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Abstract: The functioning of the eukaryotic cell genome is mediated by sophisticated protein-nucleic-
acid complexes, whose minimal structural unit is the nucleosome. After the damage to genomic
DNA, repair proteins need to gain access directly to the lesion; therefore, the initiation of the DNA
damage response inevitably leads to local chromatin reorganisation. This review focuses on the
possible involvement of PARP1, as well as proteins acting nucleosome compaction, linker histone
H1 and non-histone chromatin protein HMGB1. The polymer of ADP-ribose is considered the main
regulator during the development of the DNA damage response and in the course of assembly of the
correct repair complex.
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1. Introduction

The eukaryotic genome consists of several billion pairs of nucleotides packed inside
the micron-scale nucleus. The compaction degree of certain parts of the genome depends
on both the stage of organism development and the type of differentiated cell [1]. In
general, chromatin states can be classified into actively transcribed, i.e., euchromatin (form
A), and its compacted form: heterochromatin (form B). In any case, 75–90% of genomic
DNA is represented by a minimum unit of compaction: nucleosomes [2]. According to
crystallographic data, the nucleosome is a 147 bp DNA duplex, left-handedly wound
around the histone core [3]. The core is formed by four pairs of histones—H2A, H2B, H3,
and H4—which form two dimers H2A-H2B and H3-H4. The length of DNA regions located
between nucleosomes, i.e., of the so-called linker DNA, can vary from 20 to 350 bp, and
this DNA can be bound to histone proteins. In mammalian cells, this binding is mainly
performed by various forms of linker histone H1 [4].

Nucleosome core stability varies by 2–4 kcal mol−1 depending on the flexibility of DNA
sequence [5]. This parameter is influenced by different factors such as poly(dA:dT) tracts,
the CG content, the occurrence of YR dinucleotide steps, and epigenetic modifications, for
instance cytosine methylation [6–9].

Approximately one-third of each histone protein consists of the unstructured regions,
mostly located in tail regions and protruding outside the nucleosomal core. These segments
play a substantial role in the stabilisation and mobility of nucleosomes both owing to a
network of contacts with DNA and to protein-protein interactions with various nucleic-
acid metabolism factors, for instance during transcription or DNA repair. Being highly
evolutionarily conserved, histones are a hot spot for introduction of many functionally
relevant modifications that could influence genome compaction. These include post-
translational modifications (PTMs) [10,11] and sequence alterations based on of histone
variants, isoforms, or mutations.

Another important characteristic of an actively transcribed genome region (e.g., a
promoter region) is the density and pattern of the nucleosomes’ positioning. It has been
shown that promoters of translation apparatus genes and of broadly expressed genes are
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characterised by a certain ordered nucleosome configuration and sufficient bendability
that allows the formation of the correct transcriptional complex [12]. Global chromatin
reorganisation requires the involvement of ATP-dependent remodellers. Nonetheless, non-
histone DNA-binding factors can alter nucleosome positions through non-sequence-specific
binding to nucleosomes; this phenomenon could lead to destabilisation or displacement of
a nucleosome [13–15].

For correct functioning of the genome, the genome compaction degree should have
certain variability that gives enough time—for example, during the transcription, or in
response to DNA damage—to relevant proteins to access specific areas of genomic DNA.
Recently, more and more data were published concerning the influence of various factors
on the chromatin compaction degree. These factors include the action of ATP-dependent
remodellers (ALC1, CHD1, ISWI, and SWI/SNF [16]), the participation of histone modi-
fication systems (e.g., acetylase/deacetylases and methylases) and interactions with non-
histone proteins of the high-mobility group and with protein PARP1 [17].

Currently, there is a large amount of data regarding PARP1 and the poly(ADP-
ribosyl)ation (PARylation) as one of the ATP-independent factors that influence chromatin
remodelling. This review summarizes the basic data on this topic.

2. The Structure of the Nucleosome Core Particle (NCP) and Its Subtypes

The basic structural unit of chromatin is the nucleosome, the existence of which makes
it possible to compact (shorten) linear genomic DNA by about 7 times. Interaction of
nucleosomes with each other through linker histones or non-histone chromatin proteins
provides a greater degree of compaction. Such plasticity of the genetic material is also
necessary for cell development and differentiation, as well as for responses to changes
in environmental conditions. In addition, a specific nucleosomal pattern is extremely
important for the recognition of promoter regions of ubiquitously expressed genes by some
proteins [12].

NCP structure is relatively invariant among Metazoan [18,19]. In 1997, it was found
that the NCP has a second-order symmetry axis that passes through a certain base pair
of the DNA double helix [20]. This pair was named a dyad. Accordingly, 147 bp is the
length of double-stranded DNA (dsDNA) within an NCP (Figure 1a). The DNA double
helix turns going clockwise or counter-clockwise from the dyad are respectively denoted as
+SHL or -SHL (superhelical location): from position 0 to position 7 [3,21] (Figure 1b). Thus,
the histone core forms more than 120 contacts directly with all 14 SHL of dsDNA. The vast
majority of them are mediated by the amino acid interactions with phosphate groups of the
minor groove of the DNA helix. Additional contacts are based on interactions between Arg
or Lys of histone tails and atoms of heterocyclic bases of the dsDNA minor groove [20,22,23].
Such interactions ensure that within an NCP, DNA double-helix geometry is very different
from the classic B-conformation; this arrangement ensures the correct recognition and
positioning of many factors of nucleic-acid metabolism [24–29].
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Figure 1. NCP structure and the key compaction factors. (a) The following elements of the core par-
ticle are highlighted in the image (Protein Data Bank (PDB) ID: 1KX5): DNA strands are grey and 
white, histones H2A are yellow, H2B is red, H3 is blue, H4 is green, and the dyad base pair is orange. 
All components are shown in cartoon representation. The side opposite to the dyad (bottom panel). 
The middle part is schematic representation of the histone dimer’s location relative to the DNA 
duplex in the NCP structure on the dyad side (upper panel) and on the opposite side (lower panel). 
(b) Cartoon representation of approximately half of nucleosomal DNA, in which superhelical loca-
tions are indicated clockwise in DNA from the dyad base pair to the duplex end. (c) The spontane-
ous fluctuations of nucleosome DNA gyres affect the compaction degree as seen on the DNA side 
[23]. (d) Specific contacts of the N-tail of H3 with DNA near the entry/exit site, a so-called latch. The 
amino acid residues and heterocyclic bases involved in the interaction are highlighted in purple, 
histone H3 in blue, the dyad in orange, and the other components in white [23]. 

