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Abstract: Bactericidal/permeability-increasing protein, a primary factor of the innate immune system
of mammals, participates in natural immune protection against invading bacteria. BPIFA1 actively
contributes to host defense via multiple mechanisms, such as antibacterial, surfactant, airway surface
liquid control, and immunomodulatory activities. However, the evolutionary history and selection
forces on the BPIFA1 gene in mammals during adaptive evolution are poorly understood. This study
examined the BPIFA1 gene of humans compared with that of other mammalian species to estimate the
selective pressure derived by adaptive evolution. To assess whether or not positive selection occurred,
we employed several different possibility tests (M1 vs. M2 and M7 vs. M8). The proportions of
positively selected sites were significant, with a likelihood log value of 93.63 for the BPIFA1 protein.
The Selecton server was used on the same dataset to reconfirm positive selection for specific sites
by employing the Mechanistic-Empirical Combination model, thus providing additional evidence
supporting the findings of positive selection. There was convincing evidence for positive selection
signals in the BPIFA1 genes of mammalian species, which was more significant for selection signs
and creating signals. We performed probability tests comparing various models based on dN/dS
ratios to recognize specific codons under positive selection pressure. We identified positively selected
sites in the LBP-BPI domain of BPIFA1 proteins in the mammalian genome, including a lipid-binding
domain with a very high degree of selectivity for DPPC. BPIFA1 activates the upper airway’s innate
immune system in response to numerous genetic signals in the mammalian genome. These findings
highlight evolutionary advancements in immunoregulatory effects that play a significant role in the
antibacterial and antiviral defenses of mammalian species.

Keywords: BPIFA1; bactericidal; immune system; molecular evolution; positive selection

1. Introduction

Bactericidal permeability-increasing protein (BPI) is a highly effective antimicrobial
protein that binds and neutralizes lipopolysaccharides released from the outer membrane
of bacteria [1]. The BPI fold-containing family A member 1 (BPIFA1) gene is known to have
effects on the local immune system, and these effects can potentially influence the growth
and invasion of microorganisms [2]. One of the potential mechanisms that underlie this link
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is the ability of BPIFA1 to enhance the absorption of bacteria by phagocytic cells and their
ability to destroy them [3]. Although they have minimal sequence similarity, BPI has two
domains that adopt the same structural fold [1,4]. Invading Gram-negative bacteria result
in an integrated host response facilitated by the presence of a lipopolysaccharide-binding
protein (LBP). LBP is an endotoxin-binding protein closely linked to and coordinated
with BPI [5]. BPIFA1 controls the mucosal microbiota and baseline interferon signaling.
SPLUNC1 (formerly known as BPIFA1) is a protein fold-containing family member with
antibacterial, surfactant, and immunomodulatory activities, all of which contribute to host
protection. The respiratory system is the primary site of its expression [6]. SPLUNC1,
the human homolog of the mouse gene PLUNC, exhibits the same expression pattern in
the upper airways and nasopharyngeal areas as its mouse homolog. Antibacterial action
against Gram-negative bacteria is displayed by the encoded antimicrobial protein [5]. In
non-small cell lung cancer, it might serve as a potential molecular marker for locating
micrometastasis. Multiple transcript variants have been discovered as a result of the
alternative splicing of the 3’ untranslated region; however, the full-length nature of only
three of these transcript variants is understood [7].

Both mice and humans have significant levels of BPIFA1 gene expression in the upper
part of the trachea, but this expression diminishes with distance from the trachea, reaching
a minimum at the bifurcation of the main stem bronchi and becoming undetectable in the
lungs’ periphery. [8]. Extensive gene expression studies in mice and humans have failed
to detect BPIFA1 in peripheral lung tissue [9]. With the exception of very low levels of
BPIFA1 mRNA expression in the mouse thymus, rat heart, and olfactory mucosa, BPIFA1
is not expressed in any organs or tissues outside of the respiratory system of rodents [10].
There is no indication that BPIFA1 mRNA is present in any of the following human tissues:
the heart, liver, brain, stomach, small intestine, placenta, skeletal muscle, pancreas, spleen,
normal lymph nodes, peripheral lymphocytes, prostate, testis, or ovary [11]. The expression
of BPIFA1 mRNA follows a distribution pattern that is highly comparable in embryonic and
adult tissues. This pattern is observed in both types of tissues [1]. BPIFA1 overexpression in
transgenic mice produced alveolar macrophages with enhanced opsonization and phago-
cytosis of carbon nanotubes in a model of controlled airway inflammation [12]. In addition,
commensal Gram-negative nanobacteria were shown to co-localize with BPIFA1 within
the epithelial cells of nasopharyngeal cancer tissues [13]. The samples were taken from
patients who had previously been identified as having nasopharyngeal carcinoma. The
findings of a recent study suggested that interactions between BPIFA1 and non-bacterial
LPS can mitigate the inflammatory response of the body caused by non-bacterial LPS. [1].

The range of its antibacterial effects and preservation of its structure in air-breathing
vertebrates imply that BPIFA1 has evolved to provide essential host-protective capaci-
ties [14]. However, due to its location in the proximal airways and its high level under
basal conditions, BPIFA1 may be indispensable. This is because antimicrobial effectors
are abundant in animals [15]. Consequently, BPIFA1 seems to have the most significant
effects in avoiding infection and clearing it up prior to the invasion of pathogens. Bacterial
infections in the respiratory system can be prevented thanks to these functions, which may
signal the activation of immunity and improved regulation of other airway functions [15].

Adaptive changes in response to environmental demands are thought to be constrained
by biophysical factors, but the structural aspects of sites that contain adaptive changes
cannot be predicted by any evolutionary theory [16]. This is because biophysical constraints
limit the types of substitutions that are allowed for protein function to be maintained [17].
Positive selection may be more prevalent in sections of proteins where mutations are
expected to have a lower effect than in other parts of the protein, although this has not been
proven (e.g., allosteric regulation sites) [18]. However, functional regions are expected to
remain substantially conserved during evolution, despite the fact that adaptive alterations
are associated with the rapid fixation of favorable mutations [19]. The molecular evolution
of protein sequences is significantly influenced by the process of natural selection. Recent
developments in genome sequencing and reliable inference methods at phylogenetic and



Genes 2023, 14, 15 3 of 22

population levels have made it possible to conduct a rapid and robust assessment of the
evolutionary rates and adaptations that are driven by natural selection [20]. At both the
phylogenetic and population levels, a substantial amount of work has been conducted to
build inference methods. Furthermore, the increasing accessibility of protein structural and
functional data has allowed researchers to examine the impact of structural and functional
constraints on the evolution and adaptation of protein sequences [16]. Because of the limits
imposed by their structures and their functions, the rates of evolution and adaptation are
different for various proteins and sites within the same protein [19].

