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Abstract: The regulatory elements in proximal and distal regions of genes are involved in the
regulation of gene expression. Risk alleles in intronic and intergenic regions may alter gene expression
by modifying the binding affinity and stability of diverse DNA-binding proteins implicated in
gene expression regulation. By focusing on the local ancestral structure of coding and regulatory
regions using the paired whole-genome sequence and tissue-wide transcriptome datasets from the
Genotype-Tissue Expression project, we investigated the impact of genetic variants, in aggregate, on
tissue-specific gene expression regulation. Local ancestral origins of the coding region, immediate
and distant upstream regions, and distal regulatory region were determined using RFMix with the
reference panel from the 1000 Genomes Project. For each tissue, inter-individual variation of gene
expression levels explained by concordant or discordant local ancestry between coding and regulatory
regions was estimated. Compared to European, African descent showed more frequent change in
local ancestral structure, with shorter haplotype blocks. The expression level of the Adenosine
Deaminase Like (ADAL) gene was significantly associated with admixed ancestral structure in the
regulatory region across multiple tissue types. Further validations are required to understand the
impact of the local ancestral structure of regulatory regions on gene expression regulation in humans
and other species.

Keywords: regulatory elements; local ancestry; gene expression; genotype-tissue expression

1. Introduction

The known history of human evolution and migration out of Africa, and the recent
migration of people across the continents, suggest that the genomes of modern people are a
composite admixture of haplotypes from multiple ancestral populations [1]. The admixture
of haplotype blocks could locally introduce novel combination of alleles not observed in
ancestral populations [2]. Admixture can be thought of as a series of meiotic recombination
over multiple generations that contribute to genetic diversity, as successive offspring
exhibit admixed genomes with new combinations of alleles [3]. As such, recombination and
mutation are the main sources of genetic variation in populations. Studying the genomic
composition of admixed individuals across diverse populations provides a lens to infer
the recombination rate of recent admixture events estimated by constructing genetic maps
using pedigree or linkage disequilibrium (LD) based approaches [4].

Genome-wide association studies (GWASs) have revealed that most disease-associated
risk loci lie outside of protein coding genes [5]. Fine-mapping and expression quantita-
tive trait loci (eQTL) analysis demonstrated that risk alleles in the non-protein coding
region may alter the regulation of gene expression by modifying the binding affinity of
diverse DNA binding and interacting proteins implicated in gene expression regulation [6].
For instance, a single nucleotide polymorphism (SNP) changes the binding affinity of
transcription factors and epigenetic regulators, which results in differential efficiency in
transcription [7] and mRNA processing [8]. Moreover, the transferability of GWAS findings
to other populations is challenging since variant allele frequency of risk alleles varies
between populations. To this end, estimating the rate of recent recombination events
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allows for the identification of genomic loci that may be associated with disease across
populations [1].

Almost 80% of currently available GWASs were performed using DNA samples from
European descent, especially from the people of the United States, the United Kingdom and
Iceland [9–11]. Therefore, previous eQTL studies used genotype-derived global ancestry
and/or top-most principal components of genotypes as covariates, or just focused on
minimally admixed European populations [12,13]. Generalizing the findings from these
studies to non-European populations is challenging, especially for admixed populations.
To this end, Zhong and colleagues incorporated local ancestry information to explain a
proportion of variance in gene expression levels between individuals and found polygenic
contributions to gene expression variations in admixed individuals [14]. Thus, a new
method must be sought out that not only describes the effect of local ancestry on gene
expression regulation, independent of population, but also adjusts the model to reduce
false positive association between genotype and expression phenotype.

