
Citation: Yaghobi, M.; Heidari, P.

Genome-Wide Analysis of

Aquaporin Gene Family in Triticum

turgidum and Its Expression Profile in

Response to Salt Stress. Genes 2023,

14, 202. https://doi.org/10.3390/

genes14010202

Academic Editor: Silvio Salvi

Received: 13 December 2022

Revised: 7 January 2023

Accepted: 10 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

Genome-Wide Analysis of Aquaporin Gene Family in Triticum
turgidum and Its Expression Profile in Response to Salt Stress
Mahnaz Yaghobi and Parviz Heidari *

Faculty of Agriculture, Shahrood University of Technology, Shahrood 3619995161, Iran
* Correspondence: heidarip@shahroodut.ac.ir

Abstract: During the response of plants to water stresses, aquaporin (AQP) plays a prominent role in
membrane water transport based on the received upstream signals. Due to the importance of the
AQP gene family, studies have been conducted that investigate the function and regulatory system of
these genes. However, many of their molecular aspects are still unknown. This study aims to carry
out a genome-wide investigation of the AQP gene family in Triticum turgidum using bioinformatics
tools and to investigate the expression patterns of some members in response to salt stress. Our
results show that there are 80 TtAQP genes in T. turgidum, which are classified into four main groups
based on phylogenetic analysis. Several duplications were observed between the members of the
TtAQP gene family, and high diversity in response to post-translational modifications was observed
between TtAQP family members. The expression pattern of TtAQP genes disclosed that these genes
are primarily upregulated in response to salt stress. Additionally, the qPCR data revealed that TtAQPs
are more induced in delayed responses to salinity stress. Overall, our findings illustrate that TtAQP
members are diverse in terms of their structure, regulatory systems, and expression levels.
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1. Introduction

Aquaporin proteins (AQPs) include a group of major intrinsic proteins (MIPs) that
facilitate the transport of water and other small neutral molecules through the cell mem-
brane by forming channels in the membrane, and play an important role in plants’ growth
and responses to abiotic stress [1,2]. AQP channels facilitate bidirectional flow across a
concentration gradient in all cells [3]. In addition, some AQP isoforms play the role of per-
oxyporins and contribute to cellular redox signaling by transporting hydrogen peroxide [4].
Moreover, AQPs in plants have multiple functions, such as the hydraulic control of plant
tissue, as well as seed germination and the emergence of lateral roots [2]. Based on struc-
tural analysis, AQP family genes can be divided into five main evolutionary subfamilies
in plants, including plasma membrane intrinsic proteins (PIP); tonoplast internal proteins
(TIP); Nodulin-26 intrinsic proteins such as NIPs, which are small major intrinsic proteins
(SIPs); and X intrinsic proteins (XIPs) [5]. Plant AQPs have two fundamental factors; they
are extraordinary divers [6], and some are multifunctional channel proteins that allow some
small neutral solutes to cross the cell membrane, such as glycerol, CO2, ammonia (NH 3),
urea, boron, and hydrogen peroxide [7].

In recent years, the function of AQPs has been investigated in relation to plant re-
sponses to biotic and abiotic stresses [8–11]. It has been shown that AQP can improve
plant tolerance to abiotic stresses (such as drought, osmosis, cold, salt, and high tempera-
ture) [12]. Furthermore, previous studies show that AQP plays a positive role in responses
to biotic stresses. It has also been found that the expression of AQP genes differs de-
pending on the organs and tissues, as well as plant growth regulators and abiotic stress
such as drought, heat, and cold [13,14]. Between AQP subfamilies, the function of PIPs
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and TIPs, which have high transporter activity, is investigated more under adverse con-
ditions [15]. The downregulation of PIPs and TIPs was reported in response to drought
and salt stress [1,16–18]. Additionally, it was stated that the NIP subfamily is the only
AQP able to transport Si (silicon) that can improve plant tolerance in response to various
environmental stresses [5,19].

