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Abstract: CD71+ erythroid cells (CECs) were only known as erythrocyte progenitors not so long ago.
In present times, however, they have been shown to be active players in immune regulation, especially
in immunosuppression by the means of ROS, arginase-1 and arginase-2 production. Here, we uncover
organ-of-origin differences in cytokine gene expression using NanoString and protein production
using Bio-Plex between CECs from healthy human adult bone marrow and from human fetal liver
parenchyma. Namely, healthy human adult bone marrow CECs both expressed and produced IFN-a,
IL-1b, IL-8, IL-18 and MIF mRNA and protein, while human fetal liver parenchyma CECs expressed
and produced IFN-a, IL15, IL18 and TNF-b mRNA and protein. We also detected TLR2 and TLR9
gene expression in both varieties of CECs and TLR1 and NOD2 gene expression in human fetal
liver parenchyma CECs only. These observations suggest that there might be undiscovered roles in
immune response for CECs.

Keywords: CD71+ erythroid cells; bone marrow; fetal liver parenchyma; MIF; IL8; TLR1; TLR2;
TLR9; NOD2

1. Introduction

CD71+ erythroid cells (CECs) are erythrocyte precursors that are known to be involved
in immune regulation, especially immunosuppression. They establish immunosuppression
through the means of ROS [1], arginase-1 [2], arginase-2 [3–5] and TGF-β [6] production
and the presence of PDL-1 on their cellular surface [5]. CECs received their name due
to the fact that they bear receptors for holotransferrin (CD71). CD71’s expression starts
at the BFU-E stage and ends at the orthochromatic erythroblast stage of the erythroid
cells’ differentiation [7]. CD71 may also be present on other cell types, such as activated
T-cells [8]. CECs from both humans and mice have been shown to be cells with cytokine
gene expression and cytokine protein production properties [6,9–13]. CECs are present
at different stages of ontogenesis. CECs are found in the yolk sac [14], the fetal liver
parenchyma, the fetal thymus and the bone marrow [15], as well as in the umbilical cord
blood [16] during intrauterine development. In adults, CECs are typically found in the
bone marrow [17], but cases of extra-medullary hemopoiesis in the liver, the spleen and
the lymph nodes in case of pathology are also possible [18]. CECs were also shown to be
quite abundant and associated with bad prognosis in the course of important diseases such
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as COVID-19 [19] and during sepsis [20]. In this work, we validate previous findings of
cytokine gene expression and production and assess differences between CECs from the
human fetal liver parenchyma and human adult bone marrow.

2. Materials and Methods
2.1. Study Population

Healthy bone marrow donors were 23–26 years old and were evenly distributed by
sex (total: n = 6; males: n = 3; females: n = 3). Fetal liver parenchyma tissue samples were
extracted after an abortion at 20–22 weeks of pregnancy; their sex was unknown (n = 6).

2.2. Study Interventions

We performed punctures and bone marrow aspirations at either the sternum (n = 1) or
the ilium (n = 5).

2.3. Participant Safety

Three days before the bone marrow harvesting procedure, the donors underwent
medical testing involving complete blood count, ECG and qPCR for COVID-19. We
monitored the donors for 60 min after the bone marrow harvesting procedure.

2.4. Cell Isolation

We collected the bone marrow aspirates (up to 5 mL in volume) into tubes containing
EDTA. We thawed fetal liver homogenized parenchyma cell samples stored in 10% DMSO
and 90% FBS (up to 1.5 mL in volume) in a water bath at 37 ◦C, then washed them with
6 mL of a mixture containing 5 mL full RPMI 1640 cell culture medium and 1 mL FBS. We
isolated bone marrow and fetal liver parenchyma mononuclear cells using density gradient
centrifugation (Ficoll-PaqueTM (Thermo Fisher Scientific, Waltham, MA, USA) with a
density of 1.077 g/mL) at 266 RCF for 30 min in order to remove RBCs and reticulocytes.

2.5. Magnetic Separation

We performed magnetic separation of both the bone marrow and fetal liver parenchyma
mononuclear cells using a magnetic stand, a magnet (Miltenyi Biotec, 130-042-102, Ber-
gisch Gladbach, Cologne, Germany) and CD71 MicroBeads (Miltenyi Biotec, 130-046-201,
Bergisch Gladbach, Cologne, Germany) according to the manufacturer’s protocols.

2.6. Viability Staining

We measured the magnetically sorted cells’ viability on a Countess 3 Automated Cell
Counter (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s
protocols using trypan blue. Trypan blue staining showed >95% viability for both adult
bone marrow and fetal liver parenchyma CECs.