Our approach to describing admixed ancestral structure is focused on transitions—
i.e., genomic loci delineating potential recombination events between continent-level
populations—that indicate changes in local ancestry from one ancestral population to
another. We inferred local ancestry with whole genome sequencing (WGS) data using
RFMix, an algorithm that learns from a reference panel of haplotypes and genetic recombi-
nation maps to infer the most likely local ancestral structure of a query genome. RFMix uses
a genetic map-based approach for estimating local ancestry, which differs from the other al-
gorithms based on linkage disequilibrium (LD) and, therefore, is not bound to the limitation
of classifying local ancestry of up to two populations in LD-based approaches [15]. Thus,
we could use larger reference panels to predict among several ancestral populations at a
time. We propose a method, Admixture-informed Differential Gene Regulation (ADGR),
for modeling differences in gene expression, which may be used as a proxy for phenotypic
changes associated with disease, due to changes in local ancestry between protein coding
and upstream regulatory regions as a result of admixture.

2. Materials and Methods

We collected paired genome-wide variant calls from phased WGS and tissue-wide
RNA-seq datasets from the Genotype-Tissue Expression (GTEx) project (release V8) [16,17].
For 838 phased WGS variant call files (VCFs), we used RFMix (version 2) to infer genome-
wide local ancestral structure [2]. Reference panels were constructed from combinations
of continent-level populations of the 1000 Genomes Project: African (AFR), Admixed
American (AMR), East Asian (EAS), European (EUR), and Southeast Asian (SAS). Samples
that represented each continent-level population were selected from populations that
showed the least degree of admixture: Yoruba (YRI) for AFR, Peru (PEL) for AMR, Han
Chinese (CHB) for EAS, Utah Residents with Northern and Western European ancestry
(CEU) for EUR, and Italian Telugu (ITU) for SAS. From each of the five populations,
we chose 85 individuals with lesser degrees of admixture according to ADMIXTURE
results [18]. Three reference panels that consisted of two-, three-, and five-populations
were used to assign local ancestry with RFMix. A two-population panel consisted of the
85 individuals from each of YRI and CEU, and a three-population reference panel consisted
of individuals from YRI, PEL, and CEU.

For each individual WGS from GTEx, RFMix assigned one of the ancestral populations
in the reference panel to each of two alleles along the chromosome. Then, consecutive
regions with the same local ancestry formed a haplotype block. A transition point was
defined as the genomic locus between two adjacent haplotype blocks with different local
ancestries. For further analysis, we focused on two populations—i.e., EUR (N = 715)
and AFR (N = 103)—since there were only a small number of individuals from the other
populations (AMR N = 2, ASN N = 12 and unknown N = 6) in the GTEx project.

We defined protein coding and upstream regulatory regions according to the GEN-
CODE annotation (version 26) [19,20]. For each protein coding gene, the upstream genomic
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region from the transcription start site (TSS) was further partitioned to three regions by
distance from TSS: immediate upstream (up to 5 kilobase pairs, kbps), distant upstream
(5–50 kbps) and distal (50–500 kbps) regions (Figure 1).
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Figure 1. Admixed ancestral structure relative to protein coding gene. Immediate upstream, distant
upstream and distal regions are defined by their physical distance from the transcription start site
(TSS) for each of protein coding genes defined in the GENCODE annotation. For each individual, a
block of genomic region is assigned to one of the continent-level ancestral populations included in the
reference panel prepared for RFMix. For the reference panel with two populations—i.e., European
(EUR) and African (AFR)—haplotype blocks are assigned to one of the ancestral populations as
either heterozygous or homozygous. A transition point between adjacent haplotype blocks suggests
ancestral recombination locus.

For each gene i, we compared two linear regression models with and without the presence of
transition points in upstream regions. The baseline model (M0) was yi~age + sex + global ancestry
and the alternative model (M1) was yi~trans + age + sex + global ancestry, where yi denoted the
standardized expression level of gene i. For global ancestry, we cross-checked reported
information in the GTEx phenotype table and predicted global ancestry derived from
WGS—the largest proportion of local ancestries for an individual by RFMix. For prostate,
uterus, and ovary, we excluded the variable sex from both M0 and M1. The independent
variable trans represents the transition point status upstream of the gene i. We used three
different approaches to model the local ancestry transition point: (1) dominant model:
trans = 1 if any of the two alleles contained transition points in the upstream of the gene
(otherwise trans = 0); (2) additive model: the variable trans equals the number of alleles that
have transition points; and (3) recessive model: trans = 1 only if both alleles have transition
points (otherwise trans = 0). For each model and three upstream regions, we compared
the two models—i.e., M0 and M1 using a two-sided χ2 test—to find the genes for which
expression levels were significantly better explained by the presence of transition events in
upstream regions.