Today, cereals are considered major crops, and wheat is considered a strategic crop
among cereals across the globe. Wheat genotypes exist in three ploidy levels, which include
diploid, tetraploid, and hexaploid [20]. Durum wheat, T. turgidum L. ssp. durum (Desf.),
is a tetraploid wheat (2n = 4x = 28). T. turgidum is best adapted to areas with a relatively
dry climate with warm days and cool nights during the growing season (corresponding to
a Mediterranean and temperate climate) [21]. As mentioned above, AQPs are critical in
transporting water and maintaining cell balance in response to stresses such as drought and
salinity. However, the structure and function of AQP gene family members in response to
salinity are largely unknown in T. turgidum. In the current study, we aimed to identify and
characterize AQPs in T. turgidum (TtAQPs), and the expression levels of several TtAQPs
were evaluated at different salinity concentrations. As the first report on this topic, new
perspectives related to the structure, process of evolution, and function of members of this
gene family are presented.

2. Materials and Methods
2.1. Identification and Sequence Analysis of TtAQPs

To identify the AQP genes in T. turgidum L. ssp. durum (Desf.) (TtAQPs) [22], the
protein sequences of putative AQPs in Arabidopsis (AtAQPs) and rice (OsAQPs) were
applied as the query sequences against the complete protein sequence of T. turgidum using
the BLASTP tool of the EnsemblPlants database (Accessed on 24 November 2022) [23]. In the
next step, the extracted sequences were confirmed using the Conserved Domains Database
(CDD) (Accessed on 24 November 2022) [24], and Pfam [25]. Then, short sequences (less
than 150 amino acids in length) were removed from the list. The identified sequences were
analyzed using the Expasy website and their physicochemical properties, such as molecular
weight (MW), isoelectric point (pI), instability index, and GRAVY index were estimated
using the ProtParam tool [26].

2.2. Investigating Phylogenetics of TtAQPs

To study the relationships of TtAQP proteins in T. turgidum, a phylogenetic tree was
constructed with the complete protein sequences of the TtAQP gene family members
along with their orthologues from Arabidopsis, rice, barley, corn, and sorghum plants.
AQP genes were identified in Arabidopsis (Arabidopsis thaliana), barley (Hordeum vulgare),
corn (Zea mays), and rice (Oryza sativa japonica) using the EnsemblPlants database, as was
T. turgidum. The sequence of AQP proteins was aligned using the ClustalW program using
an online tool, Clustal Omega [27]. Then, the phylogenetic tree of AQPs was constructed
based on the maximum likelihood (ML) method with 1000 bootstrap replications using
the IQ tree website [28]. The iTOL tool [29] was used to illustrate the phylogenetic tree.
Additionally, ten conserved motifs in TtAQPs were identified using the MEME motif finder
tool [30] based on the default setting.

2.3. Determining the Duplication Genes and Estimating Ka and Ks Values

The duplication events between TtAQP genes were identifiedbased on similarity,
more than 80% between pairs of TtAQP genes [31]. In addition, synonymous (Ks) and
non-synonymous (Ka) values at each site among pairs of duplicated genes were calculated
using TBtools software (v1.068) [32]. Then, the Ka/Ks ratio was estimated to identify
the effect of evolution pressure on the function of duplicated genes. The division time of
pairs of duplicated TtAQP genes was estimated using the synonymous mutation rate of
substitution λ per synonymous site per year, as T = (Ks/2λ (λ = 6.5 × 10−9)) × 10−6 [33].
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2.4. Prediction of Phosphorylation Site in TtAQP Proteins

Phosphorylation is one of the most important types of post-translational modification.
The sites of phosphorylation are serine, tyrosine, and threonine residues on proteins. The
potential phosphorylation regions of TtAQP proteins were predicted through the NetPhos
3-1 site, with a potential value higher than 0.80 [34].

2.5. Prediction of 3D Structures and Pocket Sites of AQP Proteins

The three-dimensional structure of TtAQP proteins was predicted using the Phyre2
database [35]. The validity of the predicted protein model was evaluated through Ra-
machandran plot analysis [36]. The analysis of ligand binding regions (pocket sites) in the
predicted protein models was also performed through the Phyre investigator tool of the
Phyre2 server.

2.6. TtAQP Gene Promoter Analysis

To identify the regulatory regions in the promoter region, a region 1500 nucleotides
upstream of the TtAQP genes was investigated as the promoter region. The sequence of
the promoter region was analyzed to recognize the putative cis-regulatory elements using
the PlantCARE database [37]. Finally, the identified cis-regulatory elements were grouped
based on their functions.

