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Abstract: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a newly emerging 

virus well known as the major cause of the worldwide pandemic due to Coronavirus Disease 2019 

(COVID-19). Major breakthroughs in the Next Generation Sequencing (NGS) field were elucidated 

following the first release of a full-length SARS-CoV-2 genome on the 10 January 2020, with the 

hope of turning the table against the worsening pandemic situation. Previous studies in respiratory 

virus characterization require mapping of raw sequences to the human genome in the downstream 

bioinformatics pipeline as part of metagenomic principles. Illumina, as the major player in the NGS 

arena, took action by releasing guidelines for improved enrichment kits called the Respiratory Virus 

Oligo Panel (RVOP) based on a hybridization capture method capable of capturing targeted respir-

atory viruses, including SARS-CoV-2; therefore, allowing a direct map of raw sequences data to 

SARS-CoV-2 genome in downstream bioinformatics pipeline. Consequently, two bioinformatics 

pipelines emerged with no previous studies benchmarking the pipelines. This study focuses on 

gaining insight and understanding of target enrichment workflow by Illumina through the utiliza-

tion of different bioinformatics pipelines named as ‘Fast Pipeline’ and ‘Normal Pipeline’ to SARS-

CoV-2 strains isolated from Yogyakarta and Central Java, Indonesia. Overall, both pipelines work 

well in the characterization of SARS-CoV-2 samples, including in the identification of major studied 

nucleotide substitutions and amino acid mutations. A higher number of reads mapped to the SARS-

CoV-2 genome in Fast Pipeline and merely were discovered as a contributing factor in a higher 

number of coverage depth and identified variations (SNPs, insertion, and deletion). Fast Pipeline 

ultimately works well in a situation where time is a critical factor. On the other hand, Normal Pipe-

line would require a longer time as it mapped reads to the human genome. Certain limitations were 

identified in terms of pipeline algorithm, whereas it is highly recommended in future studies to 

design a pipeline in an integrated framework, for instance, by using NextFlow, a workflow frame-

work to combine all scripts into one fully integrated pipeline. 
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1. Introduction 

China’s authority reported patients associated with pneumonia derived from un-

known etiology in Wuhan back in December 2019. It was identified as a new type of coro-

navirus and successfully isolated and fully sequenced on 10 January 2020, named Severe 

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). It enters the body through 

receptors called Angiotensin-Converting Enzyme-2 (ACE-2), widely expressed in human 

organs, including lower respiratory tract organs such as lungs [1]. Following entry, the 

human body will trigger protective responses and eventually cause acute respiratory fail-

ure with more serious complications. This disease was eventually termed Coronavirus 

Disease 2019 (COVID-19). Understanding of morphological and viral genome character-

istics of SARS-CoV-2 provides valuable insights to help address the worsening pandemic 

situation; however, transmission and anti-viral treatments might induce mutations and 

consequently generate more virulent strains with higher fatalities or resistance to availa-

ble treatment and vaccines [2]. One study has conducted data science analysis towards 

SARS-CoV-2 genome submissions between February and May 2020 and revealed that sev-

eral variants exist with D614G, where adenine substitution to guanine happens at position 

23,403. It is the most common variant discovered since December 2019 [2]. SARS-CoV-2 

variant identification is pivotal in providing insight into viral infectivity, severity, and also 

in studying the evolutionary analysis of SARS-CoV-2. 

The COVID-19 pandemic has brought computational biology with Next Generation 

Sequencing (NGS) to the frontline as it revolutionized the biological sciences in the past 

decades with its high throughput and tremendous ability to study biological systems 

through a wide variety of applications. NGS enables researchers to conduct Whole Ge-

nome Sequencing (WGS), the construction of a complete DNA sequence belonging to an 

organism’s genome at a single time. The application of WGS is capable of understanding 

the transmission pattern, gaining insight into outbreak control decisions, and discovering 

new variants of viruses [3]. This was proven when WGS was capable of helping public 

health decision-making strategy during the 2014–2016 West African Ebola outbreak; 

therefore, WGS studies during the ongoing COVID-19 pandemic is an active area of re-

search. The first complete genome of SARS-CoV-2 was fully recovered on 10 January 2020 

through de novo assembly using metagenomic RNA sequencing [4]. Afterwards, 

11,601,013 whole genome sequences of SARS-CoV-2 were submitted to Global Initiative 

on Sharing Avian Influenza Data (GISAID); data sharing with Indonesia reported 25,817 

complete genomes of SARS-CoV-2 as of January 2021. 

NGS technologies are heavily influenced by Illumina® as the prominent player in sec-

ond-generation NGS. All Illumina’s NGS platforms were built based on bridge amplifica-

tion with ease of support and are applicable to genomic sequencing, exome sequencing, 

targeted sequencing, metagenomics, and RNA sequencing [5]. Responding to the COVID-

19 pandemic, Illumina published a guideline as the improvement for target enrichment 

workflow in detecting respiratory viruses using the NGS platform. The workflows are 

highly sensitive and able to characterize common respiratory viruses, including corona-

virus strains, without the need to map raw NGS data to the human genome [6]. Target 

enrichment has been widely used long before the COVID-19 pandemic; it utilizes hybrid-

capture methods to capture genomic regions of interest using biotinylated oligonucleotide 

probes designed to hybridize regions of interest [7]. Furthermore, its sensitive detection 

excludes the need for high read depth required for shotgun metagenomic sequencing [8].  

Target enrichment workflow through a hybrid-capture method and is able to directly 

detect respiratory viruses; however, no previous studies evaluated how accurate the tar-

get enrichment workflow guideline provided by Illumina is in detecting SARS-CoV-2. 
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This study incorporates different bioinformatics pipelines for target enrichment workflow 

in detecting SARS-CoV-2 using the Illumina NGS system. The aim of this study is to com-

pare different bioinformatics pipelines toward the target enrichment workflow by Illu-

mina. The NGS data were obtained from eight hospitalized patients in Yogyakarta and 

Central Java, who tested positive for SARS-CoV-2 and took a Real Time-Polymerase Chain 

Reaction (RT-PCR) swab test between May and September 2020. Prior to joining the study, 

patients were given informed consent and the study design was approved by the Medical 

and Health Research Ethics Committee of the Faculty of Medicine, Public Health, and 

Nursing, Universitas Gadjah Mada, alongside Dr. Sardjito Hospital 

(KE/FK/0563/EC/2020). The first pipeline, dubbed as ‘Fast Pipeline’, directly maps the raw 

NGS data to the SARS-CoV-2 reference genome. The second ‘Normal Pipeline’ maps the 

raw NGS data to the human genome and proceeds to map subsequent unmapped reads 

to the SARS-CoV-2 reference genome. The comparison between pipelines observed the 

identification of nucleotide substitutions and amino acid mutations. 

2. Materials and Methods 

2.1. Viral RNA Extractions and Library Preparation for Whole Genome Sequencing 

Viral sampling, library preparation, and WGS were fully performed by the Genetics 

Working Group (Pokja Genetik) of the Faculty of Medicine, Public Health, and Nursing, 

Universitas Gadjah Mada, alongside the Disease Investigation Center, Wates, Yogyakarta. 

Virus samples in this study were collected through nasopharyngeal swabs of hospitalized 

patients with COVID-19 between May to December 2020 in Yogyakarta and Central Java 

provinces, Indonesia. 

Viral samples were placed into viral transport media immediately after being col-

lected and sent to the Department of Microbiology, Faculty of Medicine, Public Health 

and Nursing, Universitas Gadjah Mada, alongside Disease Investigation Center, Wates, 

Yogyakarta. Viral RNA extractions and library preparation for WGS described below are 

in accordance with the previously published research by Gunadi et al. [9]. First, total viral 

RNA was extracted from nasopharyngeal swabs samples using QiAMP Viral RNA mini 

kit and continued by double-stranded cDNA synthesis using Maxima H Minus Double-

Stranded cDNA Synthesis. This was followed by purification using the GeneJET PCR Pu-

rification kit. Library for WGS was prepared using the Nextera DNA Flex for Enrichment 

using the Respiratory Virus Oligos Panel. Afterward, WGS was conducted in the Illumina 

MiSeq instrument with MiSeq reagents v3 150 cycles. WGS results in paired-end reads of 

FASTQ files that were used for further bioinformatics downstream analysis processes [9]. 