The bulk of a cell’s functions is intricately intertwined with the regulatory networks of
gene expression that enable organisms to tolerate higher infection levels or mitigate the
effects of those infections [21]. Most of the components that make up cellular physiology
are intimately related to these gene expression regulatory systems, which are frequently
old evolutionary adaptations [22]. These mechanisms have drawn a substantial degree of
interest in research that has utilized a constrained set of model species for which genetic
information is available [23]. However, little is known about the mechanisms that led to
the evolution of these systems or how they adapted to diverse environmental settings
as evolution progressed. This study aims to investigate the evolutionary origins of the
BPIFA1 gene to reveal its physiochemical features and apply comparative genomics to
provide an assessment of the gene in various mammalian species. We conducted in-depth
comparative studies of the bactericidal/permeability-increasing protein (BPIFA1) gene,
which regulates the innate immune response in mammals, to better understand how these
genes work. There is a possibility that selective pressure will have a significant effect on the
evolution of adaptation. In this study, we investigate the history of these genes in various
vertebrate species, as well as how genetic diversity and natural selection have influenced
the development of this gene family over time.

2. Materials and Methods
2.1. Sequence Retrieval and Analysis

The amino acid and coding nucleotide sequences of the BPIFA1 gene in 34 mammalian
species, including humans as the reference species in this study, were collected from
GenBank (https://www.ncbi.nlm.nih.gov/genbank, accessed on 20 September 2021), and
they were aligned using the Clustal Omega tool in MEGA 6 software [24]. The maximum-
likelihood method was used in MEGA 6 software to generate the phylogenetic tree for the
BPIFA1 gene. This tree was constructed based on the evolutionary relationships among
the genes. The bootstrap test calculated the average number of substitutions per site and
the average branch length by employing a maximum-likelihood method with 1000 repeats
to determine taxonomic clustering. This method was used to pick a topology for more
advanced log-likelihood values [25,26]. The species names and accession numbers used to
study the BPIFA1 gene are provided in Supplementary Table S1.

2.2. Selection Analysis

Maximum likelihood approaches were used to compare the ratios of dN/dS for each
codon site to identify specific codons in mammalian BPIFA1 gene sequences subjected to
positive selection [27,28]. CODEML executed in PAML [29] and the DATAMONKEY
webserver (https://www.datamonkey.org, accessed on 29 September 2021) [30] were
utilized for the analysis, and the outcomes were designated using substitution ratios
of codons that were considerably higher than 1 for codons under positive selection. The
initial step of this research was to determine whether or not positive selection occurred
using the maximum likelihood ratio test. This analysis determined the presence of sites
with a dN/dS ratio greater than one. In this study, we contrasted a discrete (generic) model
that performed this function with a null model that prohibited the occurrence of sites with a
value greater than 1 [31]. Analyses were compared using a likelihood log (2∆l) distribution
with df = 4. The null hypothesis (M7) asserted that the distribution was bounded by the
values 0 and 1. An alternative model (M8) with two parameters, omega (ω) and beta (β),
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allowed for the derivation of a value from the dataset, which may be greater than 1 [27].
Analyses using fixed effect likelihood (FEL), single likelihood ancestor counting (SLAC),
and random effect likelihood (REL) all found that the BPIFA1 gene was subject to positive
selection when global values for synonymous and non-synonymous divergences at each
site were compared [32].

The second stage was to utilize the maximum probability estimate to locate amino
acid positions that were the subject of positive selection throughout the course of evolution.
The Bayes theorem, which predicts the posterior probabilities of the sites that are subject to
positive selection, was used to successfully accomplish this goal. Positive selection was
observed to be operating at amino acid locations with posterior probabilities ranging from
95% to 99% [33]. Amino acid residues with a high probability that the value was greater
than one were subjected to selective procedure. The Swiss model and Phyre 2 (http://www.
sbg.bio.ic.ec.k/phyre/html, accessed on 28 September 2021) are web-based applications
that display the locations of favorably selected amino acids on protein structures [34]. We
predicted the location of evolutionary conservation of nucleic acids and amino acids in the
protein using the ConSurf tool (http://consurftest.tau.ac.il, accessed on 28 September 2021),
which was based on the phylogenetic relationship between sequences [35]. The sequence of
the aligned codon of BPIFA1 was examined in Selecton version 2.2 (http://secton.tau.ac.il,
accessed on 28 September 2021), which permits determining the varied ratios of various
codons inside the aligned sequences. These ratios were measured using the Bayesian
inference approach through various likelihood tests. This was performed to confirm
positively selected codons [36]. Moreover, the Selecton results were shown in various colors
to denote the various selection criteria.

2.3. Recombination Analysis

To find evidence of recombination, we performed a model selection procedure based
on statistical likelihood that can sift through many sequence alignments in search of
breakpoints and spot likely recombinant DNA. This technique used a genetic algorithm
to search the alignments of several sequences for recombination breakpoints in order to
accomplish its goal. The GARD approach is simple to grasp, easily extensible, and highly
parallelizable. Extensive simulation experiments have demonstrated that the method beats
other current tools in almost all cases, particularly concerning accuracy. To investigate
the evidence of recombination, the nucleotide sequences were first assessed to identify
haplotypes (Na) and estimate the polymorphic sites (S), average number of nucleotide
differences (K), and nucleotide diversity (π) using DnaSP 5.10 software [37]. Detection of
breakpoints and assessment of recombinant signals in nucleotide sequences were performed
using the online GARD tool of the Datamonkey webserver [38]. Additionally, using GARD
to screen sequences for recombination assures that methods focused on identifying positive
selection have acceptable statistical features.

2.4. Protein-Protein Interactions Analysis

Much interest has been directed toward investigating how protein-protein interac-
tions are preserved from one species to another. Since there are several hurdles in the
experimental identification and confirmation of interactome data, it would be intriguing to
understand a PPI transferred from a species that has been proven in another species [39].
The STRING databank is a free bioinformatics resource that contains information describ-
ing how proteins interact with one another as part of several pathways. The number of
lines connecting each protein node and betweenness values are used to identify interme-
diate nodes, representing proteins that play important biological roles and are intimately
linked to one another. Network creation was carried out using STRING and Cytoscape
software (http://www.cytoscape.org, accessed on 29 September 2021) was used to display
the network [40]. By identifying the protein-protein interactions of BPIFA1 among immune
proteins and co-expression analysis using STRING version 9.1 (http://www.string-db.org,

http://www.sbg.bio.ic.ec.k/phyre/html
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accessed on 29 September 2021), we were able to further determine how BPIFA1 functions
at the molecular level.

