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Abstract: Growth rate plays a critical role in the pig industry and is related to quantitative traits
controlled by many genes. Here, we aimed to identify causative mutations and candidate genes
responsible for pig growth traits. In this study, 2360 Duroc pigs were used to detect significant
additive, dominance, and epistatic effects associated with growth traits. As a result, a total number of
32 significant SNPs for additive or dominance effects were found to be associated with various factors,
including adjusted age at a specified weight (AGE), average daily gain (ADG), backfat thickness (BF),
and loin muscle depth (LMD). In addition, the detected additive significant SNPs explained 2.49%,
3.02%, 3.18%, and 1.96% of the deregressed estimated breeding value (DEBV) variance for AGE,
ADG, BF, and LMD, respectively, while significant dominance SNPs could explain 2.24%, 13.26%, and
4.08% of AGE, BF, and LMD, respectively. Meanwhile, a total of 805 significant epistatic effects SNPs
were associated with one of ADG, AGE, and LMD, from which 11 sub-networks were constructed.
In total, 46 potential genes involved in muscle development, fat deposition, and regulation of cell
growth were considered as candidates for growth traits, including CD55 and NRIP1 for AGE and
ADG, TRIP11 and MIS2 for BF, and VRTN and ZEB2 for LMD, respectively. Generally, in this study,
we detected both new and reported variants and potential candidate genes for growth traits of Duroc
pigs, which might to be taken into account in future molecular breeding programs to improve the
growth performance of pigs.

Keywords: growth traits; Duroc pigs; dominance; epistasis; GWAS; DEBVs

1. Introduction

Pork is a major meat resource for humans, constituting over 31% of all meat consumed
worldwide in 2020 (https://www.fao.org/3/cb1993en/cb1993en_meat.pdf, accessed on
20 July 2022). The huge demand for pork has greatly increased the global production of
pork. There is a positive correlation between pig growth rate and meat production, which
can be directly used to improve meat production in pig breeding [1]. In pig breeding
programs, traits such as adjusted age at a specified weight (AGE), average daily gain
(ADG), backfat thickness (BF), and loin muscle depth (LMD) are usually used to measure
growth rate and carcass performance, as they are direct indicators of productivity [2]. Thus,
understanding the genetic mechanisms of these traits might provide valuable information
for marker-assisted selection in pigs. Fortunately, all the growth traits mentioned above
have moderate to high heritabilities [3], which indicates that an effective breeding method
could directly improve these traits.

The economic traits of animals are often controlled by multiple loci with additive, dom-
inance, epistasis, and environmental interaction effects. Dominance refers to a relationship
between two alleles or variants of the same gene, whereas epistasis refers to a relationship
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between alleles of two different genes. Both of them are known as non-additive effects
which result in non-linear effects that control variation in phenotypes. Identification of
non-additive effects associated with economic traits is an effective approach to understand
the genetic architecture that underlies the complex variation of traits [4,5].

With the advance of whole-genome sequencing and high-throughput genotyping
technology, genome-wide association study (GWAS), as effective methods for detecting
causative mutations associated with economic traits, have been more and more widely
used in humans [6] and domestic animals [7,8]. Several GWASs have been performed to
search for QTL and candidate genes for growth traits in many species [9–11], especially
in pigs [2,12–14]. However, most studies have focused on additive genetic effects and
ignored non-additive effects. Interestingly, significant dominance effects accounted for 6%
of the total phenotypic variance in average daily gain, which were detached in a Duroc
population, emphasizing the importance of non-additive genetic effects [15]. Meanwhile, it
has been suggested that the effects of dominance and/or epistasis should not be ignored
in predicting phenotypes [5,16], as these would provide new insights into the genetic
architecture of complex economic traits.

Duroc boars, due to their maximized production performance, are commonly used as terminal
boars in modern three-way crossbreeding production systems (Duroc × Landrace × Yorkshire,
DLY), which fully utilize heterosis from both maternal and paternal sides. This is the most
efficient way to boost the genetic improvement of growth traits, and this study aimed to
detect additive and non-additive effects on growth traits to find causative variants and
potential candidate genes for growth-related traits.