2.2. Patients' Whole Genome Sequencing Data 

NGS data generated from Illumina MiSeq instruments were sent to the Department 

of Computer Sciences and Electronics, Faculty of Mathematics, and Natural Sciences, Uni-

versitas Gadjah Mada for downstream bioinformatics analysis. Table 1 describes the NGS 

data of hospitalized patients with COVID-19 that were involved in this study.  

A total of 16 patients with COVID-19 were involved in this study ranging between 

the age of 30 to 88. Sampling was conducted between 16 May 2020 and 27 December 2020 

and divided into batch 1 (4 samples), batch 2 (4 samples), and batch 3 (8 samples), gener-

ating 16 NGS data, respectively, as observed in Table 1. In total, 8 of 16 patients have at 

least one comorbidity.  
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Table 1. Data of patients with COVID-19 from Yogyakarta and Central Java that were involved in 

this study. 

No NGS Sample Code NGS Batch Sample ID Sex Age (Years) Collection Date Comorbid 

1 B6 1 DIY-C25.2-02449 Male 77 22 June 2020 Yes  

2 C5 1 DIY-C78.01481 Female 83 10 August 2020 Yes 

3 F2 1 DIY-C25.2-00927 Male 30 16 May 2020 No 

4 F4 1 KLN-C25.2-02538 Female 55 26 June 2020 Yes 

5 S3 2 RSS-10001 Male 88 18 August 2020 Yes 

6 S9 2 BBTKLPP-47964 Male 48 31 August 2020 Yes 

7 S10 2 BBTKLPP-48651 Male 41 9 September 2020 No 

8 S15 2 DIY-C78.00061 Female 49 16 June 2020 No 

9 S3-1 3 DIY 1-58634 Male 65 18 September 2020 Yes 

10 S3-4 3 DIY 1-24778 Male 34 23 December 2020 No 

11 S3-5 3 DIY 1-10279 Male 77 7 September 2020 No 

12 S3-7 3 DIY 1-10282 Female 42 7 September 2020 No 

13 S3-8 3 DIY 1-24762 Female 48 23 December 2020 No 

14 S3-9 3 RSS-10008 Male 58 27 December 2020 Yes 

15 S3-11 3 DIY 1-24776 Female 34 23 December 2020 No 

16 S3-14 3 53311 Female 81 9 September 2020 Yes 

2.3. Bioinformatics Pipeline for SARS-CoV-2 Nucleotide and Amino Acids Variant Analysis 

The whole bioinformatics pipeline in this study was adopted from the combination 

of the SARS-CoV-2 nucleotide variant analysis tutorial in Galaxy by Beek et al. [10] and 

the utilization of bioinformatics tools for amino acids variant analysis. Subsequently, there 

is one main pipeline with two branches, whereas the first branch pipeline, dubbed ‘nucle-

otide substitution’ used to identify nucleotide variation and the second branch pipeline, 

dubbed ‘amino acids substitution’ used to identify amino acids variation.  

This study would benchmark different bioinformatics NGS pipelines called ‘Fast 

Pipeline’, represented by Figure 1, and ‘Normal Pipeline’, represented by Figure 2. Over-

all, the differences between pipelines occurred in the read mapping to reference genome 

phase due to the nature of enrichment sequencing workflows provided by Illumina, 

which are able to sensitively detect respiratory viruses, including SARS-CoV-2 [6]. Con-

sequently, Normal Pipeline was constructed under the assumption that applied enrich-

ment sequencing workflows by Illumina failed to directly detect SARS-CoV-2 during 

WGS in the Illumina NGS platform; therefore, it uses both human genome (accession 

number: GRCh38) and SARS-CoV-2 (accession number: NC_045512.2) as the reference ge-

nomes, where the read mapping was conducted twice, first with the human genome and 

followed by attaining the unmapped reads and followed by a second read mapping with 

the SARS-CoV-2 genome. Fast Pipeline, by default, does not require twice read mapping 

as the counterpart of Normal Pipeline; we assumed the enrichment sequencing workflows 

successfully detected SARS-CoV-2 during WGS in the Illumina NGS platform.  

NGS paired-end data were subjected to quality control by using FASTQC and 

Trimmomatic as part of the NGS quality control procedure. This was followed by a map-

ping of paired-end reads to the SARS-CoV-2 genome using the BWA-MEM algorithm. 

SAM files generated from the read mapping were converted to BAM using SAMtools. 

Afterwards, the BAM file generated was used as the foundation for both ‘Nucleotide Sub-

stitution’ and ‘Amino Acids Substitution’ pipelines. The ensuing process would discover 

SNPs and amino acid mutations and it will be fully compared with subsequent mutations 

discovered in the Normal Pipeline. 

Immediately after data acquisition, quality control of NGS paired-end data was con-

ducted by using FASTQC and Trimmomatic. Afterwards, the paired-end reads were 

mapped to the human genome using the BWA-MEM algorithm. Unmapped reads were 
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obtained by using the SAMtools and were converted back to FASTQ format using 

Bedtools, a flexible suite for genomic analysis [11]. Acquired reads in the form of FASTQ 

were subjected to second read mapping to the genome of SARS-CoV-2. Subsequent SAM 

files generated from second read mapping were converted to BAM using SAMtools and 

continued by the implementation of the ‘Nucleotide Substitution’ and ‘Amino Acids Sub-

stitution’ pipeline as previously explained above. Discovered SNPs, as well as amino acid 

mutation, were all compared with Fast Pipeline in order to observe whether differences 

in pipeline application would affect the discovered SNPs and mutated amino acids. 

 

Figure 1. Fast Pipeline scheme; blue shapes represent the method; green shapes represent the tools 

used in each phase. 

 

Figure 2. Normal Pipeline scheme; blue shapes represent the method; green shapes represent the 

tools used in each phase. 
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3. Results 

3.1. Overview of Whole Genome Sequencing Data 

All raw WGS data in the form of FASTQ were provided by the Intelligent Systems 

Laboratory under the Department of Computer Sciences and Electronics of the Universi-

tas Gadjah Mada. Following data retrieval, all WGS data were subjected to standard qual-

ity control checking by using FASTQC. Table 2 shows the overview of WGS data involved 

in the study. All WGS data are paired-end reads, meaning the total sequences indicated 

below represent the total of both sequences from 5′ to 3′ and vice versa. Furthermore, each 

sample has a varying level of Cycle Threshold (CT) value from the lowest of 13.27 to the 

highest of 27.92 and % GC between 38–50; however, the sequence length is remarkably 

the same in all samples, with a range between 35–74. Total viral RNA was isolated by 

using the QiAMP Viral RNA mini kit (Qiagen, Hilden, Germany). The presence of SARS-

CoV-2 was detected using the Real-Q 2019-nCoV Detection Kit (BioSewoom, Seoul, Ko-

rea), targeting the RdRp and E genes of SARS-CoV-2 with LightCycler 480 Instrument II 

(Roche Diagnostics, Mannheim, Germany). The cut-off Ct values were ≤38 for both genes. 

Table 2. The overview of WGS data that were involved in the study. 

NGS Sample Code Batch CT Value Total Sequences (Paired-End Reads) Sequence Length (bp) % GC 

B6 1 19.70 11,268,022 35–74 41 

C5 1 16.90 2,707,228 35–74 42 

F2 1 27.92 2,461,478 35–74 50 

F4 1 24.68 1,366,538 35–74 45 

S3 2 18.10 18,807,934 35–74 38 

S9 2 19.64 7,827,098 35–74 46 

S10 2 21.24 2,698,396 35–74 42 

S15 2 22.31 6,111,408 35–74 46 

S3-1 3 19.53 3,566,896 35–74 40 

S3-4 3 13.27 1,167,562 35–74 38 

S3-5 3 21.00 9,941,746 35–74 38 

S3-7 3 21.55 1,669,316 35–74 39 

S3-8 3 15.67 2,731,486 35–74 39 

S3-9 3 22.27 4,748,810 35–74 45 

S3-11 3 16.89 5,895,626 35–74 39 

S3-14 3 17.73 376,514 35–74 44 

All samples were trimmed by using Trimmomatic following quality control check in 

FASTQC. Default parameters were used in the trimming of bad reads. The adapter was 

trimmed using the default Illumina paired-end adapter reads TruSeq3-PE-3.fa. Trimmo-

matic, by default, will output the number of sequences that pass filtering and those dis-

carded either because of not passing the filtering parameters or due to only one strand 

surviving filtering. On average, samples retained their original sequences in the form of 

forward and reverse pairs, with 98.3% of them passing the trimming, and the rest 1.7% 

were trimmed and discarded, as represented in Table 3.  
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Table 3. Total sequences before and after quality control using Trimmomatic. 