2.5. Structural Analysis of BPIFA1 Protein

In this analysis, we built the crystal structure of the human BPIFA1 protein using
homology modeling with online tools, such as the Swiss model (http://swissmodel.expasy.
org, accessed on 29 September 2021) [41], I-TESSAR [42], and Phyre2 (http://www.sbg.
bio1.ic.ac.uk/phyre2/html, accessed on 29 September 2021) [43]. The conjugate gradient
method and Amber force field in UCSF Chimera 1.10.1 software were used to reduce the
assembled target protein. In addition, the ProSA webserver was utilized to evaluate the
stereochemical properties of the expected structure [22].

3. Results

The BPIFA1 protein sequences encoded in the mammalian genome were studied to de-
termine the role of adaptive selection and evolution. The protein BPIFA1 is the key mediator
of innate signaling against microbial infections by bacteria and fungi. Once the sequences
were combined using MSA, they were utilized to create Bayesian phylogenetic trees and
undergo further investigation. To initiate intracellular signaling cascades, activating a set
of genes identified in the appropriate mammalian species and possessing a functioning
(LBP-BPI) domain is necessary. For the surfactant phospholipid dipalmitoylphosphatidyl-
choline (DPPC), this lipid-binding domain has a very high degree of selectivity. The upper
airway’s innate immune system is activated in response to numerous genetic signals, such
as increased non-synonymous substitution rates, significant homologous haplotypes, and
an absence of genetic variation in BPIFA1 proteins, demonstrating that the presence of
these proteins has been favored by positive selection.

3.1. Molecular Evolution of BPIFA1 Gene

In this work, we searched for signs of adaptation in the BPIFA1 gene, ranging from
progressively weak to strong selection signals during adaptive evolution in the mammalian
genome. The typical percentage of codons in the BPIFA1 gene undergoing adaptive
evolution was determined. Following the same procedure for each coding sequence, we
calculated the average proportion of positively selected codons across all branches. Using
BUSTED and synonymous rate variation in carefully chosen test branches of the BPIFA1
phylogeny, we determined traces of gene-wide episodic diversifying selection. As a result,
we concluded that divergent selection occurred along the three examined lines of descent.
Using synonymous rate variation, we observed gene-wide episodic diversifying selection in
the test branches of the BPIFA1 phylogeny. A gene-wide episodic diversifying selection was
used to achieve this (LRT). Two test branches exhibited evidence of diversifying selection,
suggesting that the site had been subjected to this type of evolution (Figure 1).

The average dN/dS ratios for BPIFA1 across all sites and lineages were greater than
one. As a result, research was conducted on this protein to identify the signatures of positive
selection. The protein was found to have a conserved structure of amino acids, making
it possible to be purified, and it had an omega value greater than 1. A log-likelihood test
was performed on this protein, all of its sites were analyzed, and the substitution rate was
calculated. To assess whether or not a positive selection occurred, we used three different
sets of likelihood models: M0 vs. M3, M1 vs. M2, and M7 vs. M8. The parameter estimates
under M1 and M2 were compared and it was found that the M2 value for these proteins
was positive. The percentages of positively selected sites were significant for the three
models, with values of 422.86, 64.5, and 93.63, respectively (Table 1). To provide additional
evidence to support the findings of positive selection, we applied the Mechanistic-Empirical
Combination model to specific sites using the Selecton server. During this process, we
discovered that several sites had been identified as having been subjected to selective
pressure at various points during evolution (Figure 1). Because of this, we could estimate
the degree to which this gene has been evolutionary conserved. We found that the vast

http://swissmodel.expasy.org
http://swissmodel.expasy.org
http://www.sbg.bio1.ic.ac.uk/phyre2/html
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majority of the positively selected sites had been conserved throughout the mammalian
clades. This was because the conserved amino acids accounted for most of the signals used
for positive selection in the neural network’s algorithm (Table 2).
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Figure 1. Results of adaptive selection on 20 primate BPIFA1 sequences using the MEC model. The
human protein was used as a reference. Positive selection is indicated by yellow and magenta,
whereas purifying selection is represented by blue and green.

The codon model selection method evaluated 9113 different models. The best model
(log(L) = −18,910, mBIC = 39,340.92) contained three rates and was the most accurate.
With this model, improvements of 218.66 log(L) and 398.33 mBIC points were achieved
compared to a single rate model, in which all non-synonymous substitutions occurred at
the same rate, as shown in Table 1. Each model in the credible set had an evidence ratio of
at least 0.01 compared to the best model, meaning that it was within 9.21 mBIC units of
the best model, or equivalently, that it had an evidence ratio of at least 0.01 compared to
the best model. Model averaging estimated the rate of change in this collection of models
(Figure 2). The evolutionary selection pattern on amino acid positions in the BPIFA1 protein
was also assessed using codon model selection analysis, which showed that the substitution
of amino acid sites occurred during adaptive evolution in the proteins. We revealed that
the basic amino acid positions of the proteins exhibited adaptive evolution due to varying
substitution rations. Based on the distribution of amino acid sites in BPIFA1, the maximum
substitution rate was approximately 1.19, while the lowest was.14 (Figure 2).
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Table 1. Log-likelihood tests and statistics for positive selection among codons in CODONML in
PAML using the codon frequency model: F3x4.

Gene n Lc S Model lnL
2∆l

M3 vs.
M0

2∆l
M2 vs.

M1

2∆l
M8 vs.

M7

Parameter
Estimates

PAML Site Model

(M8) ω > 1

SLAC
(p < 0.05)

FEL
(p < 0.05)

FUBAR
(post pr.