Structural dynamics of the histone core and the corresponding density of dsDNA 
winding on the histone octamer determine the plasticity of the nucleosomal particle. Us-
ing the SELEX technology, Widom’s group identified certain sequences that give the highest 
stability in terms of the histone core and result in the assembly of the stablest nucleosomal 
particles: clones 601, 603 and 605 [30]. Subsequent in vitro experiments, bioinformatic ana-
lyse and numerous structural studies have characterised such regions of nucleosomal DNA 
in terms of the CG content, TA dinucleotides, and CA-TG steps [5,6,30–33]. In fact, a DNA 
sequence must have certain bendability in order to wrap around the octamer and at the 
same time to form a certain network of contacts with proteins; this property ensures the 
stability of the particle [34,35]. It has been found that the Widom sequence contains key ele-
ments—the so-called AT joints (AA/TT, TA and AT base steps)—located in the minor 
groove and oriented in a certain way towards the octamer, allowing unambiguous position-
ing of DNA relative to the histone core. GG, GC, and CG base steps should be shifted relative 
to more flexible AT by half a turn of the DNA helix [36]. 

Indeed, the CG content of NCPs has been shown to inversely correlate with the abil-
ity of nucleosomal DNA to support spontaneous particle unwinding [37,38]. It can be as-
sumed that AT-rich regions are more often found near a transcription start site because 
they form less stable NCPs. Nonetheless, in Homo sapiens, the number of AT-less promot-
ers exceeds the number of CG-less ones, and CG-based promoters have the highest prev-
alence (37.59% of all promoters) and are usually located in with housekeeping genes lack-
ing a TATA box [39]. 

Figure 1. NCP structure and the key compaction factors. (a) The following elements of the core
particle are highlighted in the image (Protein Data Bank (PDB) ID: 1KX5): DNA strands are grey
and white, histones H2A are yellow, H2B is red, H3 is blue, H4 is green, and the dyad base pair
is orange. All components are shown in cartoon representation. The side opposite to the dyad
(bottom panel). The middle part is schematic representation of the histone dimer’s location relative
to the DNA duplex in the NCP structure on the dyad side (upper panel) and on the opposite side
(lower panel). (b) Cartoon representation of approximately half of nucleosomal DNA, in which
superhelical locations are indicated clockwise in DNA from the dyad base pair to the duplex end. (c)
The spontaneous fluctuations of nucleosome DNA gyres affect the compaction degree as seen on the
DNA side [23]. (d) Specific contacts of the N-tail of H3 with DNA near the entry/exit site, a so-called
latch. The amino acid residues and heterocyclic bases involved in the interaction are highlighted in
purple, histone H3 in blue, the dyad in orange, and the other components in white [23].

Structural dynamics of the histone core and the corresponding density of dsDNA
winding on the histone octamer determine the plasticity of the nucleosomal particle. Using
the SELEX technology, Widom’s group identified certain sequences that give the highest
stability in terms of the histone core and result in the assembly of the stablest nucleosomal
particles: clones 601, 603 and 605 [30]. Subsequent in vitro experiments, bioinformatic
analyse and numerous structural studies have characterised such regions of nucleosomal
DNA in terms of the CG content, TA dinucleotides, and CA-TG steps [5,6,30–33]. In fact, a
DNA sequence must have certain bendability in order to wrap around the octamer and at
the same time to form a certain network of contacts with proteins; this property ensures
the stability of the particle [34,35]. It has been found that the Widom sequence contains
key elements—the so-called AT joints (AA/TT, TA and AT base steps)—located in the
minor groove and oriented in a certain way towards the octamer, allowing unambiguous
positioning of DNA relative to the histone core. GG, GC, and CG base steps should be
shifted relative to more flexible AT by half a turn of the DNA helix [36].

Indeed, the CG content of NCPs has been shown to inversely correlate with the ability
of nucleosomal DNA to support spontaneous particle unwinding [37,38]. It can be assumed
that AT-rich regions are more often found near a transcription start site because they form
less stable NCPs. Nonetheless, in Homo sapiens, the number of AT-less promoters exceeds
the number of CG-less ones, and CG-based promoters have the highest prevalence (37.59%
of all promoters) and are usually located in with housekeeping genes lacking a TATA
box [39].
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As already mentioned above, the nucleosomal pattern is essential for the correct
positioning of general transcription factors and for transcription initiation. On the other
hand, the presence of several NCPs near a transcription start site blocks the process of
ongoing inappropriate transcription, and RNA pol II requires the presence of specific
remodellers for the initiation for its transcription process. This means that the plasticity of
the nucleosomal core plays an extremely important role in the stability of the NCP and in
its ability to slide along DNA (reviewed in [15]).

The density of DNA duplex winding on the histone core varies and depends on
how far a helix turn is from the dyad [40]. A study on thermodynamic stability of the
nucleosomal core by Widom’s group indicates greater accessibility of a 10–12 bp DNA
segment located in the region of the entry-exit site as compared to the dsDNA segments
closer to the dyad [41]. In addition, Widom and colleagues have estimated the time
during which the nucleosome stays in a completely wound state and duration of the state
featuring partial loss of protein-nucleic-acid contacts of this NCP region: ~250 and 10–50 ms,
respectively [31]. Today, these spontaneous fluctuations of the nucleosome compaction
degree are called nucleosome breathing (Figure 1c). The data from Widom’s group points
to a site exposure mechanism that may participate in nucleosome mobility and explains the
access of nucleic-acid metabolism proteins to such a compact and fundamental structure as
the nucleosome.

Indeed, a large amount of experimental data suggests that in vivo, approximately
50% of the nucleosomal pattern is specified by and explained by the genome’s primary
structure and has characteristic features identified in in vitro experiments [36], reviewed
in [9]. Nevertheless, the DNA sequence alone—i.e., the pattern of key protein-nucleic-acid
interactions, which has been determined (among other things) from X-ray diffraction data—
does not explain the results of in vivo experiments, indicating the plasticity of the histone
octamer [42,43]. Currently, nucleosomes are considered not static but dynamic structures
owing to structural alterations of the histone octamer in an ATP-dependent and ATP-
independent manner that underline the dynamics of the regulation of genome-associated
activities [44–46].