2.7. Interaction Network of TtAQPs

In the present study, we constructed an interaction network of TtAQP proteins based
on their homologs in T. aestivum using the String database (https://string-db.org, accessed
on 24 November 2022). Additionally, gene ontology (GO) enrichment analysis of proteins
presented in the network was performed. To identify the significant GO terms, the FDR
(false discovery rate) was adjusted to <0.01.

2.8. Plant Materials and Treatments

Seeds of T. turgidum L. ssp. durum (Desf.) cultivar Yavaros were sterilized with 3%
sodium hypochlorite for 10 min. Then, they were cultivated in pots containing sterilized
perlite and peat moss (2:1). Five seeds were planted in each pot, and after germination,
three of the best seedlings were left in each pot. The cultivation conditions were kept with a
photoperiod of 16 h of light and 8 h of darkness and a temperature of 25 ◦C. Forty-day-old
seedlings were subjected to salt treatment via irrigation. In the current study, two salt
concentrations, 150 and 250 mM of NaCl, were applied twice at 24 h intervals. Some pots
were also considered as controls (without using salt stress). After applying salt stress, the
leaves of seedlings were sampled at different exposure periods of 6, 24, and 72 h. The
collected samples were immediately placed in liquid nitrogen, and then, were transferred
to a −80 ◦C freezer for other analyses.

2.9. Primer Design to Study Gene Expression

To investigate gene expression, six TtAQP genes, including TtAQP18, TtAQP29,
TtAQP34, TtAQP79TtAQP58, and TtAQP42, were selected based on the phylogenetic
result. The primers of the selected TtAQP genes were designed based on the coding region
(CDS) using Primer3 online software [38]. In this study, Actin7 was used as a reference gene
(Table S1).

2.10. RNA Extraction and Real-Time PCR

An RNX plus kit (Sinaclon, Tehran, Iran) was used for RNA extraction based on the
manufacturer’s instructions. The quality and quantity of the extracted RNA were checked
using a NanoPhotometer (Implen N50, IMPLEN, München, Germany). Complementary
DNA (cDNA) was synthesized by reverse transcriptase (Roche, Mannheim, Germany)
based on the manufacturer’s protocols. The expression levels of TtAQP genes were in-
vestigated using Maxima SYBR Green/ROX qPCR (quantitative real-time PCR) Master

https://string-db.org
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Mix (Thermo Fisher, Illkirch-Graffenstaden, France) based on the manufacturer’s protocol
and ABI Step One. The cycling patterns of qPCR were 95 ◦C for 10 min, then 35 cycles at
95 ◦C for 15 s, and 60 ◦C for 60 s. The relative expression of each gene was calculated using
the delta delta Ct method [39]. The expression difference between the treatments and the
control sample was calculated based on a t-test. All experiments were performed in three
biological replicates.

3. Results
3.1. Identification and Characterization of AQPs

In the current study, 80 putative TtAQP genes were identified in the genome of
T. turgidum. Detailed information on the 80 TtAQPs is provided in Table S2. In addition,
TtAQPs were compared with their orthologues in A. thaliana, H. vulgare, O. sativa, and
Z. mays based on their physicochemical properties (Table 1). It was observed that the AQPs
of the studied plants varied based on their physicochemical properties. In T. turgidum,
TtAQPs varied between 157 (TtAQP61) and 392 (TtAQP27) amino acids, and their pI ranged
between 4.65 (TtAQP42) and 11.05 (TtAQP09). The exon number of the deduced proteins
varied from 1 (most members of the PIP2 subfamily) to 6 and their MWs ranged from
16.7 (TtAQP42) to 41.5 (TtAQP27) kDa. In addition, the GRAVY value of TtAQPs varied
between −0.46 and 0.94, and 96% of the deduced proteins were predicted as stable proteins
(Table 1 and Table S2).

Table 1. Summary of AQP properties in T. turgidum, A. thaliana, H. vulgare, O. sativa, and Z. mays. Full
details of physicochemical properties of TtAQPs are shown in Table S2.