2. Materials and Methods
2.1. Animals and Phenotype Data

The data used in this study were all from a nucleus breeding farm in the Jiangxi
province of China. After data cleaning, a total number of 2360 Duroc pigs born from
2014 to 2021, including 1559 males and 801 females, were used in our study. Pedigrees can
be traced back for three generations. Regarding phenotypes, there were 1854 records for
AGE and ADG, 1847 records for BF, and 1651 records for LMD, respectively.

ADG and AGE for each individual was calculated with information provided by
automated feeding stations. Daily weights were collected from 30 to 100 kg of body weight,
and they were used to calculate AGE and ADG. Phenotypes of BF and LMD were measured
individually alive at around 100 kg body weight using Aloka 500 V real-time B-mode
ultrasound, according to the Chinese national pig performance testing standard. The
ultrasound images were taken from the dorsum at a distance of 5 cm from the dorsal
midline in the middle of the last third and fourth ribs of each pig. All phenotypes in this
study were adjusted to 100 kg using the formulas shown below:

(1) AGE:

AGE100 = AGEtest + (100 − wt)×
(

AGEtest − A
wt

)
(1)

where AGEtest represents measured age, wt represents measured weight, and A is the
correction coefficient for sire and dam; Asire = 50.775 and Adam = 46.415.

(2) BF:

BF100 = BFtest + (100 − wt)
(

BFtest

wt − B

)
(2)

where BFtest represents measured BF, wt represents measured weight, and B is the correction
coefficient for sire and dam; Bsire = −7.277 and Bdam = −9.440.

(3) ADG

ADG100 =
100 kg
AGE100

(3)

(4) LMD

LMD100= LMDtest ×
C

C + [D × (wt − 100 kg)]
(4)
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where LMDtest represents measured LMD, wt represents measured weight, and C and D
are the correction coefficients for boars and dam respectively; Csire = 50.52, Cdam = 52.01,
and D = 0.228.

Descriptive information for the phenotypes is presented in Table 1.

Table 1. Summary statistics for ADG, AGE, BF, and LMD.

Trait Mean ± SD Max. Min. C.V. (%) Number of Records

ADG (g/day) 661.66 ± 57.52 824.94 512.03 9.10 1854
AGE (day) 152.33 ± 13.86 195.30 121.22 17.67 1854
BF (mm) 9.58 ± 1.69 15.54 5.70 8.69 1847

LMD (mm) 54.87 ± 6.52 74.01 27.35 11.89 1651
AGE: adjusted age at 100 kg, AGE: average daily gain, BF: backfat thickness, LMD: loin muscle depth, SD: standard
deviation, Max.: maximum, Min.: minimum, C.V.: coefficient of variation.

2.2. Genotype Data and Quality Control

A total number of 2360 Duroc pigs born from 2016 to 2022 were genotyped using
Illumina Porcine SNP50 BeadChip (Illumina, San Diego, USA). Data quality control was
conducted using the PLINK (version: 1.90, Christopher C Chang, San Jose, USA) soft-
ware [17]. The genotype data were filtered by the following procedures: (1) individuals with
call rate < 0.95, (2) SNP call rate < 0.95, (3) minor allele frequency < 0.01, (4) Hardy–Weinberg
equilibrium p-value < 10−6, and (5) SNPs located in sex chromosomes or unmapped to
the reference genome. After the quality control, there were 31,372 high-quality SNPs and
2360 pigs left. Then, missing genotypes were further imputed by Beagle v5.2 software [18].

