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Abstract: Although many biomarkers associated with coronavirus disease 2019 (COVID-19) were
found, a novel signature relevant to immune cells has not been developed. In this work, the “CIBER-
SORT” algorithm was used to assess the fraction of immune infiltrating cells in GSE152641 and
GSE171110. Key modules associated with important immune cells were selected by the “WGCNA”
package. The “GO” enrichment analysis was used to reveal the biological function associated with
COVID-19. The “Boruta” algorithm was used to screen candidate genes, and the “LASSO” algorithm
was used for collinearity reduction. A novel gene signature was developed based on multivari-
ate logistic regression analysis. Subsequently, M0 macrophages (PRAUC = 0.948 in GSE152641 and
PRAUC = 0.981 in GSE171110) and neutrophils (PRAUC = 0.892 in GSE152641 and PRAUC = 0.960 in
GSE171110) were considered as important immune cells. Forty-three intersected genes from two
modules were selected, which mainly participated in some immune-related activities. Finally, a
three-gene signature comprising CLEC4D, DUSP13, and UNC5A that can accurately distinguish
COVID-19 patients and healthy controls in three datasets was constructed. The ROCAUC was 0.974
in the training set, 0.946 in the internal test set, and 0.709 in the external test set. In conclusion, we
constructed a three-gene signature to identify COVID-19, and CLEC4D, DUSP13, and UNC5A may
be potential biomarkers for COVID-19 patients.

Keywords: coronavirus disease 2019; biomarker; CIBERSORT; WGCNA; GO; LASSO; Boruta; multivariate
logistic regression

1. Introduction

Infectious disease caused by coronavirus SARS-CoV-2 infection is known as coron-
avirus disease 2019 (COVID-19) [1]. At the time of writing, there were more than 500 million
confirmed cases of COVID-19, including six million deaths (https://covid19.who.int, ac-
cessed on 15 June 2022). Although most COVID-19 vaccines can successfully protect against
the COVID-19 virus, individual heterogeneity in immune systems has shaped the effec-
tiveness of vaccines [2]. The adaptive immune response is a major determinant affecting
virus clearance and the adoption of vaccines after SARS-CoV-2 infection [3]. The adaptive
immune system mainly includes B cells, CD4+ T cells, and CD8+ T cells, and they play
a vital protective role in combating viral infections [4]. The generation of SARS-CoV-2-
specific memory B cells could provide persistent protection against repeat infection [5].
SARS-CoV-2-specific CD4+ T cells can improve the ability of SARS-CoV-2 clearance [6]. A
potential protective role of CD8+ T cell responses in mild COVID-19 patients was detected
because of a higher fraction of CD8+ T cell responses observed at this stage [7]. These
findings can emphasize the significance of SARS-CoV-2-specific immune cells in killing
the virus.

The differential characteristic associated with immune cells between COVID-19 pa-
tients, and non-COVID-19 patients or healthy controls has been investigated in many
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studies [8–10]. Wauters et al. found that COVID-19 patients had a higher immune infil-
trating of neutrophil subclusters compared to those with non-COVID-19, but lower CD4+

T-helper-17 cells appeared in COVID-19 patients [8]. Jing et al. found significantly elevated
levels of HK2, SLC04A1, SDS, and COL1A1 in B cells in non-COVID-19 patients compared
with those with COVID-19 infections [9]. Rébillard et al. found that a decreased proportion
of T cells was correlated with the cause of acute SARS-CoV-2 infection [10]. Although many
biomarkers identifying COVID-19 have been developed, a novel gene signature which
focused on the immune microenvironment related to COVID-19 has not been constructed.
With the development of new technology, many studies have focused on combining ma-
chine learning (ML) and bioinformatics for identifying and predicting the outcome of
COVID-19 (Supplementary Table S1) [11–14]. Although these studies focused on predictive
biomarkers associated with COVID-19 using bioinformatics and ML, these biomarkers
were only validated in a single dataset without other external test sets. Meanwhile, the
immune microenvironment related to COVID-19 should be explored because of its impact
on the development of COVID-19 and patients’ responses to vaccines. Therefore, we aimed
to identify a predictive biomarker associated with immune cells infected by COVID-19
based on ML and bioinformatics, followed by validation in two test sets in order to ensure
the stability of the results.

In the present work, we used bioinformatics analyses to determine important immune
cells and key modules associated with these immune cells. ML analyses were used to screen
and construct a novel gene signature that can effectively distinguish COVID-19 patients
and normal controls based on these candidate genes from these key modules.