Relatively recently, Widom’s site exposure model was refined by molecular dynamics
simulations. Namely, at the atomic level, Shaitan’s group presented functional modes of
nucleosome dynamics such as spontaneous nucleosomal DNA breathing, unwrapping,
twisting and sliding mediated by nucleosome core plasticity [23]. Those authors demon-
strated that the ends of nucleosomal dsDNA are capable of rapid fluctuations by themselves
on a time scale of 10–100 ns. At the same time, the kinetics of NCP unfolding/breathing
take place in the microsecond range and are implemented precisely due to a conformational
rearrangement of histone tails protruding outside the nucleosomal core [47]. Here, a special
role is played by a smaller number and relatively low stability of protein-nucleic-acid
contacts formed by the H2A-H2B dimer and by the outer half-turn of the dsDNA helix
as compared to H3-H4. A considerable contribution to NCP stability is made by multiple
interactions of the H3 αN-helix and of a nearby segment of the H3 histone tail (in particular
H3Y41, H3R42, and H3T45 and the region between residues H3H39 and H3R49) with two
stands of a DNA duplex. These contacts generate a kind of a latch insuring direct juxta-
position of two gyres of the DNA helix: by the positioning at nucleotide -9 near the dyad
and at nucleotide 71 at the end of the nucleosomal DNA (Figure 1d) [23]. The interaction of
the H3 tail with DNA results in less sliding of the nucleosome and stabilises interactions
with the H2A-H2B dimer [48,49]. According to the refined model, NCP breathing affects
unwinding up to the first 15 bp and proceeds within nanoseconds (~40 ns), whereas fur-
ther unwinding leads to the loss of protein-nucleic-acid contacts for a 25 bp regions, i.e.,
latch; this loss occurs within microseconds. Due to the existence of local overtwisting and
stretching of nucleosomal DNA, these more mobile 25 bp can be quite effectively pulled
up to the dyad region [50,51]. In addition, DNA unfolding within the NCP is associated
with local distortions of the DNA helix near the dyad (±SHL 1.0–1.5) and contributes to
the loss of histone-DNA contacts in this region, and this loss in turn probably facilitates
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nucleosome sliding. Thus, at this time point nucleosome core plasticity is sufficient to
ensure the variability of conformational dynamics polynucleosomal chromatin regions. It
is possible that ATP-dependent remodelling proteins use this twist defect propagation to
facilitate access to a lesion near the dyad during the repair process [31,32,52].

3. Histone Variants

Because the main role in the formation of the nucleosomal particle and in its plasticity
is played by core histones, the existence of their variants and all kinds of PTMs, should
significantly affect the genome compaction degree and accessibility dynamics of certain
DNA regions. Controlling the variation of these parameters is important for successful
interaction of transcription factors and repair complexes with various genome regions and
must be dependent on the phase of the cell cycle and on an adaptive response. Variants of
histones are known to be actively recruited to sites of DNA damage [53,54]. In addition,
the nucleosomal core histones harbour more than 100 different PTMs, most of which
are in N-terminal regions [10]. On the one hand, such specificity can promote chromatin
decompaction at the site of DNA damage and trigger an appropriate repair pathway. On the
other hand (for example, due to a PTM), histone variants can control NCP stability during
repair in some phase of the cell cycle and can prevent further degradation of genomic DNA
until it is completely restored, and these properties are especially needed in the case of
double-strand break (DSB) repair. Below, the data on the involvement of the main variants
and modifications of core histones will be briefly summarized for the repair process in
response to the emergence of damage in genomic DNA.

Core histone H2A is the most “mobile” element of the nucleosome. Variants of this
histone vary in the length of C- and N-tails, which has a major effect on the formation
and stability of the nucleosome particle [55]. Many cancer types are associated with an
alteration in the terminal region of H2A variants [56]. The presence of the best-characterised
H2A.B variant in the genome causes the formation of a non-canonical form of the NCP at
position~118 bp and increases cell sensitivity to the action of DNA-damaging agents [57,58].
Variants H2A.X, H2A.Z and macroH2A are participants in various DNA damage response
(DDR) pathways [59]. In human cells, the H2A.Z variant is recruited to DSB sites thereby
resulting in the assembly of homologous recombination (MRE11, BRCA1, and RAD51)
and non-homologous end-joining (NHEJ) (proteins KU70 and KU80) complexes [60]. In
addition, there is evidence of the importance of H2A.Z in the mismatch repair (MMR), base
excision repair (BER), and nucleotide excision repair (NER) processes [61,62].

The H2A.X variant is a mark of DSBs in DNA. On the one hand, the presence of the
H2A.X in a nucleosome is the main target for a PTM (mainly at pS139), which is catalysed
by a different class of kinases and is crucial for the initiation and regulation of the correct
DSB repair pathway for a DSB [63,64]. On the other hand, the presence of (y)H2A.X
in nucleosomes after interaction with PARP1 (the sensor of DNA single-strand breaks),
increases the association rate and stability of the entire complex and enhances the catalytic
activity of PARP1, which is necessary to start the repair process [65].

It is known that macro-domains in proteins are responsible for the binding of poly(ADP-
ribose) (PAR) [66]. MacroH2A histone variants also play a considerable role in the initiation
of the repair processes associated with PARP1 activity—NHEJ, homologous recombination
(HR) and BER. The macroH2A1.1 variant is indeed capable of binding the PAR synthesised
by PARP1 in response to oxidative stress. A histone is recruited to the DSB by binding to
the PAR attached to PARP1 after the latter it is relocated to the damage site, rather than
being directly recruited to a DSB as part of the nucleosome [67,68]. Such macroH2A1.1
binding affects the kinetics of PAR accumulation and as a consequence leads to an increase
in the lifetime of the polymer and to the suppression of PARP1 activity [69]. The presence
of macroH2A1.1 promotes CHEK2 activation and recruitment of NHEJ proteins KU70/80
and 53BP1 to the damage site [67]. For instance, the presence of the macroH2A1.1 variant in
an NCP promotes effective repair affecting the NAD+ pool (and its maintenance) in the cell
under oxidative stress. Nevertheless, another common form of macroH2A1, macroH2A1.2,
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is formed by alternative splicing that removes key residues in the macrodomain responsible
for the recognition and binding of PAR [70]. Recruitment of macroH2A1.2 to DNA breaks
is independent of PARP1 [71,72]. In any case, the activity of BER is more effective on NCPs
containing macroH2A variants [61,67,69].

The second component of the dimer, histone H2B (or rather its phosphorylated and
ubiquitinylated forms), appears in the NCP within an hour after the action of the agents
responsible for DSB formation and contributes to effective recruitment of HR factors—
BRCA1, CtIP, and NBS1 [73–76].