NGS Sample Code 

Total Sequences 

Before Trimming 

(Paired-End Reads) 

Post-Trimming (QC) 

(Paired-End Reads) 

Trimmed  

Sequence (%)  

B6 11,268,022 11,184,784 0.74 

C5 2,707,228 2,683,232 0.89 

F2 2,461,478 2,440,518 0.85 

F4 1,366,538 1,345,416 1.55 

S3 18,807,934 18,387,180 2.24 

S9 7,827,098 7,587,506 3.06 

S10 2,698,396 2,590,256 4.01 

S15 6,111,408 5,942,890 2.76 

S3-1 3,566,896 3,502,824 1.80 

S3-4 1,167,562 1,155,934 1.00 

S3-5 9,941,746 9,807,834 1.35 

S3-7 1,640,458 1,640,458 1.73 

S3-8 2,731,486 2,696,200 1.29 

S3-9 4,670,496 4,670,496 1.65 

S3-11 5,816,070 5,816,070 1.35 

S3-14 372,662 372,662 1.02 

Average 1.70 

3.2. Comparison of Reads Distribution in Normal Pipeline and Fast Pipeline 

BWA-MEM running default parameters were used to map all samples to reference 

genomes in Fast Pipelines. Prior to mapping, indexing was conducted to the SARS-CoV-

2 genome in Fast Pipeline. Read mapping generates a SAM file format as an input file to 

measure the distribution of reads. These measurements were taken by using SAMtools 

and applicable by running SAMtools alignment statistics code after read mapping to the 

reference genome. First, the SAM file generated from the ensuing mapping process was 

converted to a BAM file. This was continued by sorting the BAM file and running the 

SAMtools alignment statistics code. Alignment statistics generated by SAMtools were ap-

pended to text files, compiled, and summarized—shown in Table 4. As previously men-

tioned, Fast Pipeline directly maps the samples to the SARS-CoV-2 genome (accession 

number: NC_045512.2). Consequently, the distribution of reads was divided only into two 

categories—those that were fully mapped to the SARS-CoV-2 genome and those that were 

not. In total, 9 out of 16 samples with the NGS code of B6, C5 from Batch 1, S3 from Batch 

2, and S3-1, S3-4, S3-5, S3-7, S3-8, S3-11 from Batch 3 have at least >50% of reads fully 

mapped to SARS-CoV-2 genome; the rest of the samples pose <50% of reads fully mapped 

to the SARS-CoV-2 genome.  

Normal Pipeline read mapping utilizes the same BWA-MEM tools and was run using 

the default parameters. All samples were mapped to the human genome (accession num-

ber: GRCh38); unmapped reads were acquired and mapped immediately to the SARS-

CoV-2 genome (accession number: NC_045512.2). Both the human genome and SARS-

CoV-2 genome were indexed as the basis for read mapping prior to alignment. Further-

more, the number of reads were counted during the all-read mapping procedure as well 

as during BAM conversion back to FASTQ prior to the second round of read mapping. 

The distribution of reads resulting from the Normal Pipeline bears a resemblance to the 

Fast Pipeline, as shown in Tables 4 and 5. Interestingly, the proportion of unmapped reads 

in Fast Pipeline was, in fact, human genomes in the Normal Pipeline, as shown in Table 

5. Furthermore, on average, 0.78% of total reads in all samples were derived from un-

known organisms as they were neither mapped to the human genome nor to the SARS-
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CoV-2 genome. In addition, other significantly low reads were skipped during BAM con-

version back to FASTQ due to unidentified mate pairs. 

Table 4. The alignment statistics summary of unmapped and fully mapped reads in each sample’s 

post-read mapping to the SARS-CoV-2 genome (NC_045512.2). 

NGS 

Sample 

Code 

Unmapped to  

Sars-Cov-2 Genome 

Fully Mapped to  

Sars-Cov-2 Genome 

Number of  

Reads 
Percentage (%) 

Number of  

Reads 
Percentage (%) 

B6 2,028,393 18.14 9,156,391 81.86 

C5 1,108,537 41.31 1,574,695 58.69 

F2 2,391,210 97.98 49,308 2.02 

F4 1,203,004 89.42 142,412 10.58 

S3 548,965 2.99 17,838,215 97.01 

S9 4,969,736 65.50 2,617,770 34.50 

S10 1,452,990 56.09 1,137,266 43.91 

S15 4,071,831 68.52 1,871,059 31.48 

S3-1 830,959 23.72 2,671,865 76.28 

S3-4 19,722 1.71 1,136,212 98.29 

S3-5 205,582 2.10 9,602,252 97.90 

S3-7 275,337 16.78 1,365,121 83.22 

S3-8 175,137 6.50 2,521,063 93.50 

S3-9 3,427,102 73.38 1,243,394 26.62 

S3-11 576,452 9.91 5,239,618 90.09 

S3-14 290,681 78.00 81,981 22.00 

Table 5. Distribution of reads in each sample post-read mapping to the human genome (GRCh38) 

and SARS-CoV-2 genome (NC_045512.2). 

NGS Sample 

Code 

Fully Mapped to  

Sars-Cov-2 Genome 

Fully Mapped to  

Human Genome 
Neither Both 

Skipped during BAM to 

FASTQ Conversion 

Number of 

Reads 

Percentage 

(%) 

Number 

of Reads 

Percentage 

(%) 

Number of 

Reads 

Percentage 

(%) 

Number of 

Reads 

Percentage 

(%) 

B6 8,743,980 78.18 2,435,133 21.77 3444 0.02 2227 0.02 

C5 1,467,402 54.69 1,125,429 41.94 89,534 3.34 867 0.03 

F2 38,668 1.58 2,399,180 98.31 2272 0.09 398 0.02 

F4 134,956 10.03 1,210,132 89.94 108 0.01 220 0.02 

S3 15,158,756 82.44 3,216,116 17.49 9700 0.05 2608 0.01 

S9 2,363,094 31.14 5,214,314 68.72 7000 0.09 3098 0.04 

S10 1,009,265 38.96 1,546,174 59.69 34,167 1.32 650 0.03 

S15 1,676,134 28.20 4,235,721 71.27 28,482 0.48 2553 0.04 

S3-1 2,321,562 66.28 1,180,022 33.69 502 0.01 738 0.02 

S3-4 988,416 85.51 165,770 14.34 1706 0.15 42 0.00 

S3-5 8,996,852 91.73 807,254 8.23 3020 0.03 708 0.01 

S3-7 1,249,452 76.16 389,999 23.77 512 0.03 495 0.03 

S3-8 2,332,361 86.51 345,223 12.80 18,489 0.69 127 0.00 

S3-9 1,156,467 24.76 3,230,410 69.17 282,417 6.05 1202 0.03 

S3-11 4,628,769 79.59 1,178,473 20.26 8509 0.15 319 0.01 

S3-14 76,805 20.61 295,584 79.32 207 0.06 66 0.02 

 Average 53.52 Average 45.67 Average 0.78 Average 0.02 
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3.3. Comparison of Coverage Depth in Normal Pipeline and Fast Pipeline 

Proceeding the count of reads, coverage depth is another pinpoint factor for compar-

ison, defined as the average times that certain reads are mapped into specific regions in-

side full genome sequences. Coverage depth in this study represents how many occur-

rences the reads in samples were mapped to a specific region in the SARS-CoV-2 genome. 

It may be performed by the utilization of coverage statistics analysis from the ensuing 

SAM files generated from the read mapping, whereas it was converted into BAM files and 

sorted accordingly. Furthermore, it was obtained by using SAMtools by running a specific 

command for coverage statistics analysis.  