Plant
Species

Peptide
(aa) Exon pI MW (kDa) GRAVY Stability

T. turgidum 157–392 1–6 4.65–11.05 16.7–41.5 −0.46, 0.94 96%

A. thaliana 220–328 1–5 4.50–10.60 23.9–35.4 0.28, 1.02 100%

H. vulgare 150–623 1–19 5.48–12.80 16.3–69.2 −0.88, 0.90 71%

O. sativa 165–314 1–5 5.91–12.35 17.5–33.5 0.14, 0.92 88%

Z. mays 151–564 1–7 5.42–12.11 18.8–62.8 −0.25, 0.95 86%

3.2. Evolutionary Analysis

To investigate the relationships of TtAQPs, 237 AQP proteins, including 80 T. turgidum
AQPs, 39 H. vulgare AQPs (HvAQPs), 35 Arabidopsis AQPs (AtAQPs), 39 rice AQPs
(OsAQPs), and 44 maize AQPs (ZmAQPs), were used to design a phylogenetic tree. Ac-
cording to the phylogenetic tree, all AQPs were classified into four main groups (Figure 1).
All PIP1 proteins were located in group 1, PIP2 proteins were placed in group 2, and TIPs
were in group 3. In addition, SIPs were located in group 4-a, and NIPs were placed in group
4-b. Ten TtAQPs were present in group 1 with five TtAQPs, four HvAQPs, three OsAQPs,
and three ZmAQPs. Additionally, 25 TtAQPs with 8 AtAQPs, 10 HvAQPs, 8 OsAQPs, and
9 ZmAQPs were located in group 2. In addition, 19 TtAQPs with 10 AtAQPs, 7 HvAQPs,
10 OsAQPs, and 14 ZmAQPs were present in group 4. Finally, 26 TtAQPs with 12 AtAQPs,
19 HvAQPs, 14 OsAQPs, and 18 ZmAQPs were located in group 4. Based on the phy-
logenetic analysis, TtAQPs showed a close relationship with their orthologues in barley.
Moreover, AQPs from group 1 showed more genetic distance from the other members. Ten
conserved domains were identified in TtAQPs (Figure 2). Motifs 3, 4, 5, and 8 were present
in proteins from groups 1 and 2, including PIP1 and PIP2 proteins. Additionally, motifs 10,
7, and 9 were observed in proteins groups 3 and 4. These conserved motifs can be used to
identify each subfamily of TtAQPs.
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3.3. Duplication Events in TtAQPs

The genomic distribution of each TtAQP was investigated in the T. turgidum genome
(Figure 3). Eighty TtAQP genes were located on 14 chromosomes and one chromosome
was unknown (UN). In terms of the gene distribution on chromosomes, Chr6B and Chr7B
had the highest distribution and frequency, with eight TtAQP genes on each. After these
two chromosomes, Chr2A, Chr2B, Chr5A, Chr6A, and Chr7A were more abundant, with
seven TtAQP genes on each. In addition, Chr1A and Chr1B, each with two genes, included
the lowest number of genes. Finally, a TtAQP gene was located in unknown chromosomal
positions. These results determined that TtAQPs are not uniformly distributed on T.
turgidum chromosomes, and probably during the evolution and polyploidy processes,
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these genes increased randomly. Additionally, the investigation of the duplication process
between TtAQP genes showed that many duplications occurred between members in
the TtAQP family during evolution (Figure 3 and Table S3). Accordingly, 5% tandem
duplication was observed for the TtAQP family (Table S3), and most duplications were
of the segmental type, which indicates gene transfer and a change in the chromosome
set. Additionally, based on the ka/ks ratio, the duplicated events between TtAQP family
members were under purifying selection, which caused a decrease in diversity (Figure 4a).
Moreover, the first duplication probably occurred around 59 million years ago between
TtAQP09 and TtAQP51 (Figure 4b).
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3.4. Protein Structure Analysis of TtAQPs

The prediction results of the three-dimensional structure of TtAQP proteins showed
that these proteins have different interaction areas (Figure 5a). Based on their three-
dimensional structure, TtAQPs from group 1 and group 2, including PIP proteins, had
similar structures. However, they differed in their location and type of binding region
(pocket sites) (Figure 5a,b). The abundance of amino acids in the interaction and binding
regions of TtAQP proteins was also determined (Figure 5b). The amino acids, including
glycine, alanine, and valine, had the highest frequency in the binding region of TtAQP
proteins. These areas could be considered more in functional studies.
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3.5. Phosphorylation Analysis of TtAQPs

The phosphorylation regions, in terms of the three amino acids serine, tyrosine, and
threonine in TtAQP proteins, were predicted. According to the analysis, it was found
that the amount of serine compared to tyrosine and threonine is more subjected to post-
translational phosphorylation modifications (Figure 6). The number of predicted phos-
phorylation areas in TtAQPs from group 2 showed higher potential for phosphorylation.
Phosphorylation is one of the most important post-translational modifications that affect
protein function, durability, and interaction [40,41]. It seems that TtAQP proteins in the
second group (PIP2 subfamily) are more involved in cell signaling pathways.
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3.6. Expression Profile of TtAQPs in Response to Salinity

