
Citation: Wong, A.; Zhou, A.; Cao, X.;

Mahaganapathy, V.; Azaro, M.; Gwin,

C.; Wilson, S.; Buyske, S.; Bartlett,

C.W.; Flax, J.F.; et al. MicroRNA and

MicroRNA-Target Variants

Associated with Autism Spectrum

Disorder and Related Disorders.

Genes 2022, 13, 1329. https://

doi.org/10.3390/genes13081329

Academic Editor: Andreas

G. Chiocchetti

Received: 3 July 2022

Accepted: 22 July 2022

Published: 26 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

MicroRNA and MicroRNA-Target Variants Associated with
Autism Spectrum Disorder and Related Disorders
Anthony Wong 1, Anbo Zhou 1, Xiaolong Cao 1 , Vaidhyanathan Mahaganapathy 1 , Marco Azaro 1,
Christine Gwin 1, Sherri Wilson 1, Steven Buyske 2 , Christopher W. Bartlett 3,4, Judy F. Flax 1,
Linda M. Brzustowicz 1,5 and Jinchuan Xing 1,5,*

1 Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
aw449@scarletmail.rutgers.edu (A.W.); zhouanbo@gmail.com (A.Z.); atps@outlook.com (X.C.);
vaidhyanathan.m@rutgers.edu (V.M.); azaro@hginj.rutgers.edu (M.A.); gwin@dls.rutgers.edu (C.G.);
sherriw@hginj.rutgers.edu (S.W.); judyflax17@gmail.com (J.F.F.); lbrz@hginj.rutgers.edu (L.M.B.)

2 Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
buyske@stat.rutgers.edu

3 The Steve & Cindy Rasmussen Institute for Genomic Medicine, Battelle Center for Computational Biology,
Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA;
christopher.bartlett@nationwidechildrens.org

4 Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
5 Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey,

Piscataway, NJ 08854, USA
* Correspondence: jinchuan.xing@rutgers.edu

Abstract: Autism spectrum disorder (ASD) is a childhood neurodevelopmental disorder with a
complex and heterogeneous genetic etiology. MicroRNA (miRNA), a class of small non-coding RNAs,
could regulate ASD risk genes post-transcriptionally and affect broad molecular pathways related
to ASD and associated disorders. Using whole-genome sequencing, we analyzed 272 samples in
73 families in the New Jersey Language and Autism Genetics Study (NJLAGS) cohort. Families
with at least one ASD patient were recruited and were further assessed for language impairment,
reading impairment, and other associated phenotypes. A total of 5104 miRNA variants and 1,181,148
3′ untranslated region (3′ UTR) variants were identified in the dataset. After applying several
filtering criteria, including population allele frequency, brain expression, miRNA functional regions,
and inheritance patterns, we identified high-confidence variants in five brain-expressed miRNAs
(targeting 326 genes) and 3′ UTR miRNA target regions of 152 genes. Some genes, such as SCP2 and
UCGC, were identified in multiple families. Using Gene Ontology overrepresentation analysis and
protein–protein interaction network analysis, we identified clusters of genes and pathways that are
important for neurodevelopment. The miRNAs and miRNA target genes identified in this study
are potentially involved in neurodevelopmental disorders and should be considered for further
functional studies.

Keywords: whole-genome sequencing; miRNA; autism spectrum disorder; family cohort; 3′ UTR;
neurodevelopmental disorder

1. Introduction

Autism spectrum disorder (ASD) is a multifaceted neurodevelopmental disorder
(NDD) identified by neurodevelopmental impairment, deficits in social communication,
and repetitive patterns of behavior [1]. Published studies by the Center for Disease Control
and Prevention (CDC) and the New Jersey Autism Study showed alarming rates of ASD
prevalence in children, i.e., 1 in 59 nationally [2]. The high prevalence of ASD has made
it essential to study the biological mechanism of, and identify predictive biomarkers for,
the disorder.
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ASD is highly heritable, with a recurrence rate around 20% among family members [3].
Previous studies of the genetic etiology of ASD have identified a large number of genetic
risk factors that contribute to the disorder. These risk factors can be broadly divided
into three classes: (1) small genetic variants (i.e., single nucleotide variants (SNVs) and
insertion/deletion variants (indels)) in the protein coding regions and non-coding regions
(~50% of ASD cases) [4,5]; (2) rare copy-number variants (5–10% of ASD cases) and chro-
mosomal abnormalities (~5% of ASD cases); and (3) ASD-related genetic syndromes (~10%
of cases) [4]. At the gene level, nearly 1000 genes are implicated in ASD. Although the
genome-wide genetic risk based on common variants can be estimated for a patient, due
to the heterogeneity of ASD, each identified mutation contributes only a small percentage
of known cases, and in each patient, the combination of variants that resulted in ASD is
mostly undetermined.