2.3. Statistical Analyses

The estimated breeding values (EBV) for AGE, ADG, BF, and LMD traits were esti-
mated according to average information restricted maximum likelihood using the pedigree-
based best linear unbiased prediction (PBLUP) method and the DMUAI module of DMU
software [19], as described below:

yc = Xb + Za + e (5)

where yc was the vector of corrected phenotypic values; X and Z were the incidence matrices
of b and a, respectively; b was the vector of fixed effects, including farm, sex, year–season
of birth; and e was the vector of residuals with a normal distribution of e ∼ N

(
0, Iσ2

e
)
,

I being an identity matrix and σ2
e the residual variance. In the PBLUP model, a was the

vector of additive genetic effects with a normal distribution of a ∼ N
(
0, Aσ2

a
)
, σ2

a being
additive genetic variance and A being a pedigree-based additive genetic relationship matrix.
Subsequently, the deregressed EBVs (DEBVs) were obtained with the formula DEBV = gi/r2

i ,
gi being the EBV of the ith individual and r2

i being the square of estimated accuracies for the
ith individual [20], which were calculated using the blupADC [21] R package.

Then, a linear mixed model, including additive and non-additive SNP effects, was
generated by GMAT software [22], which can be written as:

ydEBV = 1nµ + ZMaaa + ZMdad + ZMaaaaa + ZMadaad + ZMddadd + e (6)

where ydEBV is the vector of DEBV; 1n is a vector of ones; µ is the overall mean; vectors
aa, ad, aaa, aad, and add are additive, dominance, additive-by-additive (A × A), additive-
by-dominance (A × D), and dominance-by-dominance (D × D) SNP effects, respectively;
vector e is a collection of residual effects; Z is a design matrix for all the random model
effects; and Ma, Md, Maa, Mad, and Mdd are additive, dominance, A × A, A × D, and
D × D SNP matrixes, respectively.

Then, Bonferroni correction was implemented to define the significant threshold. To
avoid missing the true hints of linkage, the genome-wide significant and suggestive levels
were set as p = 0.05/N = 1.59 × 10−6 and p = 1/N = 3.19 × 10−5, respectively, where N is the
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number of analyzed SNPs. The proportion of DEBV variance explained by significant SNPs
was calculated according to [23]. The p-values of the epistatic effects were Bonferroni-corrected
for multiple testing, which resulted in p < 1.03 × 10−9 as a significance threshold.

2.4. SNP–SNP Network and Linkage Disequilibrium (LD) Analysis

Interaction effects between every two SNPs across the whole genome for growth traits
were calculated using GMAT (version: 1.01, Chao Ning, Beijing China) software [22]. Then, the
SNP–SNP networks with significant epistatic effects for the studied traits were drawn using
the epiNet option within epiSNP (version: 4.2, Yang Da, St. Paul, MN, USA) software [24].

The solid spine method in Haploview software (version: 4.2, Mark Daly, Cambridge,
UK) [25] was used to predict the independent LD block.

2.5. Identification of Candidate Genes

Functional genes within 1 Mbp centered on each significant SNP were annotated as
candidate genes. Identified potential genes were searched using the Ensemble Sus scrofa
11.1 reference genome [26]. Pig QTLdb [27] was used to annotate significant SNPs located
in previously mapped QTLs in pigs. Additionally, the GeneCards [28] and NCBI [29]
databases were used to query gene functions and determine promising candidates.

3. Results
3.1. Additive Effects

A total number of 10 SNPs that surpassed the suggestive significance level were detected
as being associated with one of the studied traits (Table 2); a Manhattan plot of the −log10
(p-values) of SNP additive effects is shown in Figure 1. Notice that three SNPs are significantly
associated with more than one growth trait, indicating that they exert pleiotropic effects on
multiple growth traits. These significant SNPs explained 2.49%, 3.02%, 3.18%, and 1.96% DEBV
variance for ADG, AGE, BF, and LMD, respectively. When comparing previously reported
QTLs, eight of ten significant SNPs were located in the reported QTL regions (Table S1). The
remaining two additive SNPs, CNCB10001620 (Sus scrofa chromosome (SSC) 2: 20310474) and
CNCB10006791 (SSC9: 67900715), have not been reported previously in the literature and are
likely to be potential novel loci for growth traits in pigs.

Table 2. Summary information of significant additive SNPs for ADG, AGE, BF, and LMD.