3. Results
3.1. Local Ancestral Structure of 838 Individuals

The reported global ancestry of each individual from GTEx phenotype data matched
with the ancestral population predicted for the largest portion of its genome for all individ-
uals in the current study. Global and local ancestral structure were summarized in three
ways. Firstly, we created an ADMIXTURE-style graph to visualize the overall proportion
of continent-level populations for all. Secondly, we counted the total number of transition
points in each individual. Thirdly, we checked the distributions of putative haplotype
block sizes between two transition points. In Figure 2A–C, the two largest populations
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in the GTEx project—i.e., African and European—are shown, and the largest proportion
of predicted local ancestry from RFMix was concordant with the reported global ancestry
from the GTEx phenotype metadata. This observation was consistent regardless of the
number of ancestral populations in the reference panels for RFMix: two (AFR and EUR,
Figure 2A), three (AFR, AMR and EUR, Figure 2B) or five populations (AFR, AMR, ASN,
EUR, and SAS, Figure 2C).
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Figure 2. An overview of global and local ancestral structures of whole-genome sequencing data
from the Genotype-Tissue Expression project. The overall proportion of continent-level ancestral
populations within each subject as predicted by RFMix using the reference panel of (A) two popula-
tions, (B) three populations and (C) five populations. The number of transition points within each
subject when using two-, three- and five-population panels (D–F, respectively). The distribution of
haplotype block lengths for African and European individuals with two-, three- and five-population
panels (G–I, respectively): African individuals (top) and European individuals (bottom).

Using the five-population reference panel, African individuals had 2592 transition
points on average in their genome (standard deviation (SD) 846, range from 530 to 4914)
compared to the average of 4758 transition points found in Europeans (SD 213, range from
4404 to 6120). However, with the two-population reference panel including only AFR
and EUR, the average number of transition points in Europeans was significantly reduced
compared to reference panels with three or five populations (Figure 2D–F). European
individuals showed a higher increase in the number of transition points because about
20% of genomes, which were mapped to EUR with the two-population reference panel
(AFR and EUR), were mapped to non-EUR populations as the reference panel changed
(right panels in Figure 2A–C). However, for African individuals, the majority of the genome
was consistently mapped to AFR and only small portion (~5%) of the genome was mapped
differently as the reference panel changed (left panels in Figure 2A–C).
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The distribution of block lengths is shown in Figure 2G–I. Specifically, the blocks
shown here are for the stretches of putative local ancestry that were concordant with the
reported global ancestry in each individual. In both population groups, the average block
length predicted by RFMix was approximately 350 kbps. In the five-population panel,
African subjects on average have longer stretches of concordant ancestry, as shown by the
heavier tail on the right side of the distribution. In the two-population, on the other hand,
Europeans showed a similar trend, with a right-side heavy tail in the distribution.

3.2. Transition of Local Ancestral Structure and Gene Model

We checked the location of potential transitions between ancestral blocks in relation
to the gene definitions according to the GENCODE annotation. Here, we focused on the
results generated using the two-population reference panel. Out of 1413.5 (SD 423.92) total
transitions per individual, African individuals had 830.3 (SD 246.65) transitions in the
intergenic region. European individuals had 82.8 (SD 103.83) transitions in the intergenic
region out of 137.7 (SD 177.87) total transitions on average (Figure 3).
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Figure 3. Predicted transition loci relative to the GENCODE gene models: the total number of
transition loci from an individual (left), the number of transition loci in the intergenic region (center)
and in the genic region (right). African individuals have a significantly larger number of admixed
events on average compared to European individuals when the two-population reference panel is
used for RFMix analysis for local ancestry inference with transitions.