2. Materials and Methods
2.1. Data Acquisition

In this work, we recruited 86 American samples consisting of 62 COVID-19 patients
and 24 healthy controls in GSE152641 (http://www.ncbi.nlm.nih.gov/geo/, accessed on
1 June 2022); 54 French samples comprising 44 severe COVID-19 patients and 10 healthy
donors in GSE171110 (http://www.ncbi.nlm.nih.gov/geo/, accessed on 1 June 2022);
and 49 Indian samples composed of 8 asymptomatic COVID-19 patients, 9 mild COVID-
19 patients, 10 moderate COVID-19 patients, 7 severe COVID-19 patients, 6 COVID-19
bacterially infected patients, and 9 healthy controls in GSE196822 (http://www.ncbi.nlm.
nih.gov/geo/, accessed on 24 August 2022). Transcriptomic data from the three datasets
were all extracted from their whole blood and developed on different platforms, which
were involved in GPL24676 (Illumina NovaSeq 6000), GPL16791 (Illumina HiSeq 2500),
and GPL20301(Illumina HiSeq 4000). All mRNA expression profiles were displayed with
count-based data, and we subsequently transformed them into transcripts per million.
The enrolled criteria were shown as the following: 1. COVID-19 patients were clinically
diagnosed as COVID-19 without other infectious diseases, and healthy controls were people
from normal populations without COVID-19 or other infectious diseases. 2. All samples
with complete mRNA and outcomes were considered. Finally, 62 COVID-19 patients and
24 healthy controls from GSE152641, 44 COVID-19 patients and ten healthy donors from
GSE171110, and 34 COVID-19 patients and nine healthy controls from GSE196822 were
enrolled into this work. The work flow is shown in Figure 1.

2.2. Calculation of Immune Cell

We used the “CIBERSORT” (https://cibersort.stanford.edu/, accessed on 5 June 2022)
deconvolution algorithm to quantify 22 immune cells. We ran the CIBERSORT algorithm
with 1000 permutations based on normalized gene expression profiles and LM22, including
a gene expression matrix of 22 immune cells [15]. Then, samples with p < 0.05 were
included in this work. We compared the proportion of immune cells between COVID-19
patients and healthy controls. The area under the curve (AUC) under precision–recall (PR)
curves calculated via the “modEvA” package is used to identify the predictive abilities of

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://cibersort.stanford.edu/
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22 immune cells. Finally, immune cells with differential distribution and high predictive
power were determined as the important immune cells.
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Figure 1. The workflow of this study: edgeR: empirical analysis of digital gene expression in
R, CIBERSORT: cell-type identification by estimating relative subsets of RNA transcripts, DEGs:
differentially expressed genes, WGCNA: weighted gene co-expression network analysis, LASSO:
least absolute shrinkage and selection operator.
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2.3. Differentially Expressed Analysis

We performed the differentially expressed analysis between the COVID-19 patients
and healthy controls with the “edgeR” package, which is usually used for count-based ex-
pression data [16]. Genes with |log2FC| > 1 and FDR < 0.05 were regarded as differentially
expressed genes.

2.4. WGCNA Analysis

The DEGs were used to construct a weight co-expression network via the “WGCNA”
package [17]. The β when scale-free topology fitting index R2 > 0.85 is in accordance with
the optimal β calculated by “powerEstimate”. Thus, we chose an optimal soft thresholding
power (β) according to scale-free topology fitting index R2 > 0.85. We acquired the adjacency
matrix based on the gene expression matrix and the optimal power. The adjacency matrix
was converted into the topological overlap measure (TOM) matrix. TOM is used to reflect
the similarity of co-expression genes. We performed the clustering analysis with average
linkage hierarchical clustering dependent on the dissimilarity of TOM. We obtained genes
with high similarity in their co-expression in the same module (minimum size = 30) using
the “dynamic tree cutting” algorithm. We used the “Merged dynamic” algorithm to ensure
these modules with a high correlation degree using a cutHeight = 0.2 as the cutoff value.
We used the fractions of the important immune-infiltrating cells of COVID-19 patients
as sample traits. The important modules were identified according to a high correlation
between these co-expression gene modules and sample traits. Additionally, the genes in the
important modules were the key genes and the intersected key genes between GSE152641
and GSE171110 were included as candidate genes in our work.