The second H3-H4 dimer is the most stable component of the NCP and binds to DNA
immediately after its synthesis [77]. One of the beat-studied variants of H3 CENP-A is
a component of centromeric nucleosomes and determines the position of kinetochores
in the course of chromosome segregation during cell division [78]. On the other hand,
another variant H3.3, is considered necessary for PARP1-dependent NHEJ [79]. In addition,
PTMs in the H3 latch—H3Y41 and H3T45 phosphorylation (which is important for the
maintenance of electrostatic interactions with DNA) and H3R42 methylation (which is
needed for the propensity of H3 to interact with the DNA minor groove) can significantly
affect the stability of interactions between the histone core within the NCP and facilitate
access to a lesion at a distance from the entry-exit site [23]. Multiple PTMs of the canonical
H4 variant determined the choice of a repair pathway after a DSB emerges, e.g., via their
influence on chromatin dynamics [80–83].

4. Linker Histone H1 as a Factor Affecting Chromatin Compaction Dynamics

By the end of the 20th century, the 166 bp dsDNA associated with the octamer and
with histone H1 had been isolated within the structure of chromatin and named chromato-
somes [84]. This non-core histone binds to DNA linker regions near the entry-exit site and
strongly alters conformational dynamics of the NCP, and simultaneously, the compaction
of chromatin [4,85] (see below).

In mammalian cells, there are 11 variants of H1, and the H1.0 variant is characteristic
of non-dividing and terminally differentiated cells [86]. All proteins of the H1 family
undergo several types of PTM, including phosphorylation, methylation, and acetylation,
with phosphorylation being especially common; the extent of this modification increases
during interphase [87–89]. Expression levels and distribution of H1 variants influence
the cellular phenotype and terminal differentiation [90,91]. In general, the expression of
all H1 genes is controlled at transcriptional, post-transcriptional and post-translational
levels. In addition, the H1 protein level in cells of high eukaryotes varies greatly (from 0.4
to 1.0 molecule per NCP, rarely reaching 1.0), but an increase of this ratio above 1.0 can
cause the appearance of two H1 molecules in the NCP and a decrease in the density of
the local nucleosome pattern [92,93]. Because of such a wide variety of forms and owing
to the specificity of their distribution across the genome during development and cell
differentiation, all of them should differ in binding affinity. In addition, this characteristic
has to be dynamic [94].

All proteins of the H1 family have a characteristic tripartite structure, in which a
conserved globular domain (GD, ~80 aa) and the surrounding domains [short N-terminal
(NTD, 13–40 aa) and longer C-terminal domains (CTD, ~100 aa)] can be distinguished [95].
These are lysine-rich and most positively charged proteins of eukaryotic cells [95,96]. Both
termini are highly variable and undergo multiple PTMs [89,97].

The binding of H1 to the NCP is quite well described. The primary determinant of the
type of H1 binding to the NCP is a highly disordered C-terminal domain [98,99]. There
are two main models, which are referred to as on- and off-dyad judging by the histone
location relative to the dyad (Figure 2). According to the first model, H1 is positioned
directly along the axis and interacts with ~10 bp of the DNA duplex minor groove of both
NCP linker regions [100] (Figure 2a). In this case, chromatin is compacted into a structure
with a zig-zag arrangement of NCPs relative to each other, similar to a ladder, which leads
to a loss of packing of NCPs meaning greater accessibility of genomic DNA [101]. In the
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off-dyad model, H1 is in a conformation predominantly interacting with one of the linker
regions, and the globular domain is situated in the major groove of the DNA duplex with
a 3–7 bp offset relative to the dyad (SHL approximately +0.5); this situation leads, first of
all, to the restriction of free breathing of DNA gyres, and next to the formation of denser
fibres and to consequent lower accessibility of the genomic DNA [102–104] (Figure 2b). The
implementation of the latter chromatosome conformation implies competitive interactions
for example, between a linker histone (and some isoforms of core histone H2A) with
an occluded part of DNA, thereby causing transition from the compacted form to the
unwrapping of∼10–15 bp at each end of the NCP [101]. Moreover, these two conformations
exist in a dynamic equilibrium, which may be related to a change in the H1 binding
configuration and shifted by slight alterations of the ionic environment and interactions
with the H3 tail of the NCP core [105–108].
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erocompartments and largely determines the accessibility of chromatin because transcrip-
tionally active and regulatory intergenic regions are depleted in H1 [109]. Nonetheless, 
the binding of H1 to genomic DNA is not a stochastic process. It has been found that the 
lifetime of H1 in chromatin is several minutes, while the rate of core histones’ exchange is 
in the hourly range [94,110]. Fluorescence recovery after photobleaching experiments has 
also revealed the dependence of the H1 exchange rate on the functional state of chromatin: 
the exchange rate is higher in transcriptionally active chromatin that in inactive chromatin 
[110]. These data suggest that, if necessary, H1 can be replaced by an alternative protein 

Figure 2. Chromatosome structure: the on- and off-dyad binding model. Cartoon representation of
nucleosomal DNA (in grey and white) and a linker histone (purple). The DNA positions juxtaposed
to the protein are highlighted in magenta, and the dyad in orange. Core histones are not shown for
clarity. (a) Nuclear magnetic resonance structure of the NCP core with 167 bp DNA based on Widom’s
“601” sequence in complex with the globular domain (GD) of chicken linker histone H5 (PDB ID:
4QLC). The linker histone is engaged in stable symmetric interactions with the dyad and both DNA
linkers. Such interactions induce the formation of a ladder-like conformation of the chromatin fibre.
(b) Nuclear magnetic resonance structure of the NCP core with 197 bp DNA based on Widom’s “601”
sequence in complex with human linker histone H1.4 (PDB ID: 7PFD). The linker histone is displaced
from the dyad position towards one of the linker regions. This interaction is affected by the local
nucleosome environment and leads to twisted geometry of the fibre conformation.

Today, there is evidence that H1 binding is involved in the formation of eu- and
heterocompartments and largely determines the accessibility of chromatin because tran-
scriptionally active and regulatory intergenic regions are depleted in H1 [109]. Nonetheless,
the binding of H1 to genomic DNA is not a stochastic process. It has been found that the
lifetime of H1 in chromatin is several minutes, while the rate of core histones’ exchange is in
the hourly range [94,110]. Fluorescence recovery after photobleaching experiments has also
revealed the dependence of the H1 exchange rate on the functional state of chromatin: the
exchange rate is higher in transcriptionally active chromatin that in inactive chromatin [110].
These data suggest that, if necessary, H1 can be replaced by an alternative protein that
somehow affects the chromatin compaction degree during some process [111,112]. Proteins’
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competition for binding sites near the NCP is a component of the general mechanism that
ensures functional and structural plasticity of chromatin fibres [113].