Table 6 represents the read mapping coverage results. Briefly, all samples own a 

higher number of coverage depth levels, with only Sample F2 running in Normal Pipeline 

having only 94.6 times coverage depth. Overall, Fast Pipeline tends to have a higher level 

of coverage depth in all samples if compared with normal pipelines, as observed in per-

centage differences results. Compellingly, the coverage depth results in all samples run-

ning both pipelines were discovered to be linear with the number of reads mapped to the 

SARS-CoV-2 genome, as shown in Tables 4 and 5.  

Table 6. Read mapping coverage results. 

NGS  

Sample Code 

Read Mapping Coverage (Times) Difference 

Fast vs. Normal (%) Fast Pipeline Normal Pipeline 

B6 22,352.5 21,357.2 4.70 

C5 3833.9 3576.5 7.20 

F2 115 94.6 21.6 

F4 347.7 329.8 5.40 

S3 43,244.4 36,843 17.4 

S9 6350.02 5744.18 10.5 

S10 2756.31 2457.99 12.1 

S15 4545.72 4077.32 11.5 

S3-1 6494.44 5653.07 14.9 

S3-4 2764.01 2410.1 14.7 

S3-5 23,481.7 22,016.8 6.60 

S3-7 3333.82 3054.74 9.10 

S3-8 6163.56 5706.29 8.00 

S3-9 3033.52 2824.06 7.40 

S3-11 12,794.7 11,323.3 13.00 

S3-14 199.371 186.96 6.60 

Average 10.66 

3.4. Comparison of Variations Annotated Post Variant Calling 

Three types of variation were annotated post-variant calling, including SNPs, inser-

tion, and deletion. Subsequent variants derived from both pipelines were compiled, 

counted, and plotted in the form of a bar stack chart, as shown in Figure 3 and represented 

in more detail in Table 7.  
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Figure 3. Variation (SNP, Insertion, and Deletion) Detected in All Samples Implemented in Both Pipelines.  
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Table 7. Statistics Summary of Variation (SNP, Insertion, and Deletion) Detected in All Samples Implemented in Both Pipelines. 

NGS Sam-

ple Code 

Fast Pipeline  Normal Pipeline  
Difference 

Fast vs. Normal (%) 

#SNP #Insertion #Deletion 
All Vari-

ation 
#SNP #Insertion 

#Dele-

tion 

All Varia-

tion 
#SNP #Insertion #Deletion 

All Varia-

tion 

B6 390 128 331 849 349 120 306 775 11.75 6.67 8.17 9.55 

C5 304 228 33 565 275 206 31 512 10.55 10.68 6.45 10.35 

F2 20 22 14 56 15 12 11 38 33.33 83.33 27.27 47.37 

F4 92 38 8 138 82 38 8 128 12.20 0.00 0.00 7.81 

S3 624 156 70 850 434 152 66 652 43.78 2.63 6.06 30.37 

S9 285 128 39 452 211 126 36 373 35.07 1.59 8.33 21.18 

S10 219 63 65 347 179 55 55 289 22.35 14.55 18.18 20.07 

S15 353 86 129 568 319 85 121 525 10.66 1.18 6.61 8.19 

S3-1 340 142 58 540 276 129 54 459 23.19 10.08 7.41 17.65 

S3-4 121 114 24 259 108 106 16 230 12.04 7.55 50.00 12.61 

S3-5 245 145 44 434 228 146 46 420 7.46 −0.68 −4.35 3.33 

S3-7 160 114 27 301 145 101 21 267 10.34 12.87 28.57 12.73 

S3-8 153 127 27 307 131 117 24 272 16.79 8.55 12.50 12.87 

S3-9 173 36 765 974 148 33 709 890 16.89 9.09 7.90 9.44 

S3-11 213 115 38 366 182 107 35 324 17.03 7.48 8.57 12.96 

S3-14 83 31 9 123 78 27 11 116 6.41 14.81 −18.18 6.03 

Average 18.11 11.90 10.84 15.16 
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An abundant number of variations were detected in all samples running both pipe-

lines, with only sample F2, F4, and S3-14 having significantly less variation. Furthermore, 

samples implemented in Fast Pipeline pose a higher number of variations if compared to 

Normal Pipeline, on average 15.16% for all variations, 18.11% for SNP, 11.9% for insertion, 

and 10.84% for deletion. These results were compared with count reads in the previous 

section and we interestingly discovered the number of variations in each pipeline is linear 

with the number of reads mapped to the SARS-CoV-2 reference genome, as represented 

by Tables 4 and 5. Samples subjected to Normal Pipeline lose a considerable number of 

reads mapped to the SARS-CoV-2 genome as it was mapped to the human genome be-

forehand. As a consequence, the number of reads fully mapped to SARS-CoV-2 in Normal 

Pipeline is lower than in Fast Pipeline. This series of events further affect the number of 

successfully annotated variants where samples implemented in Fast Pipeline have more 

variations than their counterparts. 

3.5. High Quality and Annotated Nucleotide Substitutions and Amino Acids Mutations 

High-quality SNPs were obtained from all batch 1 samples implemented in Fast Pipe-

line with a threshold above 20,000 with the exception of sample F2 (batch 1) and S3-14 

(batch 3) as it lacks quality SNPs above the aforementioned threshold; therefore, SNPs 

retrieved in sample F2 were considered if the quality threshold was above 2000; in sample 

S3-14, they were considered if the quality threshold was above 5000. In batch 1, the highest 

number was obtained from sample C5 with 17 SNPs. Others in decreasing order are sam-

ple F4 (13 SNPs), sample B6 (11 SNPs), and the lowest one is sample F2, with only two 

SNPs annotated. Those were mapped according to the position inside the SARS-CoV-2 

genome and we discovered their presence inside four regions of 5′UTR, ORF1AB, ORF3A, 

ORF7A, and three glycoproteins including spike, matrix, and nucleocapsid as shown in 

Table 8. Most batch 2 samples own a substantial amount of high-quality SNPs if compared 

to all batch 1. In total, 21 SNPs were successfully annotated in sample S3 of batch 2 and 

considered the highest number of SNPs among all samples; others in decreasing order 

were sample S9 with 18 SNPs, and both sample S10 and sample S15 each with 14 SNPs, 

respectively. SNPs in batch 2 samples are well distributed in the SARS-CoV-2 region. Fur-

thermore, their presence was observed inside five regions, including 5′UTR, ORF1AB, 

ORF3A, ORF8, ORF10, and three glycoproteins of the spike, matrix, and nucleocapsid. 

Table 9 represents identified SNPs in all batch 2 samples running all pipelines. Table 9a 

represents part 1, while Table 9b represents part 2. In batch 3, the highest number was 

obtained from samples S3-4, S3-5, S3-7, and S3-11 with 12 SNPs; others in decreasing order 

are sample S3-9 (11 SNPs), sample S3-1, S3-8 (10 SNPs), and the lowest one is sample S3-

14 with only six SNPs annotated. Those were mapped according to the position inside the 

SARS-CoV-2 genome and we discovered their presence inside three regions of ORF1AB, 

ORF3A, ORF8, and two glycoproteins, including the spike and nucleocapsid, as shown in 

Table 10. The pink color and the bold nucleotides in the Tables 8–10 represent SNPs. 
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Table 8. Identified SNPs in All Batch 1 Samples Running All Pipelines. 

POSITION 5’UTR NSP3-ORF1AB 
NSP5-

ORF1AB 
NSP12-ORF1AB 

NSP13-

ORF1AB 

NSP14-

ORF1AB 

SPIKE-

S 
NS3-ORF3A MATRIX-M 

NS7A-

ORF7A 
NP-N 

POSITION 241 3037 3529 4754 5184 10201 10507 14055 14292 14408 14694 15406 17964 18744 18877 23403 25553 25563 25687 26735 26867 27610 28735 28752 29209 

REFERENCE 

(NC_045512.2) 
C C T C C G C G C C C G G C C A C G G C A C T A A 

B6 FAST PIPE-

LINE 
T T T C T G T G C T C G G T T G C T G T G C T A A 

B6 NORMAL 

PIPELINE 
T T T C T G T G C T C G G T T G C T G T G C T A A 

C5 FAST PIPE-

LINE 
T T C T C G C G T T T T T C T G T T T T A C C G A 

C5 NORMAL 

PIPELINE 
T T C T C G C G T T T T T C T G T T T T A C C G A 

F2 FAST PIPE-

LINE 
C C T C C T C G C C C G G C C A C G G C A C T A G 

F2 NORMAL 

PIPELINE 
C C T C C T C G C C C G G C C A C G G C A C T A G 

F4 FAST PIPE-

LINE 
T T T C T G T T C T C G G T T G C T G T G T T A A 

F4 NORMAL 

PIPELINE 
T T T C T G T T C T C G G T T G C T G T G T T A A 
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Table 9. (a) Identified SNPs in All Batch 2 Samples Running All Pipelines (Part 1). (b) Identified SNPs in All Batch 2 Samples Running All Pipelines (Part 2). 