The expression pattern of selected genes showed that TtAQP genes have different
degrees of expression in response to salt stress (Figure 7). Most of the TtAQP genes were
induced by salinity. In response to 150 mM NaCl treatment, TtAQP58, as a PIP1 gene
from group 1, TtAQP18 and TtAQP42, as the TIP genes from group 3, and TtAQP34, as
a SIP gene from group 4, were sharply upregulated after 72 h, while two PIP2 genes
from group 2, including TtAQP29 and TtAQP79, were not induced. However, TtAQP29
showed downregulation after 72 h of 150 mM NaCl. Interestingly, all selected TtAQPs
were significantly upregulated in response to a high salinity concentration (250 mM of
NaCl), and the highest expression levels were observed after 72h of salt stress. Overall, the
expression patterns of the six selected TtAQP genes in durum wheat showed that TtAQPs
are mostly involved in the group with late responses to salinity stress.
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3.7. Promotor Analysis of TtAQP Genes

The promoter region of TtAQP genes was screened to identify the putative
cis-regulatory elements. The results disclose that important key regions involved in re-
sponse to biotic and abiotic stresses, as well as phytohormones, are located in the upstream
region of TtAQP genes (Figure 8). Moreover, it was found that MYB elements, which
are involved in the response to stresses, had the highest frequency in the promoter of
TtAQP genes (Table S4). Then, CAT-box elements—which are dependent on meristem
expression, and ABRE elements, which are regulatory elements involved in response to
abscisic acid (ABA)—had the highest frequency in the promoter site of TtAQP genes. In
addition, MRE elements, which are present in the MYB binding site and play a role in
response to light, had the lowest frequency in the promoter site of TtAQP genes. Following
that, the WUN-motif, which is an element involved in the response to abiotic stresses,
and AuxRR-core, which is involved in the response to auxin, had the lowest frequency
in the promoter site of TtAQP genes. In general, the identified regulatory elements can
be classified into four groups, including hormone-responsive, stress, light, and growth
elements. The highest of regulatory elements upstream of TtAQPs was predicted in the
field of stress and hormone-related functions. The presence of these important regulatory
elements in the promoter sites indicates that TtAQP genes are involved in the response of
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plants to stress conditions. Overall, TtAQP genes showed high potential to participate in
various cellular processes, so it is recommended that focus be placed on this gene family in
molecular works related to durum wheat breeding.
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3.8. Protein–Protein Interaction of TtAQPs

The interaction network of TtAQPs was constructed based on their orthologues in
T. aestivum using the STRING database (Figure 9a). According to the predicted network,
two PIP1 proteins (TtAQP51 and TtAQP45), two SIP proteins (TtAQP27 and TtAQP34), and
two NIP proteins (TtAQP67 and TtAQP47) showed high interaction with other elements in
the network (Figure 9a). Moreover, all proteins present in the network were analyzed to
identify the significant (FDR < 0.001) gene ontology (GO) terms (Figure 9b). The cellular
process in biological process terms, and channel activity and water channel activity in
molecular function terms, were significantly enriched. The cellular component GO terms,
including the membrane, plasma membrane, vacuolar membrane, and cellular anatomical
entity, were significantly enriched. These results reveal that TtAQPs are located in cell
membranes and vacuoles and are more involved in the process of transferring water and
ions. These results suggest that AQPs interact more with each other, which probably affects
their activity levels.
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4. Discussion