Indeed, in a study on H1 partners inside the cell, a large number of proteins were
identified that are responsible for various cellular processes related to the maintenance
and reproduction of genetic information [114]. Among them, there are repair-regulatory
proteins Ku70/80, DNA-PK, YB1 and PARP1 [115–118]. On the one hand, the presence of
structurally disordered domains in H1 should yield a large repertoire of protein–protein
interactions. On the other hand, despite the participation of the structured globular domain
in protein-protein interactions, its well-defined interaction with nucleosomal DNA binds
H1 to chromatin [115]. It is possible that in the constantly changing nuclear environment of
mammalian cells, owing the network of protein-protein interactions, H1 plays the role of a
hub and is involved not only in the formation of a specific structure but also in functional
control [119].

Therefore, conformational dynamics of linker DNA can be regulated by H1 binding
mode and by the immediate environment of the NCP. In addition, a change in the stoichio-
metric ratio of H1 and to NCP can significantly affect both the architecture of chromatin
and its local dynamics in mammalian cells. The ability of H1 to interact not only with
NCPs but also with many proteins, e.g., during the development of the DDR, indicates
direct involvement of the reorganisation of certain chromatin regions in a specific way, for
example, for a repair process.

5. HMGB1 as an ATP-Independent Chromatin Remodelling Factor

The degree of chromatin compaction is affected by both histones and non-histone
proteins. These include, among others, abundant nuclear protein HMGB1 (high mobility
group box protein 1): a small protein affiliated with the high-mobility group (~25 kDa).
The HMGB1 amount is estimated as 106 per cell, which is ~10 times less than the amount
of H1 [120,121]. This protein is associated with many biological processes including the
regulation of chromatin structure, transcription and the DDR [122,123].

The unicity of HMGB1 also lies in the fact that it is possibly the most conserved protein
among mammalian ones: it has only two substitutions out of 214 amino acid residues
in the primary structure of the protein [124]. Furthermore, HMGB1 binds quite weakly
to the B-form of DNA compared to its alternative forms and does so almost sequence-
independently [123,125]. HMGB1 has three structural domains, two of which the N-
terminal Box A and central Box B are basic domains, and the C-terminal one has an
acidic tail; the basic linker regions are located as follows: one between two boxes, and the
other between the boxes and the acidic tail. Boxes A and B share up to ~30% identity in
primary structure, and the C-terminal domain contains ~30 alternating aspartates and gluta-
mates [126]. Despite the great similarity between the boxes, the main DNA-binding activity
is mediated by the A box, whereas the B box is mainly responsible for pro-inflammatory
activity [127,128]. There is evidence that the C-terminal domain is involved both in the
process of DNA binding and in the regulation of DNA damage repair [129,130].

HMGB1 interacts with the NCP near the entry-exit site near the N-terminus of H3
between two gyres of the DNA helix [131–133] (Figure 3). Lysine and arginine residues,
which are distributed evenly throughout the two arms of HMGB1, and aromatic amino
acids interact with the dsDNA in the minor groove. Such interplay disrupts the system
of van der Waals, electrostatic, and partially hydrophobic interactions within the NCP
and leads to a loss of DNA rigidity and to bending of the DNA duplex in the direction
of the major groove by slightly more than 60◦, which varies from 80◦ to 140◦ for different
proteins of the HMGB group) [127,134]. It has been shown that the interaction of HMGB
proteins with the mononucleosome causes local ATP-independent structural changes that
are not associated with sliding, thus providing greater access to the dyad region and
to the periphery of the nucleosome core region [135]. This phenomenon is reflected, in
particular, in the several-fold enhancement of the affinity of site-specific binding proteins for
restructured NCPs [136]. The mechanism by which the reorganisation of the NCP proceeds
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is not linked to the simple unwinding of DNA relative to the core [137,138]. The interaction
of HMGB1 with the NCP leads to the emergence appearance of two subpopulations of
restructured nucleosomes having distinct conformations that differ in physical parameters
from the structure of the canonical particle. Of note, that reorganised NCPs are stable even
after protein dissociation [139]. It is thought that an important role in the interactions of
HMGB1 with the NCP is played by the C-terminal domain, whose competitive binding to
the H3 N-tails introduces a partial loss of contacts between the N-tails of H3 and H4 and
dsDNA within the NCP (Figure 3) [140,141]. Nonetheless, stability studies on restructured
NCP containing different truncated core histones in vitro suggest that the effect of HMGB1
is more complicated and influences various forces within the nucleosome [139].
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C-tail) and the basic N-tail of H3. The dyad is highlighted in orange. In the absence of DNA, HMGB1
is in a closed conformation that is transformed by non-sequence-specific interaction with linker DNA
at the entry/exit site of NCP. The complex is stabilised by the interaction between the acidic tail of
HMGB1 and N- tail of H3; the interaction drives DNA unwrapping and NCP destabilisation.

The interaction of HMGB1 with the NCP is a very dynamic process and proceeds
within the seconds’ [142]. After the restructuring, the final forms of the NCP remain
sufficiently stable for tens of minutes and, although they are in equilibrium with the
canonical form, they can revert to the original NCP under the action of various external
factors [139].

Such a distortion of DNA structure and the disruption of major interactions (for
example, those that hold the NCP together with the H3 tail) can give rise to a heterogeneous
and dynamic population of NCPs, some of which can easily associate with various factors,
including chromatin remodellers [138,143–146]. Besides, after NCP binding, the distortion
of DNA structure, and recruitment of an appropriate transcription factor or remodeller,
HMGB proteins can rather quickly dissociate from the ternary complex via the “hit and
run” mechanism, thus performing the function of a chaperone [147]. Consequently, the
interaction of an HMGB with chromatin promotes not only partial destabilisation of the
NCP but also its ability to slide along DNA owing to ATP-dependent remodellers [124].

HMGB1 can influence the processes related to chromatin maintenance, for example,
DNA repair, not only owing to a significant distortion of the substrate but also due to
direct interactions with repair proteins [123,148]. Recent cell biological and biochemical
research indicates that HMGB1 actively participates in the modulation of the efficiency
of four major DNA repair pathways, i.e., NER, BER, MMR, and DSB repair, including
NHEJ [137,146,148–153].

Another possible important feature of HMGB1 functioning in mammalian cells is
indirect control of NCP assembly because HMGB1 deficiency leads to a deficiency of all
types of histones and to subsequent depletion of the NCP pool [154]. The genome of such
cells is extremely sensitive to DNA-damaging agents. Additionally, HMGB1-deficient
cells show high transcriptional activity. Experiments in HeLa cells have revealed that the
predominant nuclear localisation of HMGB1 in most cell types is a result of steady-state
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conditions in which HMGB1 molecules are constantly transferred from the cytoplasm to
the nucleus and back by energy-driven transport processes [145].

