefaction). Because read depth and rarefaction
most strongly affect the presence of rare taxa, not the abundance of common taxa, un-
weighted UniFrac is by nature the most sensitive to read depth effects due to its exclusive
use of presence/absence data.

Figure 5. Proportion of time point pairs for which a taxon’s binary presence in the sample changes
as a function of study, rarefaction approach, and the log of the taxon’s average relative abundance
across all samples.

Figure 6. Intraindividual dissimilarity quantified using four metrics (unweighted UniFrac, general-
ized UniFrac, weighted UniFrac, and Bray–Curtis dissimilarity) for each rarefaction approach in the
Moving Pictures study.

Residual Effects of Read Depth after Rarefaction

Whether rarefaction as an approach to correct for differences in sequencing read depth
is appropriate, inefficient but valid, or invalid is currently in contention (see, e.g., [33–36]).
Some recent investigations have shown that there may be residual effects of differences in
read depth even after rarefaction, particularly in analyses strongly affected by the presence
of rare taxa, such as alpha diversity analyses [37]. Others show that rarefaction is inefficient
but yields proper expected values for the desired quantities [34]. Because rarefaction is still
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commonly used in practice, we investigated whether there were residual effects of samples’
original read depths on measures of taxon-level change.

For additive changes, the top row of Figure 7 shows that in both gut studies (Moving
Pictures, SMP), the SDs for taxa with relative abundance in (0.001, 1] were largest for the
quartile of sample-pairs with the highest original read counts; however, in the vaginal
studies (Gajer, Ravel), the samples with lower original read counts had higher SDs. Mul-
tiplicative changes also tended to have larger SDs for samples with higher original read
counts in Moving Pictures, SMP, and Gajer (but not Ravel), for all but the rarest taxon
abundance categories (Figure 7, middle row).

For CLR-based changes between consecutive non-zero time points, patterns differed
between all four studies (Figure 7, bottom row). The Moving Pictures SDs tended to
increase with increasing read count quartile. The SMP SDs tended to be highest for the
samples with the lowest and highest quartile of original read counts. Gajer showed no
association between SD and the original read count at all, and for Ravel, the samples in the
lowest quartile of the original read count had the highest SDs.

Finally, for qualitative changes (Figure 8), the overall takeaways were similar to CLR-
based findings. In all studies except Ravel, the samples in the highest read count quartile
had the highest qualitative volatility; these differences were more noticeable in the Moving
Pictures study than in SMP or Gajer. By contrast, in Ravel, the samples in the two lower
read count quartiles tended to have higher qualitative volatility.

Because these potential residual effects were not consistent across the four studies, it is
possible that some of the differences occurred by chance based on a particular subsampling
of the data. Further investigation in additional time series studies is needed to clarify the
extent to which residual read depth effects are a concern in volatility studies and perhaps
suggest a better approach than rarefaction to handle them.

Figure 7. Standard deviations of quantitative taxon-level measures of change by original read count
quartile, taxon abundance category, and study. Top row: additive changes. Middle row: multiplicative
changes (log fold changes). Bottom row: centered log ratio based changes.
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Figure 8. Proportion of time point pairs for which a taxon’s binary presence in the sample changes,
as a function of study, original read count quartile, and taxon abundance quantile.

4. Discussion

Through systematic subsampling of four microbiome time series, we have explored
the effect of sampling interval on measures of microbiome volatility. Quantitative measures
of change, including additive differences in relative abundance, log fold changes in relative
abundance, and additive differences in CLR-transformed abundance, tend to be larger at
longer sampling intervals, particularly for common taxa. However, the increase in volatility
is not constant across relative abundances, so simply using a multiplier such as the inverse
time interval is unlikely to fully account for sampling interval-related differences. Sampling
interval is generally unassociated with the probability of qualitative change, although in
the Moving Pictures study, the proportion of qualitative change is greater at the longest
time lags. The probability of qualitative change is largest for intermediate-abundance
taxa in every study. Finally, the differences between the distributions of intraindividual
dissimilarities across sampling intervals are minor in every study except Moving Pictures,
for which dissimilarities are greatest at the 28-day time lag. Comparisons across time
intervals are similar for the four distance metrics considered.