0.9)

BPIFA1 34 504 49 M0
(one-ratio) −18,981.403 422.86 64.5 93.63 one ratio

125, 129, 130, 178,
184, 242, 259, 270,
304, 385, 401, 402,

425, 434, 437

130, 270,
385, 402,
425, 455

130, 259,
402, 425

130, 270,
385, 402,

425

M1 Nearly
Neutral (2
categories)

−18,802.441
p1 = 0.45328,
p2 = 0.54672
ω 1 = 0.24322,

ω 2 = 1.00000

M2
Positive

Selection (3
categories)

−18,770.141

p1 = 0.43064,
p2 = 0.45653,
p3 = 0.11283
ω 1 = 0.26160,

ω 2 = 1.00000,

ω 3 = 2.62492
M3

Discrete (3
categories)

−18,769.971
p1 = 0.41335,
p2 =0.46115,
p3 =0.12550

M7 β (10
categories) −18,829.824 p = 1.04797,

q = 0.59014

M8 β&ω >
1 (11

categories)

−18,783.01

p0 = 0.78568,
p = 1.86405
q = 1.74778

p1 = 0.21432,
ω = 1.93377

Table 2. Positively selected locations under the PAML model are discovered using Bayes empirical
Bayes (BEB) analysis.

Gene Model Positively
Selected Sites Amino Acids Posterior pr. (ω > 1) Post Mean ± SE for w

BPIFA1

M8 β&ω > 1
(11 categories)

71 P 0.555 1.652 ± 0.876
94 H 0.503 1.548 ± 0.897
106 H 0.618 1.762 ± 0.863
125 G 0.962 * 2.356 ± 0.403
128 Q 0.938 2.318 ± 0.463
129 D 0.998 ** 2.414 ± 0.283
130 P 0.615 1.787 ± 0.793
172 L 0.874 2.214 ± 0.580
177 W 0.907 2.268 ± 0.529
178 E 0.963 * 2.359 ± 0.399
184 A 0.997 ** 2.412 ± 0.288
190 G 0.764 2.030 ± 0.721
192 L 0.634 1.795 ± 0.842
207 V 0.795 2.084 ± 0.686
208 S 0.812 2.113 ± 0.661
213 L 0.652 1.829 ± 0.833
216 H 0.669 1.864 ± 0.809
242 Q 0.989 * 2.399 ± 0.320
260 G 0.621 1.799 ± 0.788
262 V 0.992 ** 2.404 ± 0.309
270 N 0.999 ** 2.416 ± 0.278
304 L 0.975 * 2.377 ± 0.367
308 E 0.633 1.816 ± 0.789
356 P 0.908 2.270 ± 0.527
385 Q 0.980 * 2.385 ± 0.349
390 V 0.531 1.650 ± 0.798
401 H 1.000 ** 2.416 ± 0.277
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Table 2. Cont.

Gene Model Positively
Selected Sites Amino Acids Posterior pr. (ω > 1) Post Mean ± SE for w

BPIFA1

M8 β&ω > 1
(11 categories)

402 Q 0.991 ** 2.403 ± 0.313
403 L 0.68 1.891 ± 0.777
417 S 0.937 2.316 ± 0.463
432 E 1.000 ** 2.416 ± 0.278
434 Q 0.993 ** 2.406 ± 0.304
436 W 0.964 * 2.360 ± 0.395
437 G 0.969 * 2.368 ± 0.383
452 L 0.808 2.104 ± 0.671
459 C 0.702 1.921 ± 0.788
460 A 0.511 1.584 ± 0.864
468 T 0.697 1.903 ± 0.814
469 Q 0.705 1.925 ± 0.794

(*: p > 95%; **: p > 99%).Genes 2023, 13, x FOR PEER REVIEW 9 of 24 
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Figure 2. Application of a genetic algorithm (GA) model to identify structural and evolutionary rate
clusters from BPIFA1 protein alignments. Maximum-likelihood estimation was used to identify each
cluster and GA was used to determine its rate.
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Identification of physiologically significant regions of a protein can be performed by
contrasting the frequency of synonymous (Ks) and non-synonymous (Ka) substitutions
in the protein. This provides the basis for concluding the existence of purifying selection
and localized positive Darwinian selection. We used Selecton v. 2.2 (accessible at http://
selecton-bioinfo-tau.ac.il, accessed on 29 September 2021), a web server that automatically
calculates the ratio of Ka to Ks (u) at each site in the protein. Different colors represent
different types of selection (positive selection, purifying selection, and no selection) and
are used to graphically display this ratio at each site. The Selecton model is a collection
of different evolutionary hypotheses that can be used to statistically test the likelihood
that a given protein has been subjected to positive selection. It operates via a graphical
user interface. The recently established mechanistic-empirical model influenced the amino
acid’s physical properties (Table 3).

Table 3. Sites under episodic diversifying selection inferred by MEME.

Codon α β- Pr. [β = β−] β+ Pr. [β = β+] p-Value q-Value

130 0.0000 0.0000 0.2042 3.4440 0.7957 0.0078 0.2638
167 0.4663 0.1038 0.7853 5.3438 0.2146 0.0066 0.2596
168 0.7252 0.2013 0.8497 28.492 0.1502 0.0008 0.0612
190 0.0000 0.0000 0.7071 14.030 0.2928 0.0035 0.1774
243 0.3055 0.0426 0.8016 3.2988 0.1983 0.0086 0.2561
265 0.6382 0.0000 0.7209 9.2337 0.2790 0.0086 0.2720
289 0.3685 0.0771 0.9177 15.304 0.0822 0.0052 0.2184
313 0.2462 0.2462 0.8605 21.499 0.1394 0.0071 0.2576
314 0.4211 0.3321 0.8708 70.669 0.1291 0.0001 0.0160
391 1.0888 0.3282 0.9122 105.28 0.0877 0.0041 0.0070
401 1.4302 0.8308 0.8019 364.04 0.1980 0.0096 0.2549
402 0.3620 0.3125 0.3515 25.937 0.6484 0.0040 0.1878
403 0.4970 0.4970 0.9236 442.56 0.0763 0.0021 0.1190
425 0.0000 0.0000 1.0000 1.1829 1.0000 0.0020 0.1319
432 0.8816 0.3808 0.7310 46.308 0.2680 0.0005 0.0502
437 0.9684 0.0118 0.7491 24.911 0.2508 0.0031 0.0090
452 0.3900 0.3654 0.8800 330.91 0.1199 0.0001 0.0145
455 0.4795 0.2852 0.8823 1362.1 0.1176 0.0051 0.0044
457 0.5413 0.0000 0.7556 10.723 0.2443 0.0088 0.2471

The distribution of synonymous (α) and non-synonymous (β) substitution rates across sites estimated by the
MEME model is shown in this summary table, where the percentage of branches with β > α is much higher than 0.
The p-value was calculated using a combination of χ2 distributions. The Simes technique regulated the false
discovery rate under the strict neutral null and generated the q-values (likely to be conservative).