Trait SNP Chr Location (bp) Allele MAF p-Value % DEBV Nearest Gene Distance (bp)

ADG CNCB10006667 9 41,538,619 C/T 0.086 8.95 × 10−6 0.83 HTR3B Within
CNCB10006791 9 67,900,715 C/T 0.086 9.09 × 10−6 0.83 CD55 +32,354
CNCB10006792 9 67,967,237 A/G 0.086 9.09 × 10−6 0.83 CD55 −6855

AGE CNCB10001620 2 20,310,474 A/G 0.216 1.59 × 10−5 0.78 / /
CNCB10006667 9 41,538,619 C/T 0.086 2.07 × 10−5 0.76 HTR3B Within
CNCB10006791 9 67,900,715 C/T 0.086 2.68 × 10−5 0.74 CD55 +32,354
CNCB10006792 9 67,967,237 A/G 0.086 2.68 × 10−5 0.74 CD55 −6855

BF CNCB10010792 15 89,052,971 G/A 0.051 7.89 × 10−6 0.84 / /
CNCB10005591 7 113,533,476 T/G 0.074 9.44 × 10−6 0.82 TRIP11 Within

rs81433919 12 33,673,968 G/A 0.116 1.74 × 10−5 0.77 MSI2 Within
CNCB10008592 13 45,621,675 G/A 0.072 2.45 × 10−5 0.75 PRICKLE2 Within

LMD rs709317845 7 97,614,602 T/G 0.469 1.33 × 10−6 0.98 VRTN +105
CNC11071978 7 97,615,897 A/G 0.469 1.33 × 10−6 0.98 VRTN Within

AGE: adjusted age at 100 kg, AGE: average daily gain, BF: backfat thickness, LMD: loin muscle depth,
Chr: chromosome, Location: SNP position in Ensembl, % DEBV: percentage of DEBV variance explained by the
SNP, Distance: distance between the nearest gene and the corresponding significant SNP.
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Figure 1. Manhattan plots and Q-Q plots of SNP additive effects for average daily gain (ADG),
adjusted age at 100 kg (AGE), backfat thickness at 100 kg (BF), and loin muscle depth at 100 kg (LMD)
traits of Duroc pigs. The X-axis shows the physical positions of the SNPs on each chromosome;
the Y-axis shows the significance levels (−log10 p-values). The solid line indicates genome-wide
significance (p < 1.59 × 10−6); the dashed line shows suggestive significance (p < 3.19 × 10−5). The
Q-Q plots show the observed vs. expected log p-values.
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3.2. Dominance Effects

In summary, we also detected 22 SNPs associated with one of the tested studied
traits (Table 3), and the p-values of the GWAS results were visualized using Manhattan
plots and Q-Q plots (Figure 2). These significant SNPs explained 2.24%, 13.26%, and
4.08% DEBV variance for AGE, BF, and LMD, respectively. When comparing reported QTLs,
16 significant SNPs were located in the identified QTL regions (Table S2). The remaining six
dominance SNPs have not been reported in pigs and are likely to be potential novel loci for
growth traits. Additionally, we detected a haplotype block that spanned 492 kb (Figure S1)
in BF containing 11 significant SNPs. 

2 

 
 

Figure 2 

  

Figure 2. Manhattan plots and Q-Q plots of SNP dominance effects for average daily gain (ADG),
adjusted age at 100 kg (AGE), backfat thickness at 100 kg (BF), and loin muscle depth at 100 kg (LMD)
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traits. The X-axis shows the physical position of SNPs on each chromosome; the Y-axis shows the
significance levels (−log10 p-values). The solid line indicates genome-wide significance (p < 1.59
× 10−6); the dashed line shows suggestive significance (p < 3.19 × 10−5). The Q-Q plots show the
observed vs. expected log p-values.

Table 3. Summary information of significant dominance SNPs for AGE, BF, and LMD.