2.7. Flow Cytometry

We washed the magnetically sorted cells in PBS. The following antibodies were used
for staining according to the manufacturer’s protocols: anti-CD71-PE (BioLegend, 334106,
San Diego, CA, USA) and anti-CD235a-FITC (BioLegend, 349104, San Diego, CA, USA).
Flow cytometry showed >94% purity of the cells. The gating strategy was to isolate cells
from debris, isolate singlets from the cells and measure CD71 in the singlets for both adult
bone marrow and fetal liver parenchyma CECs (Scheme 1a,b).

2.8. Cell Culturing

We cultured the magnetically sorted cells in X-VIVO 10 serum-free medium (Lonza,
Basel, Switzerland) with the addition of x1 Insulin-Transferrin for 24 h at a concentration of
1 million per mL of the medium in order to support their viability and measure the culture
medium’s cytokines afterwards.
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Scheme 1. CECs’ purity assessment by flow cytometry: (a) CECs from adult bone marrow (b) CECs
from fetal liver parenchyma.

2.9. Total RNA Extraction

We isolated total RNA from CECs after their magnetic separation and before culturing
using a Total RNA Purification Plus Kit (Norgen Biotek, 48400, Thorold, ON, Canada), mea-
sured concentration of the RNA on a NanoDrop 2000c (Thermo Fisher Scientific, Waltham,
MA, USA) and diluted the RNA to a concentration of 10 ng/µL using nuclease-free water.
We froze the diluted total RNA at −80 ◦C until the immune transcriptome profiling.

2.10. Cell Culture Medium Harvesting

We separated the cell culture medium from the cells after the 24 h of culturing. We
performed the separation by centrifugation at 1500 rpm for 10 min, transferred the cell
culture medium into new 1.5 mL tubes with the addition of BSA up to a total concentration
of 0.5% and froze the cell culture medium at −80 ◦C until the cytokine quantification.

2.11. Immune Transcriptome Profiling

We used 100 ng of the total RNA for each sample (n = 4, for both adult bone marrow
and fetal liver parenchyma CECs) to profile 579 immunity-related genes in CECs. We
hybridized the RNA to a NanoString Immunology v2 panel (NanoString, XT-CSO-HIM2-
12, Seattle, WA, USA) according to the manufacturer’s protocols and analyzed the RNA on
the NanoString Sprint instrument (NanoString, Seattle, WA, USA).

2.12. Cytokine Quantification in Culture Medium

We used 50 µL of adult bone marrow CECs’ (n = 6) and fetal liver parenchyma CECs’
(n = 6) culture media to quantify culture medium cytokines in doubles using a Bio-Plex Pro
Human Cytokine Screening Panel, 48-Plex (BioRad, #12007283, Hercules, CA, USA) and a
Bio-Plex 200 instrument (BioRad, Hercules, CA, USA).
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2.13. Data Analysis

We analyzed the profiled CECs’ immune transcriptome data using the nSolver 4 soft-
ware. At first, we performed background thresholding using the mean of the negative
controls plus 2 standard deviations on the raw data counts in order to filter out >95% of
the noise, and we normalized the data using spiked-in synthetic positive controls and
the ALAS1, PPIA, POLR1B and SDHA housekeeping genes. We then cleaned out the
noise values. We identified the noise values as the lowest count detected for each sample.
We compared cytokine quantities in CECs’ culture media using multiple Mann–Whitney
U-tests with Q = 0.01 in the GraphPad Prism 9 software.

3. Results
3.1. Cytokine Gene Expression Profiles of the CECs

We analyzed the CECs’ transcriptome profiles and found mRNAs of several cytokines.
Detected cytokine mRNAs’ data are presented in Table 1.

Table 1. Cytokine mRNAs in CECs. Data are presented as either presence (+) or absence (−), number
of samples containing the mRNA and sex for adult bone marrow donors (F for female donors, M for
male donors). ABM–adult bone marrow CECs, FL–fetal liver parenchyma CECs.

ABM FL
Cytokine Presence № of Samples Positive Sex Presence № of Samples Positive

IFNA1 + 4/4 F, M + 4/4

IL1B + 4/4 F, M + 3/4

IL8 + 4/4 F, M + 3/4

IL15 + 2/4 F, M + 4/4

IL18 + 2/4 F, M + 3/4

IL32 + 4/4 F, M + 4/4

MIF + 4/4 F, M + 0/4

LTA − 0/4 − + 3/4

TNF − 0/4 − + 1/4

TGFB1 + 2/4 F − 0/4

3.2. Cytokine Protein Profiles in CECs’ Culture Medium

We found that both varieties of CECs had cytokine proteins in their culture medium.
Both adult bone marrow and fetal liver parenchyma CECs’ culture media contained IFN-a and
MIF. Only adult bone marrow CECs’ culture medium contained IL-1B and IL-8. Only fetal
liver parenchyma CECs’ culture medium contained IL-15, IL-18, TNF-a and TNF-b. Cytokine
concentration data and the presence of the corresponding mRNAs are presented in Table 2.