2.5. GO Enrichment Analysis

To determine the biological significance of these candidate genes in the develop-
ment of COVID-19, gene ontology (GO) enrichment analysis was employed based on
“org.Hs.eg.db”, “ggplot2”, and “clusterprofiler” packages [18]. The GO enrichment anal-
ysis comprised cellular components, biological properties, and molecular functions. The
biological functions with adjusted p < 0.05 were visualized.

2.6. Construction and Validation of a Novel Gene Signature

In GSE152641, the Boruta algorithm with 500 maxRuns was applied to further screen
important genes among candidate genes using the “Boruta” package. Genes were divided
into three categories including confirmed, tentative, and rejected importance. We put
genes with confirmed importance into the least absolute shrinkage and selection operator
(LASSO), elastic net regression, and ridge regression analyses. The minimum lambda
value was obtained from ten-fold cross-validation. We divided the GSE152641 dataset
into training and testing datasets with a 1:1 ratio. Next, we used a “glmnet” package
to perform LASSO, ridge, and elastic net regressions. The mean square error (MSE) re-
flects the predictive power of models. A lower MSE indicates a higher predictive value.
Genes with nonzero regression coefficients were employed in a multivariate logistic re-
gression analysis. We constructed a score based on genes with p < 0.05 in the model.
Score = Constant + Gene1 × Coef1 + Gene2 × Coef2 + Gene3 × Coef3 + · · · · · ·Genen ×
Coefn. Constant, Gene, and Coef represent the constant, gene expression, and regression
coefficient, respectively. The AUC under the receiver-operating characteristic curve (ROC)
is used to test the predictive power by a “pROC” package. GSE171110 was used to validate
the stability of this signature. Additionally, we used GSE196822 to validate two important
immune cells and the applicability of this signature.
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2.7. Statistical Analysis

All analyses in this work were based on R 4.0.3. The PRAUC is used to compare the
predictive power of immune cells. The Wilcoxon analysis is used to analyze the differences
between the two groups, including the comparison of 22 immune cells and candidate
signatures between COVID-19 patients and normal controls. The ROCAUC is used to assess
the predictive power of a gene signature. A two-sided p value < 0.05 was considered
statistically significant.

3. Results
3.1. Identification of Two Important Immune Cells

In GSE152641, we found that healthy controls had a higher immune infiltrating level
of naïve B cells, activated NK cells, resting memory CD4+ T cells, naïve CD4+ T cells,
and CD8+ T cells compared to those in COVID-19 patients, while higher proportions of
M0 macrophages, neutrophils, plasma cells, and γ-delta T cells were found in COVID-19
patients than those in healthy controls (Figure 2A). In GSE171110, the fraction of resting
dendritic cells, M2 macrophages, resting NK cells, resting memory CD4+ T cells, and CD8+

T cells were significantly higher in the healthy controls than those in the COVID-19 patients,
but lower proportions of M0 macrophages, neutrophils, and plasma cells were observed in
the healthy controls compared with COVID-19 patients(Figure 2B). In addition, the AUC of
these differentially distributed immune cells in the prediction of outcomes showed that
M0 macrophages (Figure 3A,K) and neutrophils (Figure 3B,L) had higher predictive values.
Therefore, the two immune cells were considered important immune cells in this work.
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Figure 2. The determination of differentially distributed immune cells. (A) The fraction of 22 immune
cells between COVID-19 patients and healthy controls in GSE152641. (B) The fraction of 22 immune
cells between COVID-19 patients and healthy controls in GSE171110. Data were analyzed by Wilcoxon
test; ns, no significance; * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001.
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Figure 3. The determination of important immune cells using the precision–recall method. (A–J) The
AUC of ten differentially distributed immune cells for outcomes in GSE152641. (K–R) The AUC of
eight differentially distributed immune cells for outcome in GSE171110.
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3.2. Determination of Key Modules