In both groups, ~60% of total transitions were observed in the intergenic region and
40% in the genic region. Most transitions in the intergenic region were within 500 kbps
from TSS, with the largest number between 50 kbps and 500 kbps (center box in Figure 3).
The rightmost box in Figure 3 shows that most transitions in the genic region were within
introns or the untranslated region (UTR), leaving only a few in exons: 45.6 (SD 14.23)
transitions in exons out of 583.2 (SD 179.51) in the genic region among African individuals,
and 4.5 (SD 5.96) transitions in exons out of 54.9 (SD 74.43) in the genic region among
European individuals.
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3.3. Gene Expression Levels Associated with Admixed Ancestral Structure in the
Regulatory Region

Next, we used RFMix predictions using the two-population reference panel and
standardized gene expression levels to rank the genes whose expression levels could be
explained by the presence of transition events in the upstream regions. The gene expression
matrices for available tissue types were downloaded from GTEx single-tissue cis-eQTL
data in the GTEx portal (https://gtexportal.org, accessed on 26 August 2019). As shown
in Table 1, most of the candidate associations were found for genes with transitions in
50~500 kbps upstream. The list of candidate genes varied by tissue types; however, the
ADAL gene encoding the adenosine aminase like protein (ADAL) was significantly associ-
ated with admixed ancestral structure in the regulatory region, especially in 50~500 kbps
upstream, across multiple tissue types for both dominant and additive models (Table 1).

Table 1. The list of candidate genes across tissue types. The distance ranges are from the transcription
start site of gene model to transition points in the upstream. The three models of transition events
(i.e., dominant, additive, or recessive) are used for linear regression analysis. False discovery rate is
calculated within each model of transition event, distance range, and tissue type.

Model Distance from
Transcription Start Site Tissue Type Gene False Discovery

Rate

Dominant

Less than 5 kbps Small Intestine, Terminal Ileum SLC17A9 0.047

5~50 kbps Brain, Cerebellar Hemisphere HLA-DMA 0.018

50~500 kbps

Adipose, Subcutaneous

ADAL 0.00029

C10orf107 0.0049

HLA-DQB2 0.016

Artery, Aorta
ADAL 8.4 × 10−6

PSORS1C2 0.007

Artery, Tibial ADAL 6.6 × 10−7

Brain Cerebellum HLA-A 0.01

Breast, Mammary Tissue ADAL 0.0035

Colon, Transverse ADAL 0.00083

Esophagus, Muscularis
C10orf107 0.02

ADAL 0.02

Heart, Atrial Appendage

C10orf107 0.00068

PLEK2 0.04

ALOX12 0.04

Lung

PCDHGA6 0.029

PSORS1C2 0.029

STEAP2 0.03

Muscle, Skeletal
HLA-DQB2 0.025

COL8A2 0.025

Nerve, Tibial ADAL 2.4 × 10−6

https://gtexportal.org
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Table 1. Cont.