We have also explored the effect of read depth on each measure of change in micro-
biome composition through the rarefaction of each microbiome time series to different read
depths with fixed 7-day sampling intervals. In general, additive measures of change are
similar regardless of the read depth, whereas multiplicative and CLR-based measures of
change are smaller with lower read depths. The distribution of the proportion of qualitative
changes shifts to higher relative abundances with lower read depths. There are minimal
differences in the distributions of distance-based measures of volatility with rarefaction.

Associations between the measures of change calculated on rarefied data and the
original read count of the two samples are inconsistent across the four studies, so more
evidence would be needed to conclude that there is a residual effect of sequencing read
depth after rarefaction and to clarify what that effect is. However, ongoing investigations
into this question are worthwhile, as results may vary depending on the distribution of
taxon abundances, the measures being calculated post-rarefaction and their dependence on
the presence of rare taxa, and other study factors.

Across all investigations, the distribution of differences in CLR-transformed relative
abundances is relatively similar to the distribution of log fold-changes in relative abun-
dances. Given the relationship between these two measures (Equation (1)), this behaviour
is expected if the geometric mean taxon abundance is not extremely variable between the
samples. Since using the CLR transformation mitigates the effects of compositionality
in taxon-level analyses [38] and the requisite zero-adjustment allows absent taxa to con-
tribute to multiplicative measures of volatility while maintaining results consistent with
the raw log ratio among pairs of non-zero taxon abundances, the CLR-based approach is
an attractive measure of quantitative microbiome volatility.

Taken as a whole, our results suggest that the effects of sequencing read depth and
sampling interval are consistent across studies and body sites after accounting for taxon
relative abundances. Sequencing read depth, consistent with general intuition, matters most
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for rare taxa and qualitative changes, and rarefaction helps avoid systematic differences
in volatility estimation based on read depth. This comes at the cost of efficiency due to
the reduction in the available data; more sophisticated methods, including some modern
Bayesian approaches, estimate whether particular zeros are sampling or structural zeros and
may avoid rarefaction (e.g., [30]). The sampling interval has potentially important effects
on the average magnitude of quantitative and qualitative changes in taxon abundances.
In the context of unbalanced studies (by design or through missing data), systematic
differences in sampling intervals between clinical groups could impact the quantification
of microbiome volatility and should be considered as a potential confounder. Despite
resulting in a reduction in the total sample size, subsampling pairs of time points to a
consistent time interval may serve as a valuable sensitivity analysis.

Supplementary Materials: The following supporting information can be downloaded at: www.mdpi.
com/article/10.3390/genes14010218/s1, Supplemental Methods: Approach to Subsampling; Figure
S1: Selected data and study characteristics for the four studies used in this investigation. Call-out
segments correspond to one week of each study, within which sampling frequency is indicated by
red circles; Figure S2: Average change in abundance for each taxon at each sampling interval vs.
the taxon’s relative abundance (small points), with overlaid LOESS smoothers. Changes in taxon
abundance are generally centered around 0 regardless of sampling interval and the taxon’s average
relative abundance. The LOESS curves for the Ravel study show more variability around zero due to
the smaller number of nonzero pairs; Figure S3: Intraindividual dissimilarity quantified using four
metrics (unweighted UniFrac, generalized UniFrac, weighted UniFrac, and Bray-Curtis dissimilarity)
for each time lag in the Moving Pictures study; Figure S4: Distribution of intraindividual Bray-
Curtis dissimilarity across rarefaction approaches for each of the four studies; Table S1: Standard
deviation (n pairs) of additive changes in taxon relative abundance by study, time lag, and average
relative abundance category for each taxon; Table S2: Standard deviation (n pairs) of multiplicative
changes between consecutive nonzero relative abundances by study, time lag, and average relative
abundance category for each taxon; Table S3: Standard deviation (n pairs) of differences in CLR-
transformed abundances between consecutive time points by study, time lag, and average relative
abundance category for each taxon; Table S4: Standard deviation (n pairs) of additive changes in
relative abundance by study, rarefaction procedure, and average relative abundance category for each
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