3.2. Adaptive Selection of BPIFA1 Gene

To determine the degree to which different mammalian species have adapted to their
environments, we used multiple alignments of the coding sequences of the BPIFA1 gene
from each of the 34 species. These tests can be employed individually or in combination. The
most common variety of tests is known as a branch test. During evolution of the vertebrate
species, the selection of specific lineages was utilized to recognize distinct lineages as
subject to selection pressure. Lineage-specific selection probabilities were calculated for
each phylogenetic group using an adaptive branch-site random effects likelihood (aBS-REL)
model. In addition, the aBS-REL technique was utilized to dissect each gene to determine
which lineages had been subjected to adaptive selection at different times in evolutionary
history. When applied to mammalian lineages, the aBS-REL model confirmed that the
BUSTED-predicted genes were under positive selection. Our results, which suggested that
selective pressure was acting on BPIFA1 genes in mammalian lineages, demonstrated that
the two hypotheses were congruent (Table 4). In the phylogeny of the BPIFA1 gene, there
was evidence of episodic diversifying selection in eight branches. The importance of the
findings was evaluated using the Likelihood Ratio Test (p > 0.05), which was carried out
after the outcomes of many other tests were considered (Figure 3). In total, 63 distinct lines
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were put through this specific test for diversifying selection. Multiple tests were carried
out, and the significance of the findings was established by applying the Likelihood Ratio
Test with a p-value threshold of 0.05.

Table 4. Sites under episodic diversifying selection inferred adaptive Branch Site REL (aBS-
REL model).

Name B LRT Test p-Value Uncorrected
p-Value

ω Distribution
over Sites

Node43 0 30.9022 0.000 0.000 ω1 = 1.00 (90%)
ω2 = 568 (9.7%)

Node48 0 57.7808 0.000 0.000 ω1 = 0.632 (90%)
ω2 = 1000 (10%)

Node58 0 35.478 0.000 0.000 ω1 = 0.784 (82%)
ω2 = 38.9 (18%)

OTOLEMUR_GARNETTII 0 35.1949 0.000 0.000 ω1 = 0.00 (84%)
ω2 = 3850 (16%)

PHYSETER_CATODON 0 46.7818 0.000 0.000 ω1 = 0.498 (85%)
ω2 = 37.2 (15%)

PTEROPUS_ALECTO 0 39.4366 0.000 0.000 ω1 = 1.00 (96%)
ω2 = 881 (4.3%)

Node9 0 22.9271 0.0002 0.000 ω1 = 1.00 (85%)
ω2 = 9090 (15%)

ECHINOPS_TELFAIRI 0 22.2294 0.0003 0.000 ω1 = 0.262 (87%)
ω2 = 1000 (13%)

PUMA_CONCOLOR 0 20.5045 0.0006 0.000 ω1 = 1.00 (98%)
ω2 = 220 (2.2%)

OCHOTONA_PRINCEPS 0 16.9285 0.0038 0.0001 ω1 = 0.486 (85%)
ω2 = 102 (15%)

Node1 0 15.9753 0.0061 0.0001 ω1 = 0.00 (96%)
ω2 = 543 (3.5%)

Node42 0 15.9466 0.0061 0.0001 ω1 = 0.00 (97%)
ω2 = 1000 (3.0%)

CHINCHILLA_LANIGERA 0 15.7558 0.0065 0.0001 ω1 = 0.260 (89%)
ω2 = 1000 (11%)

CASTOR_CANADENSIS 0 14.0154 0.0154 0.0003 ω1 = 0.217 (90%)
ω2 = 1000 (10%)

This table reports a statistical summary of the models’ fit to the data. Baseline
MG94xREV refers to the MG94xREV baseline model that infers a singleω rate category per
branch. The full adaptive model refers to the adaptive aBS-REL model, which implies an
optimized number ofω rate categories per branch.

During the evolutionary process, we examined the omega values by employing the
SLAC, FUBAR, MEME, and FEL methods to locate indications of positive selection (Table 5).
According to our findings, the BPIFA1 gene in mammalian clades has been subject to
positive evolutionary selection. We could detect which regions of the genome were being
subjected to selective pressure by using the Bayesian method. This technique involves
determining the posterior probability for each codon. Sites with a greater number of
possibilities are more likely to have undergone diversifying selection, which leads to higher
rates of non-synonymous and synonymous substitution than sites with a lower number
of probabilities (Table 2). Using BEB analysis, we found that several locations all across
the bactericidal protein’s LBP-BPI domain had been subject to positive selection with a
high posterior probability of 95%. This was the case for all sites. The sites were dispersed
throughout the domain in various locations. The findings of PAML were examined using
the dataset found in the Selecton server. This server was able to identify adaptive selection
at certain sites within the protein, which allowed us to validate the existence of positive
selection. To determine the substitution rates, the MEC model was applied. The findings
demonstrated that adaptive selection occurred at several locations in BPIFA1 (Table 5).
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Figure 3. The aBS-REL models used to undertake selective analyses of vertebrate activating transcrip-
tion factor genes. The length of the branch is separated into segments based on the percentage of
sites that correspond to each class, and the color of the branch segment shows the relative relevance
of the relevant parameters. Because of this, sites along a branch can be categorized according to the
β distribution that has been inferred. Depending on whether or not the site has a p value of less
than 0.05 (adjusted for multiple testing), thicker branches are categorized as having either undergone
diversifying positive selection or diversifying negative selection. This determination is based on
whether or not the null hypothesis is rejected.
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Table 5. Positive selection sites using IFEL.