(a) Identified SNPs in All Batch 2 Samples Running All Pipelines (Part 1) 

REGION 5’UTR NSP1-ORF1AB NSP3-ORF1AB 
NSP5-

ORF1AB 

NSP6-

ORF1AB 
NSP8-ORF1AB 

NSP9-

ORF1AB 
NSP12-ORF1AB NSP13-ORF1AB 

POSITION 241 1545 2263 2512 3037 4084 5184 5784 6312 7639 10089 10507 11083 12152 12439 12809 13730 14120 14183 14408 15543 15765 16156 16395 16647 16694 

REFERENCE 

(NC_045512.2) 
C C C A C C C C C C A C G G C C C C C C G A A A G C 

S3 FAST PIPE-

LINE 
T T C A T T T C C C G T G G C C C C T T G A A T T C 

S3 NORMAL 

PIPELINE 
T T C A T T T C C C G T G G C C C C T T G A A T T C 

S9 FAST PIPE-

LINE 
C C C G C C C C A C A C T A T T T C C C G A G A G T 

S9 NORMAL 

PIPELINE 
C C C G C C C C A C A C T A T T T C C C G A G A G T 

S10 FAST PIPE-

LINE 
T C C A T C C C C C A C G G C C C T C T G G A A G C 

S10 NORMAL 

PIPELINE 
T C C A T C C C C C A C G G C C C T C T G G A A G C 

S15 FAST PIPE-

LINE 
T C T A T C T T C T A T G G C C C C C T T A A A G C 

S15 NORMAL 

PIPELINE 
T C T A T C T T C T A T G G C C C C C T T A A A G C 

(b) Identified SNPs in All Batch 2 Samples Running All Pipelines (Part 2) 
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REGION NSP14-ORF1AB 
NSP15-A1-

ORF1AB 
SPIKE-S NS3-ORF3A MATRIX-M ORF8 NP-N ORF10 

POSITION 18744 18877 19002 20124 21652 21742 21748 21809 22200 22334 23403 23593 23929 25563 26056 26735 26867 28073 28311 28628 28851 28975 29642 

REFERENCE 

(NC_045512.2) 
C C A T T C T G T T A G C G G C A G C G G G C 

S3 FAST PIPE-

LINE 
T T A T T T T G C T G G C T G T G G C T T G C 

S3 NORMAL 

PIPELINE 
T T A T T T T G C T G G C T G T G G C T T G C 

S9 FAST PIPE-

LINE 
C C G C C C C G T C G G T G G C A A T G G G C 

S9 NORMAL 

PIPELINE 
C C G C C C C G T C G G T G G C A A T G G G C 

S10 FAST PIPE-

LINE 
C T A T T C T C T T G T C T T T A G C G G T T 

S10 NORMAL 

PIPELINE 
C T A T T C T C T T G T C T T T A G C G G T T 

S15 FAST PIPE-

LINE 
T T A T T C T G T T G G C T G T A G C G G G C 

S15 NORMAL 

PIPELINE 
T T A T T C T G T T G G C T G T A G C G G G C 
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Table 10. Identified SNPs in All Batch 3 Samples Running All Pipelines. 

REGION 
NSP3-

ORF1AB 
 

NSP4-

ORF1AB 

NSP5A

-

ORF1A

B 

NSP6-

ORF1A

B 

NSP

7-

ORF

1AB 

NSP12-ORF1AB NSP15-ORF1AB SPIKE GLYCOPROTEIN ORF3A 

O

RF

8 

NP-N 

POSITION 
33

05 

51

84 

55

54 

63

09 

69

06 

97

01 

97

10 

97

11 

10

31

3 

10

90

4 

10

99

5 

11

21

9 

1199

1 

14

12

0 

14

40

8 

14

74

1 

15

84

8 

19

79

3 

19

79

4 

20

44

3 

20

61

1 

21

57

5 

22

20

0 

23

04

2 

23

27

0 

23

40

3 

23

59

9 

23

62

9 

25

33

7 

25

56

3 

25

59

0 

25

90

4 

280

20 

28

62

8 

28

65

5 

28

72

4 

28

85

1 

28

88

1 

28

88

3 

28

97

5 

28

97

7 

REFERENCE 

(NC_045512.2) 
A C G G C A T C C A A A A C C C C G G G C C T T G A T T G G A C T G G C G G G G C 

S3-1 FAST PIPE-

LINE 
A T G G C A T C C A A A A C T T C G G T T C C T G G T T G T A C T T G C T G G G C 

S3-1 NORMAL 

PIPELINE 
A T G G C A T C C A A A A C T T C G G T T C C T G G T T G T A C T T G C T G G G C 

S3-4 FAST PIPE-

LINE 
A C G G C A A A T A A A A T T C T G G G C C T T T G A T T T A C T G G C G G G G T 

S3-4 NORMAL 

PIPELINE 
A C G G C A A A T A A A A T T C T G G G C C T T T G A T T T A C T G G C G G G G T 

S3-5 FAST PIPE-

LINE 
C C G G C G T C C A A A A T T C T G G G C T T T G G T T G T T T T G T C G G G G T 

S3-5 NORMAL 

PIPELINE 
C C G G C G T C C A A A A T T C T G G G C T T T G G T T G T T T T G T C G G G G T 

S3-7 FAST PIPE-

LINE 
C C G G C G T C C A A A A T T C T G G G C T T T G G T T G T T T T G T C G G G G T 

S3-7 NORMAL 

PIPELINE 
C C G G C G T C C A A A A T T C T G G G C T T T G G T T G T T T T G T C G G G G T 
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S3-8 FAST PIPE-

LINE 
A T G C C A T C C A A G A C T C C G G G C C T C G G T G G T A C T T G C G G G T C 

S3-8 NORMAL 

PIPELINE 
A T G C C A T C C A A G A C T C C G G G C C T C G G T G G T A C T T G C G G G T C 

S3-9 FAST PIPE-

LINE 
A C T G T A T C C G G A G C T C C T T G C C T T G G T T G G A C T G G C G A C G C 

S3-9 NORMAL 

PIPELINE 
A C T G C A T C C G G A G C T C C T T G C C T T G G T T G G A C C G G T G A C G C 

S3-11 FAST 

PIPELINE 
A C G G C A A A T A A A A T T C T G G G C C T T T G A T T T A C T G G C G G G G T 

S3-11 NORMAL 

PIPELINE 
A C G G C A A A T A A A A T T C T G G G C C T T T G A T T T A C T G G C G G G G T 

S3-14 FAST 

PIPELINE 
A T G G C A T C C A A A A C C C C G G G C T T T G G T T G T A C T T G C T G G G C 

S3-14 NORMAL 

PIPELINE 
A T G G C A T C C A A A A C C C C G G G C T T T G G T T G G A C T T G C T G G G C 
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The same methodology as the Fast Pipeline was applied to all samples implemented 

in the Normal Pipeline. High-quality SNPs were retrieved in all samples in batch 1 and 

batch 2 with a quality threshold above 20,000. The same exception was applied to sample 

F2 as it lacks SNPs with quality above the mentioned threshold. Consequently, a quality 

threshold above 2000 was applied to sample F2 and a quality threshold above 5000 was 

applied to samples S3-14. All high-quality SNPs were collected and mapped into their 

respective position and region inside the SARS-CoV-2 genome. Furthermore, we con-

ducted a comparative analysis between Fast Pipeline and Normal Pipeline in terms of 

successfully annotated high-quality SNPs. Interestingly, for batch 1 and batch 2, we dis-

covered both pipelines result in identical annotated nucleotide substitution correspond-

ing to their position and regions, as shown in Tables 8 and 9a,b. On the other hand, for 

batch 3, we discovered that the normal pipeline results slightly different number of SNP 

than the Fast Pipeline, represented as a yellow color in Table 8. Sample S3-9 has 11 SNPs 

using the Fast Pipeline; it has 12 SNPs using the Normal Pipeline. Then, Sample S3-14 has 

six SNPs using the Fast Pipeline; it has five SNPs using the Normal Pipeline. 

