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How new genes evolve has become an interesting problem in biology, particularly
in evolutionary biology. Without understanding the evolution of new genes, it would be
difficult to understand many of the biological properties of organisms, as their complexity
has been accumulating through evolutionary time. Without adequate knowledge about the
evolutionary process of the origination of new genes, it would be impossible to understand
the genetic bases of changes in gene functions and phenotypes as targets of natural selection
and other evolutionary forces. The advancement of genomics and functional analyses of genes
has made it feasible to investigate new gene evolution and data has been accumulating.

The 14 articles in this Special Issue on new gene evolution provide exciting evidence
and discussion about this topic from several angles of study. They illustrate the scientific
issues with respect to the evolution of new genes. They show that new genes exist widely in
organisms and that their origination and evolution is one of the most common evolutionary
processes [1,2]. In addition to providing new evidence that has accumulated on them and
insights into the phenomenology of new gene origination, these contributions also present
new and interesting scientific problems and concepts for further pursuits. They explore
new dimensions of the evolution of new genes and re-examine old dimensions with new
approaches, keeping the problem of new genes a growing field and preventing it from
becoming idle or dead, something that scientists try hard to avoid [3].

It is now clear that some of the patterns of the origination of new genes have been con-
sistent across the tree of life. For example, Li et al. [4] used comparative genomics to identify
new genes in the starry flounder and found, consistently with previous observations, that
DNA-mediated duplications are 10 times more abundant than either RNA-mediated du-
plications or the genes categorized as potentially de novo genes. Interestingly, in this
work, they observed that some of the newly evolved genes were differentially expressed
between the left and the right side of the starry flounder body, and their contribution to
the asymmetric body plan of flatfishes needs to be explored from this new angle in the
evolution of this developmental trait.

It has also been shown consistently that many new genes are expressed during sper-
matogenesis [5–7] and that the X chromosome might not be a good location for new
testis-biased genes [8] but the Y chromosome is. While there might be multiple reasons
for these two patterns, they likely involve the selection for male germline functions [9,10].
Some of the patterns are particularly strong for RNA-mediated duplicates or retrogenes [11].
Retrogenes studied in the mosquito in this issue of Genes [12] reveal that as sex chromo-
somes evolve, the patterns of retroduplication and expression change. In flies, genes with
mitochondrial function have been duplicated and now have a sperm function, and one of
them is studied in this issue of Genes [13]. Su et al. [14] analyzed single-cell transcriptomes
and revealed complementary patterns of expression between new genes and parental genes
revealing strong selection for those new genes. The evolution of the Y chromosome [15] has
also been at the receiving end of innumerable gene duplications, as this is a good location
for male-specific genes as long as purifying selection is efficient enough.

In a computational analysis, Guo et al. [16] evaluated the role of frameshift mutations
in the evolution of new gene functions after gene duplication, following up on a statement
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on page 80 of Ohno’s ground-breaking book Evolution by Gene Duplication that even if the
chances of frameshift mutations of generating new functions are small, it might happen [17].
As Ohno acknowledges in other sections of the book, frameshift mutations are usually
deleterious and are not observed in protein-coding genes, but Guo and colleagues reveal
multiple examples of this in multiple genomes. These are remarkable examples of the
extensive number of changes that sometimes occur in a particular region as a new gene
with a new function originates. As a striking example in line with the argument that
many changes can quickly take place in the genome as a new gene with a new function is
evolving, Krinsky et al. [18] study the male germline transcriptional rewiring that can take
place when a new gene evolves from a duplication of a transcription factor.

In an organism that contributed to the understanding of the origination of multicellu-
larity, Luna and Chain [19] reported an exciting discovery from analyses of five dictyostelid
species genomes, i.e., 24% of genes in the genomes are lineage- or species-specific. Further
analyses indicate that the biased new gene duplicates, expressed in a particular develop-
mental stage, show greater divergence in expression among orthologues and paralogues.
The expression analyses also provided new data to support a pattern previously reported
in other organisms: new genes show narrower expression patterns across developmen-
tal stages or tissues the younger they are, for example, Drosophila [6,20], Oryza [21], and
primates [22].

Cancer-cell proliferation provides a short-term genomic evolutionary process in which
the role of duplication at various levels, from genomic fragments to genes to whole-genome
and fusions between genes, can be readily examined. Glenfield and Innan [23] provide
an extensive and critical review of this area from genetic mechanisms to tumorigenesis to
cancer evolution to therapeutic response. In particular, based on the contributions of the
authors in bioinformatics and computational biology, the review of the bioinformatic tools
for the identification of gene fusions from genomic sequences provides rich and valuable
information for audiences who need to use these tools.

Antifreeze glycoproteins (AFGPs) were the first-ever known proteins created by de
novo origination, i.e., genes that evolve from regions that were initially non-coding [24,25].
Zhuang and Cheng [26] provided an updated picture of how AFGPs in codfish species
evolved their protein functions and their natural history with molecular evolution leading
to gene family expansion.

Also related to the potential for the evolution of de novo genes, Lee et al. [27], in this
issue of Genes, analyzed the microproteins in mammals and discussed their relevance to
the evolution of new gene, in particular, to a hypothesis that these short genes may be
formed from noncoding sequences. Genomes seem to be full of short peptides or short
proteins (e.g., microproteins with <100 amino acids). Amazing observations were made
that show obvious conservation among distant species, suggesting a selective constraint to
maintain these microproteins with their functionality. This work adds to the clear evidence
reported for de novo origination leading to two microproteins in the human genome and
other primate species, evidence that was viewed to be difficult to find [28].

In addition, Grandchamp et al. [22], in this Genes volume, thoroughly examined four
properties in human protogenes, i.e., the genes an in early stage of de novo origination [29]:
intron acquisition, regulatory elements, UTRs, and domain evolution. The extensive data
were characterized as showing significant differences between protogenes and old genes,
revealing a growth process of gene structures with age.

Another important aspect to understand de novo gene origination is the role of
random peptides: Are random peptides relevant to biology and evolution? The answers
to this problem have been largely negative since early experiments to test the potential
functionality of random peptides [30,31]. From large libraries they previously published,
Bhave and Tautz [32] detected surprisingly that higher than 10% of random peptides
might have advantageous fitness effects on the growth of E. coli, and these peptides
likely developed interactions with cellular proteins in various pathways. Castro and
Tautz [33] further reported their unexpected finding of a structural preference of shorter
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peptides. These observations also reveal that the genomes of E. coli do not function perfectly.
Therefore, despite their long-term evolution under natural selection, the artificially created
random peptides were able to perform a positive fitness effect.

In essence, these contributions reveal previously unknown phenomena and processes
and provide further in-depth analysis of recently detected properties with evolutionary
new genes. The data and analyses presented in these articles have also unveiled fresh
insights into a number of basic biological problems in understanding sex, gametogenesis,
development, protein properties, genome structure, carcinogenesis, and multicellularity.
We invite audiences to tour a world of increasing knowledge of how new genes originate
in a growing paradigm in biology and evolution.
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