Codon dS dN dN Leaves dN/dS Normalized dN-dS p-Value

85 9.97170 4.39904 0.85722 4.4116 0.3100 0.090973
105 0.22288 19.2224 0.00000 86.244 1.33923 0.050153
113 0.16321 1.21552 1.14983 7.4470 0.07417 0.076543
130 0.02672 1.38927 3.15186 51.992 0.09604 0.050535
168 0.97226 3.28401 0.62962 3.3780 0.16295 0.086927
172 0.87119 3.38718 1.12971 3.8880 0.17734 0.069473
207 0.71507 4.49186 0.73823 6.2820 0.26621 0.007236
271 0.45387 9.03290 0.52358 19.902 0.60471 0.037150
346 0.00000 1.01879 0.08543 Infinite 0.07181 0.027248
385 0.36337 3.73078 1.22177 10.267 0.23736 0.017551
390 0.52418 2.17195 1.06171 4.1430 0.11614 0.054228
402 0.53356 38.1391 1.54115 71.480 2.65073 0.037807
410 0.30457 2.07557 0.82994 6.8150 0.12483 0.052322
425 0.00000 0.67135 1.33338 Infinite 0.04732 0.015383
432 1.38386 8.15529 1.07013 5.8930 0.47730 0.037254
445 0.00000 2.59648 0.00000 Infinite 0.18302 0.026423
455 0.95951 3.98406 0.34305 4.1520 0.21319 0.089371

3.3. Recombination Analysis

For the BPIFA1 gene, a recombination analysis was performed to find potential evolu-
tionary links between genes. The research revealed three recombination events. Each of the
recombination sequences, including the major and minor parents, came from the BPIFA1
gene. We identified recombination breakpoints using GARD analysis. At a rate of 30.30
models per second, GARD inspected 5120 models. The search space of 72,874,879 models
with up to three breakpoints was generated by the alignment’s 759 possible breakpoints,
of which the genetic algorithm only examined 0.01%. With an evidence ratio of 100 or
above, the multiple tree model was preferred to the single tree model, indicating that at
least one of the breakpoints actually reflected a topological incongruity. This was validated
by comparing the AICc scores of the best-fitting GARD model, which allowed for variable
topologies across segments (37,996.2), and the model, which assumed the same tree for all of
the partitions determined by GARD, but allowed varied branch lengths between partitions.
Specifically, the AICc score of the best-fitting GARD model was 37,996.2, whereas the AICc
score of the model was 37,996.2. (Figures 4 and 5).

3.4. Protein-Protein Interactions and Ligand Binding Analysis

We used the STRING database to search for proteins expressed with BPIFA1, identify-
ing several pairs of protein-protein interactions. There were 13 nodes and 35 edges denoted
by the proteins expressed with BPIFA1. The edges of the PPI diagram are the line networks
that link the individual nodes (Figure 6). The average local clustering coefficient value
was 0.978. PPI enrichment had a p-value of 5.25 × 10−12. The PPI network represented
the BPIFA1 gene’s interactions with other co-expressed immune genes. COX7B2, BPIFB6,
BPIFB4, BPIFB2, BPIFB3, PLTP, CETP, BPI, LBP, and ODF2L were the 10 genes involved in
the PPI network of BPIFA1 (Figure 6).
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Figure 4. Trees for individual fragments showing recombination breakpoints in the BPIFA1 gene
among mammalian species.

The BPIFB6, BPIFB4, BPIFB2, and BPIFB3 genes were the most significant because they
are involved in biological signaling pathways, which play an essential role in innate immu-
nity against bacterial infection. In addition, these genes are upregulated by BPIFA1, which
is another reason they were considered so significant (Table 6). The molecular pathways
essential in eradicating invading germs through membrane-disrupting activity comprised
all related proteins with varied roles. Membrane-disrupting activity was necessary for the
elimination of invading germs. Two crucial proteins in the mediation of signals in response
to lipopolysaccharides include LPS-binding protein (LPSBP) and bactericidal permeability-
increasing protein (BPI). They displayed a strong affinity for Lipid A, a substance found
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in LPS, and were strikingly similar to one another. Despite having similar structures, LBP
and BPI perform various biological functions that are distinctly different from one another.
For instance, LBP frequently binds to LPS and greatly facilitates the presentation of LPS to
CD14+ cells, such as macrophages and monocytes, whereas BPI inhibits and lowers the
bioactivity of LPS. These two proteins are both present in bacteria.
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Ligands are critical components in the process of controlling the expression and
activity of proteins. Intermolecular binding forces, such as ionic bonds, hydrogen bonds,
hydrophobic interaction, and Vander-Waals forces, contribute to the ligand-binding process.
Due to interactions between ligands and proteins, the protein’s three-dimensional structure
will be altered. Because of these changes in the conformational state of the protein, some
of the protein’s functions may be either inhibited or activated. Therefore, we performed a
protein-ligand binding interaction study using amino acid physiochemical characteristics
to determine which residues interact with the ligand and which do not. To accomplish
this, we used a website (http://crdd.osdd.net/raghava/lpicom, accessed on 18 October
2021) that calculates the fraction of residues that interact with a given ligand. Key residues,
such as cysteine, glycine, alanine, lysine, aspartic acid, histidine, leucine, valine arginine,
tryptophan, serine, threonine, and tyrosine, were shown to interact with seven ligands
(1BP1, BPH, XE, NEH, CLA, CU, and MG) and PC1. Compared to the interaction with
PC1, charged amino acids, especially essential amino acids, had a greater advantage when
interacting with 1BP1, BPH, XE, NEH, CLA, CU, and MG (Figure 7). The small and polar
amino acids that correlated with them were characterized in each of the three ligands.

http://crdd.osdd.net/raghava/lpicom
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We used two distinct approaches to make predictions regarding complementary binding
sites: the first was predicated on comparing binding-specific substructures (TM-SITE),
while the second was predicated on the alignment of the sequence profiles (S-SITE). These
techniques assessed the BPIFA1 protein against 500 non-redundant proteins that combined
with 814 organic, synthetic, and metal ion compounds. Beginning with predictions of low-
resolution protein structures, the approaches successfully identified the binding residues
of BPIFA1, achieving an average Matthews correlation coefficient (MCC) that was much
higher. Additionally, the techniques uncovered ligands that bind with the residues (Table 7).
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GO:0042116 macrophage activation 2 of 41 0.0098 

Figure 6. The protein-protein interaction (PPI) network for the BPIFA1 gene constructed using the
online STRING database. The genes that are responsible for upregulation, downregulation, and
neutral regulation are represented by red, blue, and green circles, respectively. The intensity of the
interactions that take place between these genes is represented by the thickness of the lines that
connect them. Mean values of a negative correlation coefficient are represented by solid edges,
whereas mean values of a positive correlation coefficient are represented by dotted lines. Changes
in the folding or stitching of proteins that take place after transcription are represented as nodes in
the protein-protein interaction (PPI) network. Each node in the network represents the whole set of
proteins that can be produced by a single copy of the protein-coding gene.
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Table 6. Functional enrichment of biological processes in the human BPIFA1 protein network.