Model Distance from
Transcription Start Site Tissue Type Gene False Discovery

Rate

Ovary ADAL 0.0029

Skin, Not Sun Exposed Suprapubic ADAL 0.035

Skin, Sun Exposed Lower leg ADAL 0.00068

Spleen ADAL 0.00055

Stomach ADAL 0.00074

Thyroid

WDR87 5.5 × 10−5

ADAL 0.00012

ZSCAN31 0.0053

Whole Blood MISP3 0.033

Recessive Less than 5 kbps Uterus SH3GLB1 0.043

Additive

Less than 5 kbps Small Intestine, Terminal Ileum SLC17A9 0.047

5~50 kbps Brain, Cerebellar Hemisphere HLA-DMA 0.018

50~500 kbps

Adipose, Subcutaneous

HLA-DQB2 6.6 × 10−6

ADAL 0.00014

C10orf107 0.0033

Adipose, Visceral Omentum HLA-DQB2 0.0092

Artery, Aorta ADAL 2.1 × 10−5

Artery, Tibial ADAL 6.6 × 10−7

Breast, Mammary Tissue ADAL 0.0074

Colon, Transverse ADAL 0.00083

Esophagus, Muscularis C10orf107 0.02

Heart, Atrial Appendage
HLA-DQB2 3.3 × 10−5

C10orf107 0.00034

Heart, Left Ventricle HLA-DRB5 0.015

Lung
PCDHGA6 0.032

TLDC1 0.032

Muscle, Skeletal HLA-DQB2 3.1 × 10−7

Nerve, Tibial ADAL 3.7 × 10−6

Ovary ADAL 0.0053

Skin, Not Sun Exposed Suprapubic
ZNF347 0.022

ADAL 0.022

Skin, Sun Exposed Lower leg ADAL 0.00068

Spleen ADAL 0.00055

Stomach ADAL 0.00074

Thyroid

WDR87 5.9 × 10−5

ADAL 0.00012

ZSCAN31 0.0014

Vagina CTNNA2 0.029

Whole Blood ZFP57 0.0029
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For the individuals with transitions in 50~500 kbps upstream of ADAL, expression
levels of this gene were significantly lower compared to the individuals without transition
in the upstream (Figure 4). Interestingly, ADAL was differentially expressed between
African Americans and European Americans with colorectal cancer [21].
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Figure 4. The expression level of the Adenosine Deaminase Like (ADAL) gene in transverse colon
among the individuals without transition in the upstream (“Concordant”) and among the individ-
uals with transition in the upstream (“Discordant”). The expression level (y-axis) shows the value
from the gene expression matrix for transverse colon in the GTEx single-tissue cis-eQTL data, after
normalizing with age, sex, and global ancestry. The left panel shows expression levels for African
individuals and the right panel for European individuals. The expression levels are lower among
“Discordant” individuals.

Compared to dominant or additive models, we found significantly smaller numbers
of candidate genes with recessive models, which suggested that most of the transitions in
the upstream were heterozygous. Interestingly, ADAL was consistently found significant
in multiple tissue types for both dominant and additive models. We also observed that
all the candidate genes from the additive model had transitions in only one of alleles
(heterozygous). Since transition was, after all, infrequent, we expected that homozygous
transition would be very rare, which made it difficult to find candidate genes using a
recessive model. We found only one candidate gene with the recessive model (SH3GLB1
in uterus).

3.4. Gene Expression Levels in Chromosome 8q24 Associated with Local Ancestral Transition
between Africans and Europeans

Prostate cancer is one of the most common malignancies among men in the U.S.,
and the incidence among African Americans is ~1.6-fold higher compared to European
Americans. Freedman and colleagues used a whole-genome admixture scan to discover
susceptibility loci for prostate cancer in African Americans and found chromosome 8q24
as a significant risk locus for prostate cancer, especially for African descent. However,
candidate genes in 8q24 were not identified [22]. We focused on the transition events and
genes in chromosome 8q24 to find the candidate genes that were differentially regulated
by admixed ancestral structure in regulatory regions. We found that more significant
associations were from recessive models, in contrast to the whole genome analysis in the
previous section (Table 1). Trafficking protein particle complex 9 (TRAPPC9) and pyrroline-
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5-carboxylate reductase (PYCRL) were significantly associated with ancestral admixture
in the regulatory region across multiple tissue types (Table 2). TRAPPC9 is implicated in
tumorigenesis through the NF-kB signaling pathway [23]. PYCRL plays a role in proline
biosynthesis [24] and was significantly associated with prostate proliferation in a murine
model of prostate cancer [25]. We checked the locations of the genes and their regulatory
regions in Table 2 and did not find any overlap of distal regulatory regions between the
genes that were significant in a tissue type (Figure 5).

Table 2. Significant genes associated with transition events in the regulator region on chromosome
8q24. False discovery rate is calculated within each model of transition event, distance range, and
tissue type.