Therefore, during interaction with the NCP, the non-histone chromatin protein HMGB1
may act as a dynamic alternative to the main linker histone H1 [122,155]. Competition
between these proteins should result in the opening and closing of accessible domains on
specific nucleosomes while maintaining the overall structure of chromatin. Furthermore,
due to its wide network of protein-protein contacts, HMGB1 when recruited to damaged
chromatin may help to stimulate an appropriate DDR pathway.

6. Nuclear Protein Poly(ADP-ribose)polymerase 1 (PARP1): Interaction with the NCP

Another important nuclear protein that actively interacts with chromatin is PARP1.
It belongs to the poly(ADP-ribose)transferase family, which has 17 genes in the human
genome [156]. A distinctive feature of this family of proteins is the presence of a unique
H-Y-[EDQ] PARP-signature domain in the active site of the enzyme. Nonetheless, it is
reported that not all members of this family are able to bind substrate NAD+ molecules
and have catalytic activity. Moreover, only two members, PARP1 and PARP2, are nuclear
DNA-activated proteins and synthesise the ADP-ribose polymer, whose covalent or non-
covalent binding regulates many cellular processes including DDR initiation [156]. This is
one of the reasons why PARP1 is called the key keeper of genomic stability [157,158]. The
recruitment of a PARP1 molecule to the site of genomic DNA damage is one of the fastest
cellular processes, and the interaction of PARP1 with chromatin itself and the resultant
PARylation are involved in the regulation of chromatin dynamics, replication, cell cycle
control, apoptosis, and other phenomena [159].

A large body of biochemical in vitro data gives an idea about the PARP1 interaction
with free DNA and with the NCP. Towards DNA duplexes, the strongest affinity of PARP1
is observed in the presence of blunt ends or a 5′-phosphorylated single-strand break in
DNA [160–162]. During the interaction with nucleosome particles, PARP1 shows consistent
selectivity: initial complexes are formed by one PARP1 molecule located near blunt ends or
near linker regions of nucleosomal DNA; after the binding of other molecules, PARP1 has
additionally been found to be located near the entry-exit site [163–166]. It has been shown
that PARP1 binding to an end of nucleosomal dsDNA leads to a significant increase in the
distance between adjacent gyres of the duplex and this process is not accompanied by a
loss of histones and is reversible after PARylation [167]. Thus, the interaction of PARP1
with the NCP in a cluster of nucleosomes drives the reorganisation of the nucleosome
particle, and the magnitude of this reorganisation depends on local concentration of the
protein molecules in question. At the low concentration of the protein, one PARP1 molecule
binds and locally displaces one end of nucleosomal DNA from the surface of the histone
octamer, whereas a higher concentration of the protein results in the combined action of
two molecules of PARP1, leading to more extensive rearrangement of the nucleosome [163].
In this case, one of the PARP1 molecules binds to the NCP in an H1-like manner near the
entry-exit site. In vitro data correlate with in vivo results, which indicate the reciprocal
nature of the interaction of PARP1 and H1 with chromatin of promoters of genes actively
transcribed by RNA pol II [111,168]. In addition, it has been shown that PARP1 binds
rather quickly with strong affinity to the H2A.X-type nucleosome as compared to the H2A
nucleosome; the time of half-accumulation is only 1.6 s [65,159,169]. In this regard, the
association kinetics accelerated by the presence of the H2A.X variant may contribute to a
key step in the repair process: the accumulation of PARP1 followed by partial chromatin
reorganisation and PAR synthesis.

In the presence of NAD+, the binding of PARP1 to DNA, either free or as a part of
the NCP, triggers PARylation with covalent attachment of a PAR molecule to an acceptor
protein [170]. In this case, both PARP1 itself and the protein located in the vicinity of the
binding site can serve as an acceptor [171]. All core and linker histones are reported to serve
as PAR acceptors, albeit not the best ones among cellular proteins, and H1 has been found
to be the best PAR acceptor among histones both in vitro and in chromatin, whereas in the
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response to DNA damage, H2B and H3 are the best PAR acceptors [172,173]. Relatively
recently, histone PARylation factor 1 (HPF1 protein) was discovered, the presence of which
causes dramatic redistribution of PARylation acceptors; this redistribution first of all targets
this enzymatic modification to a different amino acid and sharply increases in the efficiency
of the modification of histones, especially H3 [174,175].

The PAR molecule represents a long negatively charged polymer, and it is commonly
thought that such a PTM leads to steric and electrostatic repulsion and therefore dissociation
of the modified molecules from the complex with DNA. This principle applies to both
histones and PARP1 itself [172,176] (Figure 4). Indeed, PARylation enhances the dissociation
of PARP1 from DSB sites [65,165]. A research article about kinetics of PARP1 accumulation
on and dissociation from the NCP in the presence of H2A.X leads to a conclusion that the
presence of an alternative histone variant can promote either association or a final release
of PARP1 after self PARylation during DNA repair [65]. In this context, the substrate,
which is the partner in the PARP1 interaction, comes to the fore. For instance, it is reported
that the presence of a mutant PARP1 having an impaired catalytic activity leads to an
extremely weak reaction during the initiation of the DDR in mice [177]. Normally, the level
of NAD+ in the cell is relatively high; however, during the first 15 min after DDR activation,
its concentration decreases to 20%, and after 30 min, it drops to almost an undetectable
level [169,178]. In addition, ATM-mediated phosphorylation of H2A.X generating γH2A.X
occurs already after PARP1 relocation to the DNA damage site, and this localisation can
persist for at least 30 min. In this sense, hyperactivation of PARP1 by γH2A.X-containing
nucleosomes at DSB sites can give prolonged ADP-ribose synthesis in a situation when
NAD+ concentration is extremely low [65].

Genes 2023, 14, x FOR PEER REVIEW 11 of 24 
 

 

found to be the best PAR acceptor among histones both in vitro and in chromatin, whereas 
in the response to DNA damage, H2B and H3 are the best PAR acceptors [172,173]. Rela-
tively recently, histone PARylation factor 1 (HPF1 protein) was discovered, the presence 
of which causes dramatic redistribution of PARylation acceptors; this redistribution first 
of all targets this enzymatic modification to a different amino acid and sharply increases 
in the efficiency of the modification of histones, especially H3 [174,175]. 