In this work, 1997 up-regulated and 183 down-regulated DEGs were visualized by
volcano plot in GSE152641 (Figure 4A), and 2150 up-regulated and 752 down-regulated
DEGs were visualized by volcano plot in GSE171110 (Figure 4B). Next, we determined the
key module associated with two important immune cells in two datasets. In GSE152641,
we chose β = 7 as the optimal β and acquired ten modules using the “merged dynamic”
algorithm (Figure 5A,C). We found that the brown module was highly correlated with the
M0 macrophages (cor = 0.62, p = 6 × 10−8) and neutrophil (cor = 0.80, p = 4 × 10−15) in
GSE152641 (Figure 5E). Similarly, we chose β = 14 as the optimal β and acquired 12 modules
using the “merged dynamic” algorithm in GSE171110 (Figure 5B,D). In addition, the
green module was highly correlated with M0 macrophages (cor = 0.69, p = 3 × 10−7) and
neutrophil (cor = 0.85, p = 2 × 10−13) in GSE171110 (Figure 5F). Therefore, the brown
module in GSE152641 and the green module in GSE171110 were selected as key modules.
We intersected the genes between brown and green modules and ultimately obtained
43 candidate genes (Figure 6A). The results of GO enrichment analysis showed that these
candidate genes participated in some immune-related activities, including neutrophil
degranulation, neutrophil activation involved in immune response, fatty acid binding,
RAGE receptor binding, and Toll-like receptor (TLR) binding (Figure 6B).
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Figure 4. The differentially expressed analysis between COVID-19 patients and healthy controls.
(A) The volcano plot of differentially expressed genes in GSE152641. (B) The volcano plot of differen-
tially expressed genes in GSE171110.

3.3. Construction and Validation of a 3-Gene Signature

In GSE152641, 43 candidate genes were divided into three categories including 19 confirmed
genes, 3 tentative genes, and 21 rejected genes. After a comparison of three algorithms
(LASSO, ridge, and elastic net regressions), the lowest MSE appeared in the LASSO regres-
sion model, while the highest MSE was found in the ridge regression model (Figure S1).
Therefore, we chose the LASSO as the selective method. Next, 19 genes with confirmed
importance were applied in the LASSO analysis, and we further selected seven genes with
nonzero regression coefficients according to lamda = 0.01831 (Figure 6C,D). The detailed
results of the Boruta and LASSO algorithms are displayed in Table 1. Finally, a novel gene
signature was constructed based on the stepwise multivariate logistic regression analysis.
Score = −23.3719 + 2.5963 × CLEC4D + 2.3694 × DUSP13 + 2.0826 × UNC5A. Samples
with higher scores tended to have a higher probability of COVID-19, and significantly
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higher expressions of CLEC4D, DUSP13, and UNC5A were found in COVID-19 patients
compared with those in healthy controls in GSE152641 (Figure 7A,C–E) and GSE171110
(Figure 8A,C–E). Most importantly, the AUC was 0.974(0.944–1) and 0.946(0.885–1) in
GSE152641 (Figure 7B) and GSE171110 (Figure 8B), respectively, indicating a high value of
our signature in predicting the outcome.
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Figure 5. The selection of key modules associated with important immune cells. (A) The scale inde-
pendence and mean connectivity in GSE152641. (B) The scale independence and mean connectivity
in GSE171110. (C) The cluster dendrogram in GSE152641. (D) The cluster dendrogram in GSE171110.
(E) The heatmap of correlation between modules and two important immune cells in GSE152641.
(F) The heatmap of correlation between modules and two important immune cells in GSE171110.
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Table 1. The detailed results of the Boruta and LASSO algorithms.

Gene Symbol Boruta-Decision LASSO-Coefficient

ADM Rejected
ALOX5AP Confirmed -
ANXA3 Rejected
ATP9A Rejected
BEND7 Confirmed 0.56877713
BMX Rejected
CA4 Confirmed -
CD177 Confirmed -
CKAP4 Rejected
CLEC4D Confirmed 1.372927226
CST7 Rejected
DDAH2 Rejected
DUSP13 Confirmed 0.985482029
DYSF Rejected
FCAR Confirmed -
FFAR3 Rejected
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Table 1. Cont.