Overall, nucleotide substitutions in 14 out of 16 samples involved in this study have 

identical high-quality SNPs in both pipelines, albeit the differences in the number of var-

iations and mapped reads as mentioned above. We carried out further analysis of amino 

acid substitution to compare how specific nucleotide substitution may code for different 

amino acids. As a process to detect the amino acid mutations, full-length genomes were 

constructed from each sample based on the SARS-CoV-2 reference genome 

(NC_045512.2). Consensus sequences were mapped to all SARS-CoV-2 regions. Table 11 

shows the results of consensus sequences generated by using a combination of SAMtools 

and BEDtools. We discovered an interesting pattern where the consensus sequences con-

structed in all samples implemented in the Fast Pipeline pose full-length nucleotide 

lengths of 29,903 bp, the same length as those of SARS-CoV-2 reference sequences—con-

sensus sequences representing the Normal Pipeline vary in nucleotide length.  

Table 11. Result of consensus sequences constructed by using a combination of SAMtools and 

BEDtools. 

NGS Sample Code  
Length of Consensus Sequence (bp) 

Fast Pipeline Normal Pipeline 

B6  29,903 29,894 

C5 29,903 29,892 

F2 29,903 29,853 

F4 29,903 29,877 

S3 29,903 29,890 

S9 29,903 29,892 

S10 29,903 29,870 

S15 29,903 29,879 

S3-1 29,903 29,892 

S3-4 29,903  29,870 

S3-5 29,903 29,877 

S3-7 29,903 29,867 

S3-8 29,903 29,870 

S3-9 29,903 29,892 

S3-11 29,903 29,870 

S3-14 29,903 29,869 
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Table 12 represents identified amino acid mutations in batch 1 samples running all 

pipelines; Table 13 represents batch 2 and Table 14 represents batch 3. The pink color and 

the bold nucleotides in the Tables 12–14 represent amino acid mutations. Overall, batch 3 

samples pose higher amino acid mutations compared to batch 1 and batch 2 samples in 

the Fast Pipeline. In batch 1 samples, the highest amino acid mutations were discovered 

in sample C5 with 10 detected mutations. Sample B6 and sample F4 pose the same five 

detected mutations. Sample F2 is considered to be the lowest, with only one detected mu-

tation. These mutations are well distributed inside four regions, 5′UTR, ORF1AB, ORF3A, 

ORF7A, and two glycoproteins, the spike and nucleocapsid. Batch 2 samples own a sig-

nificant number of mutations, with S3, S9, and S10 having the same 10 detected mutations, 

leaving sample S15 with only five detected mutations. They are dispersed in four regions, 

including 5′UTR, ORF1AB, ORF3A, ORF8, and two glycoproteins being spike and nucle-

ocapsid. Batch 3 samples have the highest number of amino acid mutations. Sample S3-5 

and S3-7 have 12 detected mutations. Then, sample S3-4 and Sample S3-11 pose 11 de-

tected mutations, samples S3-1, S3-8, and S3-9 pose 10 detected mutations; samples S3-14 

pose only six detected mutations. These mutations are well distributed inside three re-

gions, ORF1AB, ORF3A, ORF8, and two glycoproteins, the spike and nucleocapsid. A 

unique finding discovered in the Fast Pipeline is an ambiguous amino acid (indicated by 

X) in sample C5 at position 54 inside the region of NS3-ORF3A. 

Amino acid mutations detected in the Normal Pipeline resemble and are even almost 

identical to the Fast Pipeline. These observations and comparisons were made thoroughly 

to all parameters, including mutated amino acids, reference, alternate, and specific regions 

inside the SARS-CoV-2 genome. The only differences were six amino acid mutations ob-

served in four samples, represented as yellow color in Tables 12 and 14. First, in sample 

F2 where an ambiguous amino acid (indicated by X) was detected at position 769 inside 

the region of NSP12-ORF1AB; the other ambiguity in sample C5 actually reflects those in 

the Fast and Normal Pipeline. Second, sample S3-4 has T/Y amino acid mutation at posi-

tion 386 inside the region of NSP4-ORF1AB. Third, sample S3-9 has three different amino 

acid mutations at position 1396 inside the region of NSP3-ORF1AB, position 43 inside the 

region of ORF8, and position 151 inside the nucleocapsid. Fourth, in samples S3-14, at 

position 57 inside the ORF3A, Q57H amino acid mutation is not detected using the Nor-

mal Pipeline. Benchmarking of runtime execution was made by calculating the time re-

quired to finish each pipeline from the beginning of quality control until the end of each 

branch, meaning the annotation of SNPs and detection of mutated amino acids as repre-

sented by Table 15. Custom automated bash scripts were created to count the time re-

quired for each command line in units of seconds and output it in the form of .txt files. In 

Python, a separate timer command also in the units of seconds was added in the Python 

script used.  
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Table 12. Identified Amino Acids Mutations in Batch 1 Samples Running All Pipelines. 

REGION 5’UTR NSP3-ORF1AB NSP5-ORF1AB NSP12-ORF1AB NSP13-ORF1AB SPIKE-S NS3-ORF3A NS7A-ORF7A NP-N 

POSITION 81 679 822 49 314 646 769 576 614 54 57 99 73 160 

REFERENCE (NC_045512.2) R P P M P A S M D A Q A H Q 

B6 FAST PIPELINE C P L M L A S M G A H A H Q 

B6 NORMAL PIPELINE C P L M L A S M G A H A H Q 

C5 FAST PIPELINE C S P M L S S I G X H S H R 

C5 NORMAL PIPELINE C S P M L S S I G X H S H R 

F2 FAST PIPELINE R P P I P A S M D A Q A H Q 

F2 NORMAL PIPELINE R P P I P A X M D A Q A H Q 

F4 FAST PIPELINE R P L M L A S M G A H A Y Q 

F4 NORMAL PIPELINE R P L M L A S M G A H A Y Q 

Table 13. Identified Amino Acids Mutations in Batch 2 Samples Running All Pipelines. 

REGION 5’UTR NSP3-ORF1AB NSP5-ORF1AB NSP6 NSP8-ORF1AB NSP9 NSP12-ORF1AB NSP13-ORF1AB SPIKE-S NS3-ORF3A NP-N ORF8 

POSITION 81 822 1022 1198 12 37 21 42 88 218 239 314 897 153 83 213 258 614 677 57 222 13 119 193 234 29 

REFERENCE (NC_045512.2) R P T T K L A L A P T P M T V V W D Q Q D P A S M Q 

S3 FAST PIPELINE C L T T R L A L A P I L M T V A W G Q H D P S I M Q 

S3 NORMAL PIPELINE C L T T R L A L A P I L M T V A W G Q H D P S I M Q 

S9 FAST PIPELINE R P T K K F T F V P T P V I V V R G Q Q D L A S M Q 

S9 NORMAL PIPELINE R P T K K F T F V P T P V I V V R G Q Q D L A S M Q 

S10 FAST PIPELINE C P T T K L A L A L T L M T L V W G H H Y P A S I * 
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S10 NORMAL PIPELINE C P T T K L A L A L T L M T L V W G H H Y P A S I * 

S15 FAST PIPELINE C L I T K L A L A P T L M T V V W G Q H D P A S M Q 

S15 NORMAL PIPELINE C L I T K L A L A P T L M T V V W G Q H D P A S M Q 

Table 14. Identified Amino Acids Mutations in Batch 3 Samples Running All Pipelines. 