The PAR molecule represents a long negatively charged polymer, and it is commonly 
thought that such a PTM leads to steric and electrostatic repulsion and therefore dissoci-
ation of the modified molecules from the complex with DNA. This principle applies to 
both histones and PARP1 itself [172,176] (Figure 4). Indeed, PARylation enhances the dis-
sociation of PARP1 from DSB sites [65,165]. A research article about kinetics of PARP1 
accumulation on and dissociation from the NCP in the presence of H2A.X leads to a con-
clusion that the presence of an alternative histone variant can promote either association 
or a final release of PARP1 after self PARylation during DNA repair [65]. In this context, 
the substrate, which is the partner in the PARP1 interaction, comes to the fore. For in-
stance, it is reported that the presence of a mutant PARP1 having an impaired catalytic 
activity leads to an extremely weak reaction during the initiation of the DDR in mice [177]. 
Normally, the level of NAD+ in the cell is relatively high; however, during the first 15 min 
after DDR activation, its concentration decreases to 20%, and after 30 min, it drops to al-
most an undetectable level [169,178]. In addition, ATM-mediated phosphorylation of 
H2A.X generating γH2A.X occurs already after PARP1 relocation to the DNA damage 
site, and this localisation can persist for at least 30 min. In this sense, hyperactivation of 
PARP1 by γH2A.X-containing nucleosomes at DSB sites can give prolonged ADP-ribose 
synthesis in a situation when NAD+ concentration is extremely low [65]. 

 
Figure 4. NCP contacts—involved in the stabilisation of NCP structure through the H3-latch and 
breathing—that could be potentially affected by PARP1 interaction and subsequent PARylation 
(data from [23,163,167]). Specific PARylation sites in these regions are highlighted in a mint colour 
and indicated by mint arrows (a dashed line for H2B contacts and a solid line for H3 contacts). DNA 
is blurred, and histones H2A and H4 are highlighted in white for clarity. The dyad is highlighted in 
orange. Dashed whitishe-pink arrows go to positions of the fluorescent dyes that were used for the 
investigation into the molecular dynamics of the NCP after PARP1 binding and PARylation 
[163,167]. 

In addition, PARP1- and PARylation-induced chromatin re-compaction has been 
demonstrated during transcription [179,180]. Studies on the regulation of pS2 promoter 
expression in MCF-7 cells have shown that after binding of appropriate transcription fac-
tor of the ERE promoter, the TopoIIβ-PARP1 complex is recruited, which inevitably in-
duces sequential DNA cleavage and PARP1 activation [179]. The synthesis of PAR leads 
to simultaneous recruitment of HMGB1 or HMGB2 and a release of the previously bound 
H1 histone, to further changes in the local chromatin conformation and to transcription 
activation transcription [179]. A similar mechanism in the regulation of the transcription 
of other genes has been identified [180]. It is possible that such a pathway is more univer-
sal and implemented during the repair of the compacted form of DNA. 

Figure 4. NCP contacts—involved in the stabilisation of NCP structure through the H3-latch and
breathing—that could be potentially affected by PARP1 interaction and subsequent PARylation (data
from [23,163,167]). Specific PARylation sites in these regions are highlighted in a mint colour and
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blurred, and histones H2A and H4 are highlighted in white for clarity. The dyad is highlighted in
orange. Dashed whitishe-pink arrows go to positions of the fluorescent dyes that were used for the
investigation into the molecular dynamics of the NCP after PARP1 binding and PARylation [163,167].

In addition, PARP1- and PARylation-induced chromatin re-compaction has been
demonstrated during transcription [179,180]. Studies on the regulation of pS2 promoter
expression in MCF-7 cells have shown that after binding of appropriate transcription factor
of the ERE promoter, the TopoIIβ-PARP1 complex is recruited, which inevitably induces
sequential DNA cleavage and PARP1 activation [179]. The synthesis of PAR leads to
simultaneous recruitment of HMGB1 or HMGB2 and a release of the previously bound
H1 histone, to further changes in the local chromatin conformation and to transcription
activation transcription [179]. A similar mechanism in the regulation of the transcription of
other genes has been identified [180]. It is possible that such a pathway is more universal
and implemented during the repair of the compacted form of DNA.
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7. PAR in the DDR

One of the fastest and most comprehensive responses to damage in mammalian ge-
nomic DNA is PAR synthesis, 70–95% of which is catalysed by PARP1 [181,182]. Generally,
it is thought that the length of this polymer does not exceed 200 units and that PAR can have
linear and a branched structure [183]. Another variable that expands the PAR repertoire is
the amino acid acceptor, to which the first ADP-ribose is covalently attached. Glutamate,
aspartate, arginine, asparagine, lysine, cysteine, histidine, tyrosine, and serine/p-serine
residues are among the main acceptors that have been identified so far [171,184–190].

PAR can influence protein-protein and protein-nucleic-acid interactions not only by
being covalently attached to a target but also by engaging in a competitive interaction
with other substrates owing to the presence of PAR-binding domains in proteins. In-
deed, PAR effectors can recognise different sections of PAR chains (Figure 5). For exam-
ple, iso-ADP-ribose (iso-ADPR) the smallest structural unit of a PAR chain and contains
the ribose–glycosidic bond; specific recognition of iso-ADP-ribose is mediated by the
oligonucleotide/oligosaccharide-binding (OB) fold (OB-fold) or by forkhead-associated
(FHA) or by WWE (conserved tryptophans and glutamates) domains [191,192]. At the
same time, recognition of the entire ADP-ribose units is implemented by macro or BRCT
domain, and two adjacent ribose groups of PAR are recognised by PAR-binding ZnF (PBZ)
domains [66,191,193,194].
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It is clear that the affinity of various proteins for PAR should be altered not only by the
type of PAR-binding domain but also by the type of ADP-ribose polymer itself [195–198].
Indeed, it reported that different proteins could have an affinity for different types of PAR
chains; short (10-mers), medium (20–30-mers, containing branching), and long (branched
chains of more than 40–50 units of ADP-ribose in total); the affinity is in the range of 10−9