Table 2. Concentration of cytokines in CECs’ culture medium (n = 6). Data are presented as
mean ± SD, number of samples containing the cytokine, either presence (+), absence (−) of the
corresponding mRNAs in CECs. Data of main interest are shown in bold.

Adult Bone Marrow CECs Fetal Liver Parenchyma CECs

Cytokine Mean SD № of Samples
Positive mRNA Presence Mean SD № of Samples

Positive mRNA Presence

pg/mL pg/mL n +/− pg/mL pg/mL n +/−

IFN-a 20.665 3.971 6/6 + 11.157 6.311 5/6 +

IL-1b 1.102 0.631 5/6 + 0.25 0.102 1/6 +

IL-8 293.99 224.772 6/6 + 0 0 0/6 +

IL-15 0 0 0/6 + 25.566 41.769 6/6 +

IL-18 0.4 0.98 1/6 + 0.372 0.368 4/6 +
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Table 2. Cont.

Adult Bone Marrow CECs Fetal Liver Parenchyma CECs

Cytokine Mean SD № of Samples
Positive mRNA Presence Mean SD № of Samples

Positive mRNA Presence

pg/mL pg/mL n +/− pg/mL pg/mL n +/−

MIF 639.667 83.991 6/6 + 14.1 5.814 6/6 +

TNF-a 0 0 0/6 − 3.5 0.588 6/6 +

TNF-b 0 0 0/6 − 4.683 3.463 6/6 +

We observed that IL-8 and MIF were reliably more abundant in adult bone marrow
CECs’ culture medium (Figure 1). Cytokines were considered reliably more abundant if
the mean difference was >50 pg/mL and the q-value was <0.001.
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Figure 1. Volcano-plot of CECs’ cytokine production. Purple rectangle contains cytokines that were
reliably more produced by adult bone marrow CECs.

3.3. CECs Have TLR Gene Expression

We found that there was pattern-recognition receptor gene expression in both adult
bone marrow and fetal liver parenchyma CECs (Table 3).

Table 3. Pattern-recognition receptor mRNAs in CECs. Data are presented as either presence (+) or
absence (−), number of samples containing the mRNA and sex for adult bone marrow donors (F
for female donors, M for male donors). ABM–adult bone marrow CECs, FL–fetal liver parenchyma
CECs.

ABM FL
Pattern-Recognition

Receptor Presence № of Samples
Positive Sex Presence № of Samples

Positive
TLR1 − 0/4 F, M + 4/4

TLR2 + 4/4 F, M + 4/4

TLR9 + 4/4 F, M + 4/4

NOD2 − 0/4 F, M + 3/4
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4. Discussion

In the present study, we investigated the transcriptome and secretome profiles of
human adult bone marrow CECs from donors from 23 to 26 years of age and human fetal
liver parenchyma CECs.

We found transcripts of a plethora of cytokines. We also found corresponding cytokine
proteins in CECs’ cell culture media. With that data in mind, we can say that: (1) both
varieties of CECs produce IFN-a and MIF; (2) adult bone marrow CECs can additionally
produce IL-1b and IL-8; (3) fetal liver parenchyma CECs can additionally produce IL-15,
IL-18, TNF-a and TNF-b.

IL-8 and MIF were also reliably more abundant in adult bone marrow CECs’ culture
medium. It is known that IL-8 [21–23] and MIF [24–26] direct cells to the bone marrow and
promote cell growth and angiogenesis. We propose that adult bone marrow CECs can be
involved in these biological processes through the means of secreting such cytokines.

Cytokines, found in fetal liver parenchyma CECs’ culture medium, could be described
as pro-inflammatory and often involved in auto-immune processes [27,28]. However, it
might be that their effects in vivo are masked by CECs’ overall induced immunosuppression.

We also detected gene expression of pattern-recognition receptors in both varieties of
CECs. This can mean that CECs from both sources can recognize PAMPs through TLR9 [29],
and human fetal liver parenchyma CECs can recognize PAMPs through TLR1/TLR2 [30]
and NOD2 [31]. Pattern-recognition receptors were previously found in CECs of mice
(TLRs 1, TLR2 and TLR4) [6], fish (TLR3, TLR9 and TLR21) [32,33] and birds (TLR2, TLR
3, TLR 4, TLR 5 and TLR21) [33,34], so it is quite important to test CECs for responses to
various TLR ligands.

5. Conclusions

Overall, we observed that adult bone marrow and fetal liver parenchyma CECs are two
heterogeneous cellular populations with different immune transcriptomes and somewhat
different cytokine production profiles, possibly with different functions.
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