Trait SNP Chr Location (bp) Allele MAF p-Value % DEBV Nearest
Gene

Distance
(bp)

AGE CNC10133718 13 179,900,741 C/T 0.285 1.60 × 10−5 0.78 NRIP1 Within
rs81441574 13 180,051,342 T/C 0.364 2.90 × 10−5 0.73 NRIP1 −135,116
rs80867343 13 180,004,272 G/A 0.362 2.98 × 10−5 0.73 NRIP1 −88,046

BF rs81373550 3 93,497,234 A/G 0.061 1.85 × 10−6 0.95 TTC7A Within
CNCB10002800 3 97,223,093 T/C 0.149 2.03 × 10−6 0.95 ZFP36L2 +19,999

rs81373610 3 93,655,118 A/C 0.060 2.80 × 10−6 0.92 MCFD2 +22,100
rs80966590 3 93,722,940 C/T 0.060 2.80 × 10−6 0.92 SOCS5 −54,462
rs81475091 3 93,732,314 G/A 0.060 2.80 × 10−6 0.92 SOCS5 −45,088
rs81299554 3 93,771,724 A/G 0.060 2.80 × 10−6 0.92 SOCS5 −5678
rs81373642 3 93,828,846 C/T 0.060 2.80 × 10−6 0.92 SOCS5 Within
rs81373648 3 93,902,023 G/T 0.060 2.80 × 10−6 0.92 SOCS5 Within
rs81373727 3 94,084,767 A/G 0.060 3.36 × 10−6 0.91 TMEM247 +17,743
rs81373716 3 94,110,331 G/A 0.060 3.36 × 10−6 0.91 TMEM247 +43,307
rs81373744 3 94,163,788 G/A 0.060 3.36 × 10−6 0.91 EPAS1 −3971
rs81213041 3 93,394,317 G/A 0.059 4.80 × 10−6 0.88 STPG4 Within
rs81373880 3 94,599,697 C/T 0.075 2.09 × 10−5 0.76 PRKCE Within

CNC10070016 7 834,427 A/C 0.430 2.57 × 10−5 0.74 GMDS Within
CNC10120338 12 16,082,351 T/C 0.488 3.13 × 10−5 0.73 MRC2 Within

LMD rs80785395 14 133,966,414 A/G 0.087 6.14 × 10−7 1.04 LHPP Within
CNCB10007305 10 4,667,593 A/G 0.094 1.19 × 10−5 0.80 / /

rs81304718 15 7,424,079 C/T 0.091 2.21 × 10−5 0.76 ZEB2 −74,800
CNCB10010367 15 8,203,810 A/G 0.060 2.34 × 10−5 0.75 ARHGAP15 Within

AGE: adjusted age at 100 kg, AGE: average daily gain, BF: backfat thickness, LMD: loin muscle depth,
Chr: chromosome, Location: SNP position in Ensembl, % DEBV: percentage of DEBV variance explained by the
SNP, Distance: distance between the nearest gene and the corresponding significant SNP.

3.3. Epistatic Analysis

After cleaning, 287, 355, and 163 pairs of SNPs were significantly associated with ADG,
AGE, and LMD, respectively (Table 4), while for BF, no significant SNP pairs were detached.
Of these significant SNP–SNP interactions, 43.21–49.08% exhibited an A × A interaction,
32.52–38.03% exhibited an A × D interaction, and 17.18–23.00% exhibited a D × D interaction.

Table 4. Summary information of significant epistatic effects for growth traits.

Traits N A × A A × D D × D

ADG 287 124 97 66
AGE 355 159 135 61
LMD 163 80 53 30

AGE: adjusted age at 100 kg, AGE: average daily gain, LMD: loin muscle depth, N: number of significant SNP
pairs, A × A: number of additive-by-additive interactions, A × D: number of additive-by-dominance interactions,
D × D: number of dominance-by-dominance interactions.

To investigate the complicated mechanism of epistasis on growth traits, SNP–SNP
networks were constructed for each trait by EPISNP3 [24]. The epistatic interaction sub-
networks that contained more than three nodes are shown in Supplementary Figures S2–S9.
There were three, five, and three networks detected for ADG, AGE, and LMD, respectively.