Gene Symbol Boruta-Decision LASSO-Coefficient

FUT7 Rejected
GADD45A Tentative
GALNT14 Rejected
GPR84 Rejected
GYG1 Confirmed -
HK3 Confirmed -
HP Confirmed -
IFITM10 Confirmed 0.700047504
KREMEN1 Rejected
LRRN1 Confirmed -
LTB4R Confirmed 0.512153962
MCEMP1 Tentative
MMP9 Rejected
NR2E1 Rejected
OPLAH Rejected
OSM Confirmed -
PADI4 Tentative
PFKFB3 Rejected
RAB19 Rejected
ROPN1L Confirmed -
S100A12 Rejected
S100A8 Confirmed -
S100A9 Confirmed -
S100P Rejected
UNC5A Confirmed 0.539946778
UPP1 Confirmed 0.321891042
ZDHHC19 RejectedGenes 2022, 13, x FOR PEER REVIEW 11 of 16 
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Figure 7. Identification of a 3-gene signature in GSE152641. (A) Different outcomes and expres-
sions of CLEC4D, DUSP13, and UNC5A between high- and low-score groups. (B) The AUC for
prediction of outcome. (C–E)The expressions of CLEC4D, DUSP13, and UNC5A between COVID-19
and non-COVID-19 groups. Data in (C–E) were analyzed by Wilcoxon test; ns, no significance;
**** p < 0.0001.
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Figure 8. Validation of a 3-gene signature in GSE171110. (A) Different outcomes and expressions
of CLEC4D, DUSP13, and UNC5A between high- and low-score groups. (B) The AUC for predic-
tion of outcome. (C–E) The expressions of CLEC4D, DUSP13, and UNC5A between COVID-19
and non-COVID-19 groups. Data in (C–E) were analyzed by Wilcoxon test; ns, no significance;
**** p < 0.0001.

3.4. External Validation of Candidate Immune Cells and Genes in GSE196822

To test the applicable value of this signature, we used another external dataset,
GSE196822, to ensure the stability of these results. We found higher immune infiltra-
tions of M0 macrophages and neutrophils and significantly elevated levels of DUSP13 and
UNC5A in COVID-19 (Figure S2A,B,E,F). Although no difference in CLEC4D was found
between COVID-19 patients and healthy controls, the differentially expressed analysis
demonstrated that CLEC4D was an up-regulated gene (log2FC = 1.808, FDR = 0.0306) in
COVID-19 infections (Figure S2D). Overall, the AUC in GSE196822 was 0.709, showing a
predictive power of our signature (Figure S2C). Finally, these findings further confirmed
the results above.

4. Discussion

Many SARS-CoV-2-specific immune cells have been proven to have a crucial role in
cleaning or killing the COVID-19 virus and shaping the efficacy of COVID-19 vaccines.
Therefore, constructing a novel SARS-CoV-2-related gene signature associated with immune
cells is important for targeted therapy for COVID-19 patients in the future.

In this work, we acquired the proportion of 22 immune cells using the “CIBERSORT”
algorithm. Meanwhile, we performed a differential analysis on immune cells between
COVID-19 patients and healthy controls and found that two of these differentially dis-
tributed immune cells had a higher predictive value and thus were defined as the important
immune cells. An increased fraction of M0 macrophages and neutrophil were enriched
in the COVID-19 patients compared to healthy controls, which was consistent with a
previous study [19]. Inflammation augments and immune-related pathways (e.g., TLR
signaling pathways) in macrophages were activated through SARS-CoV-2 infection [20].
The overexpression of inflammatory factors in M0 macrophages increased the severity of
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COVID-19 [20]. Therefore, the M0 macrophages were related to the progression of COVID-
19 through activated inflammation induced by COVID-19. Neutrophils contributed to the
development of COVID-19, which was associated with the severity of COVID-19 [21]. Addi-
tionally, neutrophil was a symbol that differentiated the non-severe from severe COVID-19
patients [22]. Moderately suppressing the boast of neutrophils was the main therapeutic
strategy for reducing the probability of continual infection caused by COVID-19 [23,24].
These findings above further confirmed that M0 macrophages and neutrophils played an
important role in the development of COVID-19.

Forty-three candidate genes from key modules that were highly correlated with two
important immune cells were involved in immune-related activities. Additionally, most of
these biological functions were associated with the development of the COVID-19 virus.
For example, severe COVID-19 patients showed high expressions of genes involved in
neutrophil degranulation, and increased degranulation of neutrophils affected the immune
response of COVID-19 patients [25]. Bankar et al. also found that neutrophil degranulation
was one of the major manifestations that regulated the immune system after COVID-19
infection [26]. Inflammatory response contributed to lung injury for COVID-19 patients
and an unfavorable inflammatory status was a sign of more severe disease [27,28]. Inflam-
matory response to SARS-CoV-2 infection was critical to appropriate therapy for COVID-19
patients [29]. RAGE receptor binding induced inflammatory responses, which may be a po-
tential target for inflammatory disease during SARS-CoV-2 and a biomarker related to viral
infection, including COVID-19 [30,31]. The level of intestinal fatty acid binding proteins
was higher in COVID-19 patients than those in healthy donors [32]. The hyperstimulation
of TLR signaling can initiate immunopathology after infection with viruses, allowing the
monocytes from recovered patients to produce anti-viral responses [33]. However, the
inability of immune response caused by TLR tolerance was associated with COVID-19,
leading to a worse outcome [33]. Most importantly, neutrophils are a crucial immune cell
associated with COVID-19, and the functions of the 43 candidate genes involved were asso-
ciated with most neutrophil-related activities. Therefore, we thought that these neutrophil-
related genes may become potential targets for COVID-19. To sum up, 43 candidate genes
may be involved in the development of COVID-19 through immune-related functions.