to 10−6 M [199] (Figure 6). It should be noted that the branching depends on the type of
ARTD protein, and in case of PARP1, it occurs approximately once every 20–50 ADP-ribose
units [200,201]. Such DDR factors as DEK, Chk1, XPA and p53 and DNA repair proteins
RPA and XPC-RAD23B preferentially interact with long PAR chains, whereas BER proteins
APE1 and Polb preferentially bind to a linear form of oligomeric PAR and medium-length
PAR chains: 8- and 20-mers. On the other hand, NHEJ-specific histone chaperone APLF
specifically recognises branch points [191,202–208]. Core histones preferentially bind to
branched and longer PAR chains, whereas the linker histone H1 has the strongest affinity for
and can bind to PARs of different lengths, even very short chains [203,206]. As for PARP1
itself, it is reported that as the length of PAR increases, so does the affinity of this protein
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for this polymer [209]. It is noteworthy that the affinity of the PARP1for PAR is the same
range as the affinity of unmodified PARP1 for the NCP [65,163,165,210]. Therefore, during
the interaction of PARP1 with damaged nucleosomal DNA, activation and subsequent self-
modification of PARP1 should lead to an inevitable breakup of the PARP1-NCP complex
owing to competitive interactions [176,210].
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A heterogeneous population of PAR chains has been found in different tissues and
cell types, thereby possibly supporting the theory about of a relation between the type
of synthesised PAR and the signal leading to its appearance [197]. Indeed, a number
of authors have identified associations between PAR chain length and protein partners
during PARP1 activation in the course of DNA repair. For example, short and highly
branched PAR is less effective in attracting XRCC1 to a damaged site [197,210,211]. On
the other hand, the synthesis of a shorter PAR is observed in the presence of RPA, YB1,
and HPF1 in vitro [174,198,208,212,213]. Moreover, these proteins are thought to regulate
PARP1 retention time on DNA by reducing the length of PAR chains and/or by raising the
efficiency of trans-ADP-ribosylation of histones in the context of cis-modification of PARP1
itself. As noted previously, auto-PARylation drives the dissociation of PARP1 from its
complex with damaged DNA. It has been shown that the dissociation of PARP1 depends on
the length and type of PAR branching. It has been revealed that the presence of shorter but
more branched chains leads to the dissociation of the complex, apparently not only owing
to electrostatic repulsion, but also because of a general steric effect [197]. This investigation
into PARP1 mutants that are capable to synthesising various types of PAR chains and
into their effect on cell physiology grave the authors (of the article just cited) the idea that
PAR branching promotes chromatin remodelling during the DDR [197]. In general, more
branching is registered during the catabolic phase of a genotoxic-stress-induced PARylation
response in the cells; the recruitment of the NHEJ-specific APLF chaperone to the branch
sites supports the theoretical model proposed in refs. [197,207].

The stability of the ADP-ribose polymer is another factor that is important for the
dynamics of protein-nucleic-acid complexes in response to DNA damage. Because of the
high structural diversity of PAR chains and of their molecular acceptors, PAR-cleaving
enzymes must also constitute a large community. Indeed, the hydrolysis of ADP-ribose
bonds is carried out by members of two evolutionarily distinct protein families related
to macrodomains and (ADP-ribosyl)hydrolases (ARHs) [214]. The most abundant and
widely specific enzyme of this class in mammals is PARG, which hydrolyses the ribose–
ribose glycosidic bond but cannot act on the terminal protein–ribose bond [215]. ARH1
is responsible for the cleavage of the last residue attached to a target protein via arginine,
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whereas ARH3 possesses broader substrate specificity including recognition of a modified
serine residue [216–218]. PAR turnover, i.e., the duration of its existence in the cell, amounts
to seconds’ [219]. Nonetheless, long PAR molecules are cleaved by PAR-catabolising
enzymes faster than shorter ones are [220]. In addition, PAR branching can lead to the
stabilisation of PAR structure because PARG appears to prefer degrading of a linear part of
the polymer over branching points [221,222]. It bears repeating that the branching occurs
on average once every 20–50 ADP units during PARP1-catalysed synthesis [200,201].The
finding that the protein fraction that binds to the longer polymer is enriched with factors of
nucleic-acid metabolism including replication, mismatch DNA repair and splicing factors,
supports the idea proposed in ref. [209].

Considering all of the above, it is likely that the duration of PARP1 accumulation at a
DNA damage site and the time of activation of its catalytic activity are important for DDR
regulation in the cell. This means that the cell needs the fastest possible transmission and
implementation of this intracellular signal. On the one hand, this process contributes to
rapid assembly of repair complexes at the accessible damage site thereby helping to preserve
genome integrity. On the other hand, it preserves the NAD+ pool [65,159,169,177,178]. In
response to DNA damage, PAR synthesis occurs quite quickly, within seconds. Accordingly,
because of the diversity of polymer chain types, PAR can serve as a kind of scaffold for the
formation of special intracellular biomolecule condensates [183]. The presence of specific
PAR-binding domains should ensure the recruitment of specific proteins to the damage
site followed by the formation of biomolecule condensates [179,180,183,223]. Timing of
PAR length is controlled during the DDR, when long polymers (>22-mers) are rapidly
synthesised by PARP1 and then are slowly degraded into shorter chains; consequently, it is
possible that PAR length governs the dissociation of PARP1 from DNA and accordingly
assembly of specific complexes [197,209].

8. Conclusions

Therefore, the various data accumulated in in vitro and in vivo experiments point to a
direct role of PARP1 and PAR in the relation between (i) elements of genome plasticity, i.e.,
histones, and (ii)_ the involvement of specific repair proteins coordinating or implementing
one or another pathway.

Numerous in vitro studies have shown that in compacted chromatin, linker histone H1
and non-histone chromatin protein HMGB1 compete with each other for interaction with
the entry-exit site or linker DNA of the NCP [122,135,224]. After the emergence of a specific
signal, the recruitment of PARP1 to the affected DNA site promotes the accumulation
of PAR. Its structure is important not only for chromatin decompaction but also for the
sequential assembly of certain protein complexes [225,226]. Accordingly, during the repair
of compacted DNA, a release of the linker histone H1, re-compaction of chromatin with the
help of non-histone proteins such as HMGB1 and HMGB2, and access to the lesion can be
implemented by the rapid dynamic interaction of PARP1 with the autoribosylated form.

In any case, either direct binding of PARP1 to the NCP, whether H1-like or DNA-
mediated, or recognition—by specific proteins—of PAR structure, whose synthesis was catal-
ysed by PARP1 upon the interaction with damaged DNA, contributes to the destabilisation
of the nucleosome particle and to the assembly of the correct repair complex [169,227,228].
Auto-PARylation of PARP1 leads to the dissociation of the complex, thus governing the
dynamics of the repair process [65,165]. A possible driving force of the entire process can
be the ADP-ribose polymer, and its structure can be determined by the type of damage
and by DDR-triggering proteins. Disturbances in the system of PAR-mediated formation
of biomolecule condensates have been implicated in the onset and progression of various
pathological states, such as cancer, viral infections, and neurodegeneration; thus, control
over the formation and dynamics of such condensates by means of a combination of PARP1
inhibitors may be key to the treatment of some human diseases [183,223].
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