GO-term Description Count in Gene Set False Discovery Rate

GO:0043030 regulation of macrophage activation 3 of 40 0.00086
GO:0051707 response to other organisms 6 of 1173 0.0045
GO:0034375 high-density lipoprotein particle remodeling 2 of 17 0.0052
GO:0043032 positive regulation of macrophage activation 2 of 23 0.0057
GO:0019730 antimicrobial humoral response 3 of 143 0.0057
GO:0010874 regulation of cholesterol efflux 2 of 21 0.0057
GO:0006955 immune response 6 of 1560 0.0057
GO:0009617 response to bacterium 4 of 555 0.0076
GO:0042742 defense response to bacterium 3 of 250 0.0098
GO:0042116 macrophage activation 2 of 41 0.0098
GO:0032720 negative regulation of tumor necrosis factor production 2 of 48 0.0098
GO:0019731 antibacterial humoral response 2 of 47 0.0098
GO:0006952 defense response 5 of 1234 0.0098
GO:0006869 lipid transport 3 of 272 0.0098
GO:0001818 negative regulation of cytokine production 3 of 245 0.0098
GO:0032496 response to lipopolysaccharide 3 of 298 0.0100
GO:0032677 regulation of interleukin-8 production 2 of 67 0.0116
GO:0015914 phospholipid transport 2 of 73 0.0127
GO:0098542 defense response to other organisms 4 of 859 0.0148
GO:0051704 multi-organism process 6 of 2514 0.0175
GO:0050829 antimicrobial humoral immune response 2 of 95 0.0188
GO:0061844 antimicrobial peptide 2 of 107 0.021
GO:0032675 regulation of interleukin-6 production 2 of 112 0.0234
GO:0071222 cellular response to lipopolysaccharide 2 of 146 0.0341
GO:0002274 myeloid leukocyte activation 3 of 574 0.0386
GO:0002699 positive regulation of the immune effector process 2 of 186 0.0492
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Table 7. Recognition of protein-ligand binding sites of BPIFA1 using complementary comparisons of
binding-specific substructures and sequence profile alignment.

COACH Results
C-Score Cluster Size Ligand Name Predicted Binding Residue

BPIFA1

0.04 3 PC1 51, 54, 64, 118, 120, 131, 133, 157,
163, 181, 219, 223, 227, 230, 231

0.04 3 BPH 10, 14, 18

0.04 3 1BP1A00 51, 54, 55, 57, 58, 168, 173, 174,
226, 227, 228, 231, 234, 237, 238

0.03 2 XE 165, 235, 238, 239
0.03 2 36E 200, 204
0.03 2 DCW 187, 216, 219
0.03 2 2CV 191, 204, 208, 211
0.03 2 XE 5, 8, 9, 56, 57
0.03 2 CRT 211, 215, 218

0.03 2 3E8TA00 54, 58, 64, 84, 134, 137, 150, 155,
159, 188, 203, 211, 215, 227, 231

TM-site
C-score Cluster size Ligand name Predicted binding residues

BPIFA1

0.19 3 BPH(1),2CV(1) 10, 14, 18
0.17 2 DCW(1) 187, 216, 219
0.14 1 CRT(1) 211, 215, 218
0.13 1 CLA 8, 12
0.13 1 2CV 191, 204, 208, 211

S-site
C-score Cluster size Ligands name Predicted binding residues

BPIFA1
0.15 3 NEH, CLA, CU 216, 222, 223, 224, 225
0.12 1 MG 179, 180
0.10 1 FOL 215, 218

4. Discussion

Heterogeneous backgrounds offer platforms where populations undergoing divergent
selection can be distinguished into natively adapted subpopulations [44]. The influence of
selection on gene flow among populations, such as migration-selection balance, determines
the possibility of innate adaptation and continued divergence. This is also known as
the migration-selection balance. There is a tendency for local genetic variability within
populations to become homogenized due to gene flow when the effect of selection is less
significant than the effect of gene flow. Instead, genetic variants may accumulate and
be retained across specific loci susceptible to powerful divergent selection if the selective
pressure is greater than the integrative force of gene flow [45]. In the possible alternative
outcome, the benefits of gene flow are limited by selection against immigrants who have
a poor genetic fit, which also paves the way for local adaptation [45,46]. There must be a
connection between gene flow and selection to understand population differences in the
frequency of gene flow [46]. Under such circumstances, selection determines whether the
population continues to evolve or diverge as a distinct group. The empirical Bayes approach
calculated the LRT at each branch site and located all the different sites where diversified
selection may occur. Based on the empirical Bayes approach, the Fast, Unconstrained
Bayesian Approximation, also known as FUBAR, was applied to locate the diversifying
selection occurring at the BPIFA1 gene. FUBAR allowed for site-to-site and branch-to-
branch dispersion of codons and was utilized to explore the adaptive evolution that
occurred at the gene level. The method of MEME was utilized to investigate the adaptive
evolution that occurred at the gene level [25,32,47]. The episodic diversifying coding sites
were found by SLAC with a p value of less than 0.01 (Table 1). This model was used to
estimate the synonymous and non-synonymous substitution rates, and coding sites with
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synonymous substitution rates greater than or equal to the non-synonymous rate were
considered noteworthy for identifying sites that were undergoing diversifying selection.
In MEME, maximum-likelihood estimations for the BPIFA1 gene’s codons 130, 167, 168,
190, 243, 265, and 289 were obtained (Table 2). Based on their non-significant signals, these
codons were not identified as positively selected sites, which is due to the episodic character
of natural selection. The natural selection that took place sporadically throughout brief
intervals of adaptive evolution was masked by the frequent occurrence of either purifying
or natural selection. Consequently, signs of adaptive evolution could not be found via
sensitivity testing and positive selection [48].