For ADG, sub-network 1 was the largest one and contained 28 pairs of SNP–SNP interac-
tions between SSC14 and SSC15, which indicated interactions between the two chromosomes
(Figure 3). These interactions detected between SSC14 and SSC15 involved five SNPs on
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SSC14 and eight SNPs on SSC15, which spanned 192 kb (from 14.93 Mbp to 15.12 Mbp)
and 422 kb (from 65.71 Mbp to 66.13 Mbp), respectively. According to gene annotation,
we found that there were five genes in the 192 kb region on SSC14 and two genes in the
422 kb region on SSC15. Several SNPs in the same LD block on one chromosome appeared
in sub-networks 2, 3, 4, and 5, which interacted with a single SNP on another chromosome.
More details can be found in Figures S2–S5.

Figure 3. Epistatic sub-network 1 among SNPs affecting ADG and the related LD information. The
color of a node represents the p-value of an interaction (p < 1 × 10−12 = red; p < 1 × 10−11 = blue;
p < 1 × 10−10 = green). The color of connecting lines between circles indicates the type of epistatic
effect (A × A = red; A × D = purple; D × D = green). The genes located in the LD block are listed.

Interestingly, for AGE, sub-network 1 contained 28 pairs of SNP–SNP interaction
effects between SSC14 and SSC15, which was the same as ADG sub-network 1, except
for one more SNP on SSC14 (Figure 4). These interactions detected between SSC14 and
SSC15 involved five SNPs and eight SNPs respectively, which spanned 192 kb (from
14.93 Mbp to 15.12 Mbp) and 422 kb (from 65.71 Mbp to 66.13 Mbp). There were five genes
in the 192 kb region on SSC14 and two genes in the region on SSC15. Several SNPs in the
same LD block on one chromosome can be found in sub-networks 2 and 3, which interacted
with a single SNP on another chromosome. More details can be found in Figures S6 and S7.

Figure 4. Epistatic sub-network 1 among SNPs affecting AGE and the related LD information. The
color of a node represents the p-value of an interaction (p < 1 × 10−12 = red; p < 1 × 10−11 = blue;
p < 1 × 10−10 = green). The color of the connecting lines between circles indicates the type of epistatic
effect (A × A = red; A × D = purple; D × D = green). The genes located in the LD regions are listed.
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For LMD, we detected 10 significant SNP–SNP interaction effects. These interactions
were A × A interactions or A × D interactions, which implicated an interaction between
SSC2 and SSC12 (Figure 5). The interactions occurred between five SNPs in a single LD
block on SSC12. Multiple SNPs in the same LD block on one chromosome were located in
sub-networks 2 and 3, which interacted with a single SNP on another chromosome. More
details are shown in Figures S8 and S9.

Figure 5. Epistatic sub-network 1 among SNPs affecting LMD and the related LD information. The
color of a node represents the p-value of an interaction (p < 1 × 10−12 = red; p < 1 × 10−11 = blue;
p < 1 × 10−10 = green). The color of connecting lines between circles indicates the type of epistatic
effect (A × A = red; A × D = purple; D × D = green). The genes located in the LD regions are listed.

4. Discussion

To eliminate the contribution of information from relatives, which may be significantly
associated with the trait analyzed rather than the phenotype, the deregressed EBV (DEBV)
was calculated for each individual [30]. DEBV, especially, could take full advantage of
the information available on genotyped animals and their relatives, which may properly
correct the bias introduced by simply pooling or averaging data information and explain-
ing heterogeneous variance [20]. Therefore, in this study, DEBVs obtained from genetic
evaluations were used as response variables to improve the detecting power of GWAS.
In recent years, much GWAS research has used DEBVs as pseudo-phenotypes, particularly
in work on livestock animals [31,32].

Many significant additive and dominance associations were discovered or involved
genomic regions previously reported in the literature. Surprisingly, our study identified
a number of novel loci associated with dominance effects on growth traits. SNP–SNP
networks of epistatic interactions directly revealed the relationships between SNP effects,
which could aid in understanding genetic bias with respect to growth traits.