Model Distance from
Transcription Start Site Tissue Type Gene False Discovery

Rate

Dominant

5~50 kbps Skin, Not Sun Exposed Suprapubic
ANXA13 0.015

TRAPPC9 0.025

50~500 kbps
Brain, Spinal Cord Cervical C1 GPT 0.035

Whole Blood ZNF572 0.041

Recessive

Less than 5 kbps

Brain, Anterior Cingulate Cortex ZNF623 0.032

Brain, Frontal Cortex BA9 ZNF623 0.03

Colon, Transverse LYNX1 0.0015

5~50 kbps

Brain, Caudate Basal Ganglia PYCRL 0.02

Brain, Cerebellar Hemisphere
PYCRL 0.037

TRAPPC9 0.037

Brain, Hypothalamus
PYCRL 0.024

TRAPPC9 0.024

Skin, Not Sun Exposed Suprapubic TRAPPC9 0.049

Additive

5~50 kbps Skin, Not Sun Exposed Suprapubic
ANXA13 0.015

TRAPPC9 0.025

50~500 kbps
Brain, Spinal Cord Cervical C1 GPT 0.031

Skin, Sun Exposed Lower Leg ZFP41 0.025
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Figure 5. Genes in chromosome 8q24 locus and their upstream regions considered for ancestral
structure. Only the genes with significant associations are shown. For each gene, the transcription
start site (TSS) that is denoted as a single base position and its upstream region (denoted as a
horizontal line in the left/right of TSS) are connected by arcs. For visibility, only the 50~500 kbps
upstream regions are shown. The other upstream regions considered during the analysis are located
between end points of the arcs. Each gene is represented by different colors and the dashed arcs
represent those on the positive strand.
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4. Discussion

The proportion of phenotype variance explained by genotype is relatively small for
many human traits, including diseases [26]. Gene expression could be used as an endophe-
notype that is a mediator between genotype and phenotype. Indeed, genetic variants
have larger effects on the variance in CpG DNA methylation and gene expression levels
compared to effect sizes on phenotypic variance [27]. Positive findings from eQTL analysis
and fine-mapping of GWAS results, as well as statistical methods such as PrediXcan [28]
and fusion [29], suggest that inter-individual variation of tissue-specific gene expression
could be explained by from a single SNP to genome-wide genotype of an individual [30];
however, it is likely that multiple genetic variants in the regulatory region contribute to
differential gene expression regulation across individuals [31].

On average, the number of putative transition points was smaller in European descent
compared to African descent when a two-population reference panel was used. This
observation is consistent with previous reports regarding greater genetic diversity in
Africans with shorter LD-block sizes [32–34]. However, we found more frequent transition
points in Europeans with three- or five-population reference panels, which was likely due
to the limitation of the algorithm in assigning local ancestry to one of the populations
in a population reference panel. RFMix performs better with individuals from complex
admixed populations compared to the other methods [35]; however, the subjects enrolled
in the GTEx project were not necessarily from complex admixed populations. Therefore,
the results with two-population reference panel were consistent with previous reports as to
the number of transition points and block sizes in Europeans and Africans.

The association between the local ancestry transition In the distal upstream (50~500 kbps
from TSS) of ADAL and its expression level was recurrently observed across 13 tissue types.
ADAL has an important role in the metabolism of mRNA across cell types in multiple
species. N6-methyl adenine (m6A) is the most abundant posttranscription modification
of mRNA, and m6A is turned over to generate N6-mAMP. ADAL is an evolutionary
conserved catalytic enzyme that hydrolyzes N6-methyl-AMP (N6-mAMP) to produce in-
ositol monophosphate (IMP) and methylamine [36]. Therefore, differential regulation of
ADAL could have an impact on mRNA stability and metabolism [37]. In our analysis,
ADAL was significant in multiple tissue types, which was not solely due to the ubiquitous
expression of ADAL. Indeed, 77% of all tested genes (N = 13,556) were quantitatively
measured in 40 or more tissue types in GTEx. Nonetheless, ADAL and HLA-DQB2 were
two genes that were significantly associated with the local ancestry of regulatory regions in
diverse tissue types at a study-wide statistical threshold of 1.87 × 10−8 = 0.05/2,670,793
(the number of all tests for all genes across available tissues, models of transition loci
(additive/dominant/recessive), and distance between transition loci and TSS (immedi-
ate/distant/distal)). Given the sample size in GTEx data (N = 838), however, it requires
replication study with a larger sample size for validation.