REGION NSP3-ORF1AB 
NSP4-

ORF1AB 

NSP5A-

ORF1AB 

NSP6-

ORF1AB 

NSP7-

ORF1AB 
NSP12-ORF1AB 

NSP15-

ORF1AB 
SPIKE GLYCOPROTEIN ORF3A ORF8 NP-N 

POSITION 196 822 945 1197 1369 383 386 87 284 8 83 50 227 323 434 803 58 275 331 5 213 494 570 614 679 689 1259 57 66 171 43 119 128 151 193 203 204 234 235 

REFERENCE (NC_045512.2) M P K S S I S L S K M E P P S T W V L L V S A D N S D Q K S S A D P S R G M S 

S3-1 FAST PIPELINE M L K S S I S L S K M E P L F T W F F L A S A G N S D H K S S S D P I R G M S 

S3-1 NORMAL PIPELINE M L K S S I S L S K M E P L F T W F F L A S A G N S D H K S S S D P I R G M S 

S3-4 FAST PIPELINE M P K S S I T F S K M E L L S I W V L L V S S G K S Y H K S S A D P S R G M F 

S3-4 NORMAL PIPELINE M P K S S I T/Y F S K M E L L S I W V L L V S S G K S Y H K S S A D P S R G M F 

S3-5 FAST PIPELINE L P K S S V S L S K M E L L S I W V L F V S A G N S D H N L S A Y P S R G M F 

S3-5 NORMAL PIPELINE L P K S S V S L S K M E L L S I W V L F V S A G N S D H N L S A Y P S R G M F 

S3-7 FAST PIPELINE L P K S S V S L S K M E L L S I W V L F V S A G N S D H N L S A Y P S R G M F 

S3-7 NORMAL PIPELINE L P K S S V S L S K M E L L S I W V L F V S A G N S D H N L S A Y P S R G M F 

S3-8 FAST PIPELINE M L K T S I S L S K V E P L S T W V L L V P A G N R D H K S S S D P S R G I S 

S3-8 NORMAL PIPELINE M L K T S I S L S K V E P L S T W V L L V P A G N R D H K S S S D P S R G I S 

S3-9 FAST PIPELINE M P N S L I S L G R M G P L S T L/C V L L V S A G N S D Q K S S A D P S K R M S 

S3-9 NORMAL PIPELINE M P N S S I S L G R M G P L S T L/C V L L V S A G N S D Q K S P A D S S K R M S 

S3-11 FAST PIPELINE M P K S S I T/Y F S K M E L L S I W V L L V S S G K S Y H K S S A D P S R G M F 

S3-11 NORMAL PIPELINE M P K S S I T/Y F S K M E L L S I W V L L V S S G K S Y H K S S A D P S R G M F 

S3-14 FAST PIPELINE M L K S S I S L S K M E P P S T W V L F V S A G N S D H K S S S D P I R G M S 

S3-14 NORMAL PIPELINE M L K S S I S L S K M E P P S T W V L F V S A G N S D Q K S S S D P I R G M S 
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Table 15. Total time required to fully complete each pipeline in detecting nucleotide substitution 

and amino acids mutation. 

NGS Sample Code 
Running Time (s) 

Fast Pipeline  Normal Pipeline  

B6 1778.0 5991.3 

C5 574.3 3980.5 

F2 324.5 3924.1 

F4 286.4 3539.5 

S3 3060.1 6521.0 

S9 1036.8 4755.5 

S10 537.5 3747.3 

S15 848.9 4356.8 

S3-1 552.2 4864.7 

S3-4 256.3 4461.3 

S3-5 1427.8 6377.2 

S3-7 330.6 4416.8 

S3-8 489.6 4824.5 

S3-9 486.5 4752.9 

S3-11 879.6 5394.5 

S3-14 57.6 4190.2 

4. Discussion 

Here, we present a comparison between Fast Pipeline and Normal Pipeline in terms 

of proportion of mapped reads and their implication towards the coverage depth and an-

notated variants. It showed 7 out of 16 samples (F2, F4, S9, S10, S15, S3-9, and S3-14) sig-

nificantly mapped to the human genome rather than the SARS-CoV-2 genome, indicating 

that contamination may have occurred in the samples, as shown in Table 5. Previous stud-

ies have noted the application of NGS alongside metagenomes allows researchers to de-

tect the presence of subjected viral pathogens; however, the direct recovery from clinical 

specimens such as nasopharyngeal swabs poses a great challenge owing to the possibility 

of contamination from the host’s genome as well as limited viral RNA quantities [12]. As 

a result, for countermeasures in downstream bioinformatics analysis, it is compulsory for 

reads mapped to the human genome to be discarded during the read mapping process, 

leaving the rest mapped to the respiratory virus genome. Numerous enrichment kits have 

been produced to separate viruses with the host genome, for example, the NetoVir and 

recently improved Respiratory Virus Oligo Panel by Illumina [6,13]; however, the stand-

ard indicator for respiratory virus characterization still relies on the detection of potential 

viral types in metagenomes [12]. This implies that the Normal Pipeline acts as the key 

indicator toward the Fast Pipeline, whether the results are reliable or not.  

Venturing further to count reads and coverage depth, a linear relationship was dis-

covered between the number of reads mapped and ensuing coverage depth; it was shown 

that each sample bearing the Fast Pipeline tends to have higher coverage depth than its 

counterparts, as represented in Tables 4–6. The Fast Pipeline, by default, directly maps the 

reads towards the SARS-CoV-2 genome. As a result, most reads were retrieved intact and 

mapped several times, resulting in a higher coverage depth, with varying percentages 

from only 4.7% differences (sample B6) to the highest of 21.6% differences (sample F2) 

with the Normal Pipeline. On the other hand, the Normal Pipeline lost a substantial 

amount of reads as they were mapped to the human genome, resulting in lower coverage 
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depth than the Fast Pipeline. Surprisingly, the mapped reads also affect the number of 

variants annotated, including SNPs, insertion, and deletion between pipelines. They re-

semble relationships as those between the number of reads and coverage depth. The Fast 

Pipeline has a relatively higher number of SNPs, insertion, and deletion fully annotated 

in all samples against the Normal Pipeline, as represented in Figure 3 and Table 7. 

This study uses the same data of batch 1 samples as the previous study, and therefore, 

both nucleotide and amino acid substitutions identified in batch 1 samples were compared 

thoroughly with the previous study. Referring to all batch 1 samples and the previous 

study by Gunadi et al. [9], no differences either in nucleotide substitution or change in 

position were observed in both the Fast Pipeline and the Normal Pipeline, as shown in 

Table 8. All identified SNPs in the batch 1 samples are identical in terms of the number of 

high-quality SNPs annotated, as well as in substitution and position inside the SARS-CoV-

2 region to those in Gunadi et al. [9].  

In this study, we noticed several ambiguous amino acids following the construction 

of consensus sequences and translation to amino acids in the batch 1 samples. Captivat-

ingly, these were not mentioned in the previous study and, therefore, convinced us to 

trace back the triplet’s codes for the ambiguity. A Triplet of nucleotide bases consisting of 

A, T, C, or G commonly codes for a single amino acid; however, a case where ambiguity 

shows up implies that there is a possibility the triplet may code for more codons [14]. The 

three ambiguous amino acids X discovered were as follows: each one was detected in 

sample C5 running both the Fast Pipeline and the Normal Pipeline (position 54; NS3-

ORF3A), while another one was detected in sample F2 running the Normal Pipeline (po-

sition 769; NSP12-ORF1AB), as shown in Table 12. We successfully traced back the triplet’s 

codes for three ambiguity bases using a Python script equipped with pandas. Further-

more, by referring to the central dogma of biology, an illustration representing it was cre-

ated, as seen in Figures 4 and 5. 

 

Figure 4. Illustration depicting the possible translation result of ambiguous amino acid X detected 

in Sample C5 running both Normal Pipeline and Fast Pipeline. An X amino acid was detected at 

position 54 region NS3-ORF3A. 
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Figure 5. Illustration depicting the possible translation result of ambiguous amino acid X detected 

in Sample F2 running in Normal Pipeline. An X amino acid was detected at position 769 region 

NSP12-ORF1AB. 