In this study, the SNP–SNP interactions which occurred on the same chromosome
were discovered as interactions between two SNPs on the same chromosome. However,
remarkably, these may have been haplotype effects and not interactions [33]. Meanwhile,
only interactions involving 10 animals in each genotype combination were considered in
order to increase the power of detaching interactions [34]. Then, the results were filtered
according to these criteria and large numbers of interactions were identified.

Due to the negative genetic correlation between ADG and AGE, the analysis of these
two traits used different modeling approaches to detect candidate genes for growth traits.
As a result, some commonly detected signals and some differences were also found as
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well. There were three significant additive SNPs detected for both ADG and AGE, while,
partially overlapped with these, there were SNPs identified as being significantly associated
with ADG in Yorkshire and Pietrain pigs [2,35]. The CD55 molecule (CD55) gene, which
plays an important role in adipocyte development and could affect the growth rates of
animals by regulating adipocyte production, was identified in nearby candidate SNPs
(CNCB10006791 and CNCB10006792) [36,37]. The nuclear receptor interacting protein 1
(NRIP1) gene encodes a nuclear protein also known as receptor-interacting protein 140
(RIP140), which was identified as a candidate gene for AGE with dominant effect. RIP140
is widely expressed and is involved in regulating lipid and glucose metabolism and fat cell
regulation [38–41]. The KH RNA binding domain-containing, signal transduction-associated 2
(KHDRBS2) gene encodes an RNA-binding protein, which is involved in mediating uterine
endometrial stroma progenitor development [42]. Studies have shown that KHDRBS2 is
associated with number of teats in Yorkshire pigs [43] and with reproductive traits in Polish
commercial pig breeds [44]. Meanwhile, the farnesyl-diphosphate farnesyltransferase 1 (FDFT1)
gene was reported as being associated with growth rate through the muscle transcriptome
in Iberian pigs [45].

For BF, the thyroid hormone receptor interactor 11 (TRIP11) gene encodes a protein
product that interacts with thyroid hormone receptor β, which functions in regulating lipid
metabolism [46] and was also found to be associated with intramuscular fat content in a
Meishan × Duroc crossbred population [47]. The musashi homolog 2 (MIS2) gene encodes
an RNA-binding protein and plays a central role in controlling feed intake and feeding
behavior in mammals [48,49]. A haplotype block that spanned 492 kb among significant
dominance SNPs was harbored in a reported BF QTL in Duroc, Yorkshire, and Pietrain
pigs [50]. Our study increased the power of QTL detection and narrowed the QTL locations
using high-density chip arrays and large sample size.

As for LMD, the vertnin (VRTN) gene is known to affect the variation in vertebral
number, and, furthermore, an allele of VRTN affects the length of the longissimus muscle, as
reported in [51,52]. Interestingly, two significant additive SNPs within or nearby VRTN was
found in the current study to be associated with LMD. In addition, the Zinc Finger E-Box
Binding Homeobox 2 (ZEB2) gene was proved to play a role in skeletal muscle differentiation
in pluripotent stem cells [53]. Although it has not been reported in pigs, it would be
worth seeking to verify it in the future. Additionally, considering the complexity of
implementing a breeding program, the results obtained here may not be sufficient for
effective incorporation into programs, though they could be combined with other omics
data, such as proteomics and metabolomics data.

5. Conclusions

In conclusion, 32 significant SNPs—10 for additive and 22 for dominance effects—and
many epistatic interactions were identified for one of four growth traits in a purebred Duroc
population through a GWAS fitting additive and non-additive genetic effects. Furthermore,
46 candidate genes with potential functions in muscle development, fat deposition, and
regulation of cell growth were considered as candidates for growth traits, including CD55
and NRIP1 for AGE and ADG, TRIP11 and MIS2 for BF, and VRTN and ZEB2 for LMD,
respectively. This study presents novel putative causative variants and genes for future
pig breeding programs, which may be used in developing trait-specific marker-assisted
selection models.
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