Gene expression levels are influenced by both genetic and environmental factors.
Moreover, environmental factors such as lifestyle and diet are often linked with an indi-
vidual’s global ancestry. In the current study, we aimed to delineate the effect of genetic
variants in regulatory regions, in aggregate, on the inter-individual variation of gene expres-
sion levels. For some genes, mean expression levels could be different between populations
due to environmental factors and gene-environment interactions. In the current study,
gene expression levels were residualized for global ancestry (along with sex and age) to
estimate the variance explained by the change in local ancestry between regulatory and cod-
ing regions. Therefore, the genes that were significantly differentially expressed between
populations might have been missed in our analysis.

Although our approach identified candidate genes that may be differentially expressed
due to the discordant local ancestry of the regulatory region compared to coding regional
structure, there are several technical challenges that make interpretation difficult. Firstly, the
potential impact of allele-specific expression was not explored [38]. Most transition events
were heterozygous in our dataset. Thus, one of two alleles with discordant local ancestry in
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regulatory regions could have a differential effect on gene expression. The next generation
sequencing technique used to generate WGS and RNA-seq data for the GTEx project has
limitations in resolving the haplotype of regulatory regions relative to coding regions.
Third generation long-read sequencing techniques, such as 10× linked-reads sequencing
and Oxford Nanopore, would enable the generation of an accurate allele specific map of
regulatory and coding regions [39]. Secondly, transition events in upstream might have
different impacts across cell types, which it was not possible to analyze using bulk RNA-
seq data from the GTEx project. Thirdly, there was a lack of reliable reference haplotype
data in the latest human genome build GRCh38. RFMix requires prior information from
a human genome-wide recombination map and a reference panel of different ancestral
populations matching the target population. Therefore, local ancestry prediction with
RFMix is dependent on the quality and size of the required materials. However, publicly
available genomic data are biased with European populations [9,40], limiting our ability to
investigate individuals of non-European ancestry.

DNA double strand break sites—i.e., sites of meiotic recombination—are often de-
termined by PR domain-containing protein 9 (PRDM9) in the human [41]. Interestingly,
different ancestral populations have distinct recombination hotspots. Moreover, PRDM9
alleles and DNA sequence motif binding PRDM9 show difference between Europeans and
African Americans [34]. High resolution genetic maps for diverse ancestral populations
are not readily available yet. As such, we found significant differences in the number of
transitions and the distribution of size of haplotype blocks between the results using three
different reference panels. Further refinement of local ancestry prediction methods would
improve the statistical power to detect gene expression variation explained by admixed
ancestral structure in the regulatory region.

5. Conclusions

In the current study, we illustrated an intuitive way to estimate the impact of local
ancestry on gene expression levels in the two populations (i.e., AFR and EUR) using GTEx
WGS data. A total of 61 significant candidate genes were discovered across 24 tissue
types. After multiple testing correction for each tissue, ADAL was recurrently identified
for the additive and dominant models across multiple tissues. We used a paired WGS and
RNA-seq dataset generated from autopsy samples in the current study to illustrate a proof-
of-concept. Our approach can be applied to study genetic basis of traits (e.g., transcriptome,
proteome, and other phenotype of interests) for animals and plants for which more accurate
recombination maps could be generated [42,43]. For instance, molecular mechanisms of
breed-defining traits have been characterized in livestock animals by genotyping germline
mutations in coding and regulatory sequences [44]. Furthermore, the current approach
could be refined to understand how genetic variants in regulatory elements lead to various
human phenotypes.
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