We found seventeen sites that were favorably chosen using the PAML method, fifteen
sites that were chosen using the IFEL algorithm, and four sites that were chosen using the
FEL algorithm. The adaptive selection pressure on the BPIFA1 gene’s codon sequences was
calculated using the MEC model. This resulted in the identification of seventy-four amino
acids (Figure 1). A model of evolution based on positive selection was used, revealing
differences at the codon level (M8). The MrBayes application on the Selecton server utilized
an MCMC model to previously determine differences in the MAVS gene in mammals at the
codon level [49]. Based on the results of MAFFT protein alignments, previous studies have
shown that the Ig domain remains in the MAVS coding sequences. These results suggest
that alternative protein switches in purifying selected regions are deleterious and thus
unlikely to be maintained throughout evolution [50,51]. Sites for multiple evolutionary
pathways were identified using a multi-parameter rate distribution, a random effect model
with a 95% confidence interval, and substantial Pr [β > α] values. Sites could then be
located thanks to this method (Table 3). In the case of positive selection, the class rate
weight was determined using a bivariate general discrete distribution for each coding
site. Convergence of the MCMC model was demonstrated by the fact that the posterior
mean estimates for BPIFA1 were found to be closer to the considering reduction factor
value (Table 2). These values ranged from 0.95 to 0.99. During the process of diversifying
selection, only the coding sites with empirical Bayes factor (EBF) values of more than
50 were considered. Calculations were performed using the net effective sample size to
determine the EBF values for each coding site evaluated using positive selection. Inferring
the distribution of gene-specific selection parameters could improve the detected selections
across a large number of coding sites. The coding areas that were positively selected
and identified give significant evidence of diversifying selection in BPIFA1 genes that are
now undergoing selective lineage. As a result, some mutations that initially appear to
be neutral (and have no immediate impact on fitness) can be “permissive,” allowing the
protein to withstand later changes that would otherwise be harmful and cause phenotypic
differences [52]. Neutral mutations in epistasis lay the foundation for later selection and
adaptation, which has recently attracted much attention and been offered as a way to
reconcile neutral and selection models of evolution [53].

The substitution rate for the pair FWY and HKR was approximately 50%, the substitu-
tion rate for DENQ was 50%, and the substitution rate for ACGILMPSTV was 90%. The
PPI network represented the interactions of the BPIFA1 protein with other co-expressed
immune proteins. COX7B2, BPIFB6, BPIFB4, BPIFB2, BPIFB3, PLTP, CETP, BPI, LBP, and
ODF2L were the ten genes that we determined to be responsible for these protein interac-
tions (Figure 6). The BPIFB6, BPIFB4, BPIFB2, and BPIFB3 genes are the most significant
because they are involved in biological signaling pathways, which play an essential role in
innate immunity against bacterial infection. In addition, these genes are upregulated by
BPIFA1, providing another reason that they are so significant (Table 6). Interfaces contain
clusters of conserved residues with an amino acid composition compatible with both the
interface core (residues with the largest change in burial upon binding) and a conserved
region [54], and hot regions evolving from the clustering of hot spots correspond to tightly
packed and conserved regions. Thus, interfaces are under evolutionary pressure to sustain
current connections while averting unfavorable, non-specific interactions. Certain physic-
ochemical features can be altered to reduce the likelihood that protein-protein interfaces
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may form dysfunctional interactions [55]. As a result of our investigation, we found that
values were more than 1 for positively selected codons presented in Table 1. This illustrates
that the development of synonymous sites required more time than the development of
non-synonymous sites (dN sites). This beneficial impact of Darwinian selection, which
encourages novel variations and greater allelic polymorphism, operates as balancing or
purifying selection [56], which causes an alteration in the structural protein and affects
the signaling pathway [57]. In spite of the fact that they originate from the same lineage,
amino acid substitutions in the offspring of different species might have very different
consequences [56,57]. This contrasts with the fact that their pedigree coincides with earlier
submissions. The BPIFA1 genes chosen in this study provide some information for bio-
analysis, which aims to select genes based on the evolutionary time scale from the most
recent to longer-term periods. In addition, the fundamental evolutionary mechanism that
has been uncovered as a result of recent research may be insufficient due to the absence
of the structural and functional features of a large number of proteins in the genome. The
evolution and adaptation of protein-coding genes in Drosophila melanogaster were thor-
oughly examined in order to determine the most relevant determinants of evolution and
adaptation at the level of protein-coding genes. This was accomplished by comparing
D. melanogaster to closely related species and their own populations. Large-scale applica-
tions of bioinformatics and structural analysis were carried out by our team in order to
ascertain the structural and functional features of proteins. Subsequently, we divided the
residues into a variety of structural and functional sites using our categorization system.
The rates of sequence evolution and adaptation were compared across a variety of proteins
and locations, which enabled the identification of hotspots of adaptation across the whole
genome. In addition, it has been demonstrated that fast-adaptive proteins interact with one
another at rates that are higher than what would be predicted by chance; this discovery
shows that coadaptation is likely ubiquitous among fast-adaptive proteins.

As a result of their physical connections, the following are examples of mechanisms
that have the potential to contribute to coadaptation: (1) fast-adaptive proteins are often
found to be enriched in similar chemical activities and exposed to similar selection pressure,
and (2) fast-adaptive proteins coevolve. Two different instances of adaptive evolution
in PPIs were demonstrated in this research, which leads the authors to hypothesize that
these physical interactions may have played a role in the coadaptation of fast-adaptive
proteins in D. melanogaster. In addition, we showed that the phenomenon of coadaptation
may take place in a more general sense than only between fast-adaptive proteins. The
rate of adaptation is typically higher in proteins that interact with fast-adaptive proteins.
Given that molecular interactions play a role in adaptive evolution, it is fair to anticipate
that these interactions may also govern coadaptation at a more global level. It has been
postulated that the coevolution of physical contacts is the mechanism responsible for the
similar evolutionary rates observed in interacting proteins.

5. Conclusions

Our goal was to identify the selective pressures that have contributed to the develop-
ment of the plant and mammalian BPIFA1 system, the expression of which is modulated in
a wide variety of diseases. The BPIFA1 protein rapidly evolved in response to selective pres-
sure in the human lineage, and we were able to pinpoint the genetic selection determinants
that account for its bactericidal activity. During its evolutionary history, positive selection
may have had a crucial role in improving the virulence response to different stimuli, which
could explain the observed diversity in the stability of the gene’s function. Our findings
provide a more comprehensive understanding of the evolutionary history of BPIFA1 genes,
which will enhance the functional genomics analysis of pathogenicity in biological pro-
cesses. It is anticipated that these findings may also help to improve the understanding of
disease prevention. Additionally, the study of these genes might facilitate the design of
a unique method that could assist in determining the various virulence proteins present
in bacterial pathogens. Our findings lead us to hypothesize that restrictions during the
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evolutionary process have played a key role in shaping our discoveries. As a result of
these limitations, we were able to identify some numerical boundaries when we coupled
characteristics such as protein length to complicated complexes. The unique characteristics
of proteins are intriguing because they may provide an indication of unusual stressors or
homeostatic adjustments that have enabled their presence in cells. Therefore, they are a
promising choice for further research.

Supplementary Materials: The following supporting information can be downloaded at: https:
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