Finally, we used ML approaches to accurately obtain the key genes in order to con-
struct a predictive gene signature. The Boruta algorithm is often used for dimensionality
reduction, and the LASSO algorithm is used for collinearity reduction. A novel gene sig-
nature consisting of three genes (CLEC4D, DUSP13, and UNC5A) was identified through
multivariate logistic regression analysis based on the gene expression profile in GSE152641.
The expressions of the three genes were all higher in COVID-19 patients than those ob-
served in healthy controls. In the previous study, the CLEC4 family played a critical role in
immune response and the development of hepatocellular carcinoma. However, CLEC4D,
as one of the CLEC4s, demonstrated a potential value in virus infection, including COVID-
19 [34]. DUSP13 was associated with the regulation of the MAPK signaling pathway after
stress stimulation in cardiomyocytes [35]. The up-regulation of DUSP13 to cardiac stress
contributed to coronary artery disease, a common cardiovascular comorbidity of COVID-
19 [36,37]. UNC5A retrained virus replication through autophagy induction instead of
apoptosis [38]. Recently, Plissonnier et al. found that UNC5A expression was obviously
decreased in clinical Hepatitis C virus (+) specimens compared to that of uninfected sam-
ples [39]. The present model achieved a high AUC in the training and test sets. It was
noteworthy that COVID-19 patients displayed higher scores than those of healthy controls.
Therefore, these findings can demonstrate that our gene signature is an excellent biomarker
for identifying COVID-19 patients.

There were several inspiring insights from previous studies, which motivated the cur-
rent research. Firstly, as we know, a comprehensive ML includes regression, classification,
clustering, and dimensionality reduction [40]. Additionally, molecular subtypes contribute
to the treatment of COVID-19 [41–43]. Therefore, we should consider the application of
ML in the classification of more COVID-19 patients based on some immune-related traits
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to improve the immune response to COVID-19 vaccines in the future. Secondly, the in-
tegration of deep learning and medical images has improved COVID-19 diagnosis and
prediction [44,45]. Next, we should fully combine the genomic data and medical images
when utilizing deep learning to identify COVID-19 patients. Finally, with the development
of ML in the design of potential drugs and vaccines [45], we should further focus on im-
proving effective vaccine discovery and identifying potential COVID-19 patients benefiting
from vaccines.

5. Conclusions

In conclusion, our work reveals the relationship between immune cells and COVID-19
further determined by two important immune cells. At the same time, we discovered
that 43 genes were correlated with these important immune cells. Most importantly,
various approaches were utilized to construct a novel gene signature, which had a high
predictive value in various datasets. Therefore, the key contributions of this work are
that we developed a novel signature that can accurately identify COVID-19 patients from
different platforms and solved the problem of little attention being paid to genes relevant
to the immune cells of COVID-19. These contributions can strengthen the potential role of
two important immune cells and three candidate genes in targeting COVID-19. However,
there were several limitations in this work. Firstly, all data and obtained results were based
on public databases; further experimental analysis is needed to confirm these findings.
Secondly, although a high-predictive power of this signature was found in this work, the
stability of this constructed model depended on the current sample size. Finally, the lack of
clinical information on COVID-19 leads to a difficult combination with our novel signature
in comprehensively identifying COVID-19 patients.

Lastly, future scopes should include three goals: Firstly, future researches should focus
on predicting severity in COVID-19 and classifying COVID-19 to decrease the medical
cost and to improve the efficacy of vaccines. Secondly, we should also integrate genomic
data, medical images, and deep learning to determine an appropriate treatment plan,
improving COVID-19 patients’ overall immune response to vaccines. Finally, although
we have discovered three candidate genes that help identify COVID-19 in this work, how
some mechanisms and functions of the three genes impact COVID-19 should be explored
in the future.
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in GSE196822.
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