Traced back of ambiguity at sample C5 (position 54; NS3-ORF3A) revealed a ‘GYT’ 

as the starting triplet codes for X amino acids (Figure 4). The International Union of Pure 

and Applied Chemistry (IUPAC) provided basic nomenclature for incomplete nucleotides 

25 years ago, whereas the recent one has been further elucidated as an extended IUPAC 

code [15]. The ‘Y’ here represents pyrimidines, a heterocyclic nitrogenous base with three 

possible translations being C (cytosine) or T/U (thymine/uracil). Hence, two possibilities 

exist if ‘Y’ was changed with cytosine or thymine. The outcome of replacing ‘Y’ with cy-

tosine would result in the translation of alanine amino acid, and therefore, it is not mutat-

ing, as it implies the same amino acid in the SARS-CoV-2 reference genome. Furthermore, 

it would be different if ‘Y’ was replaced with thymine as it will be translated to valine 

amino acid, resulting in mutated amino acids with ‘A’ (alanine) substituted to ‘V’ (valine), 

as shown in Figure 4. Interestingly, the previous study in sample C5 designated position 

54 at region NS3-ORF3A as ‘mutated’ with the ‘V’ (valine) written in the exact position 

[9]. A comparison was made thoroughly, and we hypothesized the possible prominent 

factor, in this case, might be derived from a different read mapping algorithm. The previ-

ous study used a standard BWA-backtrack aligner embedded inside the UGENE program 

for batch 1 samples analysis, while we utilized BWA-MEM aligner for read mapping to 

all samples. BWA-backtrack aligner by default, specifically designed for Illumina se-

quence reads up to 100 bp with a sequencing error rate below 2%. On the other hand, 

BWA-MEM is the latest and most sophisticated algorithm designed for reads from 70 bp–

1 Mbp equipped with more tolerated error, faster, and more accurate compared to its pre-

decessor, the standard BWA-backtrack algorithm [16]. 

A similar investigation was conducted on the ambiguity discovered in sample F2 

(position 769; NSP12-ORF1AB) running the Normal Pipeline. Traceback was utilized us-

ing the same Python script and method as those in sample C5. Figure 5 represents the 

flowchart how the possible translation result of ambiguous amino acid X detected in 
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Sample F2 running in the Normal Pipeline. Eventually, it was revealed that the ‘NGC’ 

started prior to triplet translation to ambiguous amino acids. Uniquely, ‘N’ may be trans-

lated into any possible bases, either A, C, G, or T/U [15]. Consequently, there are four 

possible bases replacing the ‘N’, each with a different amino acid translation result. One 

of them bearing ‘S’ refers to serine amino acid is the same one designated in such a posi-

tion within the SARS-CoV-2 reference sequence, and therefore, the aforementioned trans-

lation process will not alter the residue. Another possible three nucleotide substitutions, 

including T, C, and G, are codes for different amino acids, and as a result, a mutation 

occurs. 

Surprisingly, the ambiguity occurring in sample F2 was only discovered in the Nor-

mal Pipeline. Its counterparts were coded for the same amino acids as in the previous 

study, where both were the same as the SARS-CoV-2 reference sequence, meaning no al-

teration occurred. We hypothesize this phenomenon might be due to the combination of 

the Normal Pipeline and different read mapping algorithms used as mentioned above. 

Comparison of batch 2 samples running between the Fast Pipeline and Normal Pipe-

line showed no differences in either nucleotide substitution or amino acid mutations; 

however, we noted the difference in all samples and batches, specifically in the NSP12-

ORF1AB where NSP12 inside ORF1AB poses two regions of 13,442–13,468/13,468–16,236 

as mentioned in GenBank data (accession number: NC_045512.2). Differences in the re-

gion were observed between this study and the previous one by Gunadi et al. [9], where 

shifting in altered amino acid location occurred. Further investigation revealed that in this 

study, regions were obtained based on SARS-CoV-2 GFF annotation provided by NCBI, 

with only 13,468–16,236 (ORF1B) inside NSP12 considered, leaving the rest 13,442–13,468 

(ORF1A) not included; however, previous studies showed the shifting does not merely 

impact the exact location of amino acid mutations, rather only the perspective based on 

the ORF [17]. For instance, the P323L in NSP12 identified from previous and known stud-

ies was derived from full ORF1AB, whereas the P314L identified in this study was actually 

located in ORF1B only, as shown in Tables 12 and 13. 

A comparison of batch 3 samples running between Fast Pipeline and Normal Pipeline 

showed five amino acid mutations observed in three samples, represented as a yellow 

color in Table 14. First, samples S3-4, at position 386 inside the region of NSP4-ORF1AB, 

have a T/Y amino acid mutation using the Normal Pipeline and have a T amino acid mu-

tation using the Fast Pipeline. Second, sample S3-9 has three different amino acid muta-

tions. At position 1396 inside the region of NSP3-ORF1AB, samples S3-9, S1369L amino 

acid mutation is not detected using the Normal Pipeline but is detected using the Fast 

Pipeline. At position 43 inside the region of ORF8, sample S3-9, S43P amino acid mutation 

is detected using the Normal Pipeline, but not detected using the Fast Pipeline. At position 

151 inside the nucleocapsid, P151S amino acid mutation is detected using the Normal 

Pipeline, but not detected using the Fast Pipeline. Third, in samples S3-14, at position 57 

inside the ORF3A, Q57H amino acid mutation is not detected in the Normal Pipeline but 

detected using the Fast Pipeline. 

Despite the occurrence of ambiguous amino acids, both pipelines work well and are 

capable of identifying specific mutations belonging to SARS-CoV-2. Prominent mutations 

with abundant studies during the COVID-19 pandemic, including P314L (NSP12-

ORF1AB), D614G (spike glycoprotein), and Q57H (NS3-ORF3A), were found in all sam-

ples running both pipelines, as shown in Tables 12–14. D614G mutation in spike glyco-

protein is the most studied among all, owing to its capabilities to enhance viral replica-

tions in epithelial cells, resulting in an increasing level of stability and enhancement of 

infectivity [18,19]. It is also well considered as the major circulating mutation in Indonesia 

[9]. Furthermore, D614G is also responsible for amino acid mutations in other regions as 

well, such as in P323L in RNA-dependent polymerase or NSP12, where it was associated 

with D614G as contributing factor in the viral infectivity [17,20]. On the other hand, Q57H 

mutation in NS3-ORF3A assists viruses in evading induction immune responses 
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including interferon-stimulated gene, cytokine, and chemokine, as it causes truncation of 

ORF3B [21,22]. 

We present a comparison of fully complete runtime execution starting from quality 

control up until the end result of amino acids detection in both the Fast Pipeline and Nor-

mal Pipeline. As recorded in Table 15, Fast Pipeline, by default, successfully achieved the 

shortest time required to fully complete the pipeline from raw FASTQ data to the detec-

tion of amino acid mutations. All samples running the Fast Pipeline would require signif-

icantly less time than samples running the Normal Pipeline. Samples S3-14 were able to 

reach the shortest time with only 1 min to fully complete the pipelines. 

5. Conclusions 

This study evaluates the improved enrichment kit of Respiratory Virus Oligo Panel 

specified for Illumina NGS systems by directly detecting the SARS-CoV-2 genome inside 

clinical samples through the utilization of different bioinformatics pipelines called ‘Fast 

Pipeline’ and ‘Normal Pipeline’. We noted the advantages and drawbacks of each pipe-

line. Fast Pipeline ultimately works well in a situation where time is a critical factor. Its 

mesmerizing capabilities in shortening the time required to detect nucleotide substitu-

tions and amino acid mutations are excellent, especially in tracing and detecting new 

SARS-CoV-2 variants. We discovered a higher number of reads mapped to the SARS-CoV-

2 genome in the Fast Pipeline and merely as a contributing factor in a higher number of 

coverage depth and identified variations (SNPs, insertion, and deletion). Further study 

should be conducted concerning these underlying conditions and whether they might af-

fect the results later on during downstream analysis, for instance, in the identification of 

high-quality SNPs. On the other hand, Normal Pipeline would require a longer time as it 

mapped reads to the human genome; however, it utilizes the standard metagenomics 

principles, filtering out reads of the human genome from samples to obtain pure viral 

genomes of SARS-CoV-2; therefore, the distribution of mapped reads are known and iden-

tified variations are accurate. Overall, both pipelines work well in the characterization of 

SARS-CoV-2 samples, including in the identification of major studied nucleotide substi-

tutions and amino acid mutations. Furthermore, we noted a limitation to the unintegrated 

executable script; mainly, both bash and Python scripts in this study are separated entities 

from different environments. It is recommended in future studies to design a pipeline in 

an integrated framework, for instance, by using NextFlow, a workflow framework to com-

bine all scripts into one fully integrated pipeline. 
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