The role of AQPs in regulating cell homeostasis by controlling the flow of water and
some ions in the cell membrane is well known [1]. The function of AQP family members has
been studied in several plants, although the structure, evolutionary process, and function
of this gene family have not been investigated in T. turgidum, so far. In the present study, 80
putative TtAQP genes were identified and characterized in the genome of T. turgidum, as in
the first report. Based on previous studies, the number of AQP family members has been
variable. For example, 32 AQPs were identified in Physic nut [42], 35 in Arabidopsis [43], 41 in
potato [44], 26 in bamboo [45], 45 in cassava [46], 71 in cotton [47], 67 in Brassica oleracea [48],
and 51 in flax [49]. The number of AQPs was higher in T. turgidum; there is a hypothesis that
this gene family is more affected by polyploidy and duplication events under the evolution
process [50,51]. Additionally, a large number of segmental duplications was observed
between TtAQP family members, indicating that segmental duplication has been the main
factor responsible for expansion in the TtAQP family under evolution. However, we know
that T. turgidum underwent an allopolyploid event, which led to extension of the homolog
genes in the wheat genome. Moreover, according to the Ka/Ks index, the duplicated
members of TtAQPs have been under negative selection; as a result, the functional diversity
among TtAQPs has decreased. The exon/intron number was varied between TtAQP
subfamilies, suggesting that each subfamily has had a different evolutionary process
and each AQP subfamily was created before the derivation of monocotyledonous and
dicotyledonous plants [52]. Furthermore, it has been reported that the intron/exon number
can affect gene expression in plant species [51]. According to our phylogenetic analysis,
AQP proteins were separated into four main groups, and the subfamilies PIP1 and PIP2
showed more genetic distance than the subfamilies TIP, SIP, and NIP. Previously, it was
reported that the NIP subfamily originated from the bacterial genome [53,54]. It seems that
this gene family has been subjected to evolutionary pressure and extended via duplication,
polyploidy, and horizontal transmission.

Post-translational modifications tightly regulate the activity of aquaporin [55]. In the
current study, the PIP2 subfamily proteins showed a high potential for phosphorylation
events. PIP2 proteins have higher water channel efficiency than PIP1 proteins [56]. It is
hypothesized that phosphorylation affects the channel activity of this subfamily. Phospho-
rylation is one of the most important post-translational modifications and affects protein
function, durability, and interaction [50,57]. Additionally, previous studies revealed that the
channel opening of AQPs is influenced by phosphorylation at its C terminal sites [14,58,59].
In addition, it was stated that ethylene can regulate the C terminal phosphorylation of
Arabidopsis PIP2;1 (AtPIP2;1) [60]. Moreover, abiotic stresses such as salinity affect the
phosphorylation of AtPIP2;1 [61]. Identifying more potential phosphorylation sites in
TtAQP proteins could suggest that this subfamily has more channel activity and is more
affected by upstream signaling pathways related to phosphorylation events.

The candidate TtAQP genes showed diverse expression patterns in response to salinity.
In 150 mM NaCl conditions, candidate genes from the PIP2 subfamily showed downregu-
lation, unlike the other selected genes from the PIP1, TIP, and SIP subfamilies. However,
with increasing salinity concentration and duration of treatment, all TtAQPs were induced,
and they showed the highest expression levels. Our results disclose that TtAQPs are a part
of durum wheat responses to salt stress. The TIP and PIP subfamilies, which are more
studied than others [15], are mostly downregulated in response to abiotic stresses such as
drought and salt stress [1,16,17]. Additionally, two PIP genes in durum wheat, TdPIP1;1
and TdPIP2;1, were identified as being involved in the response to abiotic stresses [62]. In
addition, the overexpression of TdPIP1;1 and TdPIP2;1 could improve drought and salt
tolerance in durum wheat [63]. We speculated that TtAQPs are involved in the group of
durum wheat with late responses to salinity stress.
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5. Conclusions

In the present study, 80 putative TtAQP genes from the genome of T. turgidum were
characterized. The results disclosed that subfamilies of TtAQP, including PIP1, PIP2, TIP,
NIP, and SIP, have high genetic distances relative to each other. Furthermore, it was found
that segmental duplications have played a major role in the extension of the TtAQP family.
In addition, we predicted that PIP2 subfamily members have more potential to be influenced
by phosphorylation modification and they are probably involved in signaling pathways
related to kinases. According to their expression profiles, we conclude that TtAQPs are
associated with late responses to salt stress. Overall, we conclude that TtAQPs are diverse
proteins, based on their structure, regulatory systems, and expression. The results of this
research can be used in further studies related to salt tolerance in durum wheat.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14010202/s1, Table S1: List of TtAQP gene primers used in
real-time PCR; Table S2: Accession number and physicochemical properties of TtAQP gene family
members in T. turgidum; Table S3: List of the duplicated gene pairs in the TtAQP gene family; Table
S4: Functional category of the putative cis-regulatory elements in TtAQP promoter.
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