MicroRNAs (miRNAs) are a type of short, non-coding genes that are involved in post-
transcriptional gene regulation. A single miRNA can bind to several hundred target sites in
the 3′ untranslated regions (3′ UTR) of mRNAs and thus control a large variety of molecular
pathways that could be involved in ASD pathophysiology. Indeed, miRNAs are expressed
in different brain regions and have crucial functions during brain development [6]. Previous
studies of dysregulated miRNAs identified several candidates [7,8]. For example, a study
using mouse neurons discovered that miR-137 and miR-132 regulate two autism-related
genes: PTEN and MeCP2 [7]. A study of model mice with Angelman Syndrome discovered
down-regulation of miR-708 in the brain, which led to aberrant Ca2+ signaling [8]. Thus,
miRNA dysfunction could play a role in explaining the complex and heterogeneous nature
of ASD and related NDDs.

While there are previous whole-genome sequencing (WGS) studies of miRNA mu-
tations and their target regions in ASD patients [9,10], few if any studies have quantified
the relationship between putative genes in ASD and other associated NDDs in a familial
setting. In this study, we utilized WGS data from the New Jersey Language and Autism
Genetics Study (NJLAGS) to examine the contribution of miRNAs to ASD and related
disorders. NJLAGS is designed to detect genetic variation related to both ASD and lan-
guage impairment [11]. More than 150 families were recruited in NJLAGS and this cohort
provides the architecture to assess the contribution of both segregating and de novo variants
to ASD genetic etiology. Here, we identified high-confidence SNVs and indels in miRNA
and miRNA target regions from the NJLAGs cohort. We propose that mutations that affect
miRNAs and their mRNA transcript binding sites could cause abnormal gene expression
for ASD implicated genes and contribute to ASD and related NDDs in NJLAGS families.

2. Materials and Methods
2.1. Family Selection and Phenotyping

NJLAGS collected data from ASD probands and their family members for genetic
analysis. Each individual was subjected to measures of ASD, oral language impairment
(LI), written language impairment (RI), and social responsiveness (SRS). The assessment
and diagnosis details were described previously [11]. Briefly, ASD diagnoses were based
on the Autism Diagnostic Interview (ADI-R), Autism Diagnostic Observation Schedule
(ADOS), and the Diagnostics and Statistical Manual-IV (DSM-IV), or DSM-5, depending
on the recruitment date (see [11] for details). LI is defined as a score of less than 85 on the
CELF-4 or a history of language/reading difficulties with at least a score of one standard
deviation below their peers on at least 60% of oral language subtests. RI is defined as a score
of one standard deviation below the mean of 60% on all reading tests. SRS is measured with
the Social Responsiveness Scale. The cut-off for a dichotomous trait social deficit (SRS-DT)
was a score of 54 for males and 45 for females which was equivalent to the T-score > 60
criteria used to identify mild impairment in children [11]. ADHD affection status for ASD
probands and their family members was determined based on the relevant questionnaires,
as described previously [12]. This study was approved by the Institutional Review Board
at Rutgers, State University of New Jersey (IRB number: 13-112Mc).
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2.2. miRNA Variant Identification

A total of 272 individuals were subject to WGS (Table S1). The details of sequencing
and variant identification are described previously [12]. The SNVs and indels were obtained
from a previous study [12] and are available in the National Institute of Mental Health Data
Archive (NDA) under experiments C1932 and C2933.

The genomic positions of human miRNA genes (genome assembly GRCh37) were
obtained from miRBase v22 [13]. The database includes 1917 miRNA genes in the human
genome [14]. For variants within a known miRNA, ADmiRE [15,16] was used to classify the
variants by their locations in miRNA functional regions (i.e., seed, mature, etc.). The seed
region annotation indicates a variant lies within the core miRNA/mRNA binding region,
while the mature region indicates a variant lies outside of the seed region but still within a
functionally mature miRNA that is incorporated into the RNA-induced silencing complex.
The arm and loop regions form the remaining hairpin of the precursor miRNA structure.

2.3. MiRNA Binding Site Identification

TargetScanHuman [17] was used to predict potential miRNA target genes [18]. Binding
sites are categorized as broadly conserved across vertebrate species, conserved across mam-
mals, or poorly conserved by aligning sequences across 28 different species [19]. Broadly
conserved and conserved binding sites were considered high-confidence candidates and
selected for downstream analysis. Using this data, 3′ UTR variants were overlapped with
TargetScanHuman conserved binding sites to identify 3′ UTR variants that could disrupt
miRNA-mRNA binding. To characterize the gene networks regulated by candidate miR-
NAs, miRNA predicted targets with a context++ score (CS) of < −0.4 was used to select
sites with high targeting efficacy [18].

2.4. Characterizing Variants by Inheritance Modes

GEMINI v0.20.1 [20] is a computational framework that identifies variants following
autosomal dominant, autosomal recessive, or de novo mode of inheritance [21]. Both pedi-
gree and variant call information was loaded into GEMINI using the following command:

gemini load -v input.vcf -p input.ped
Variants were then identified as being autosomal dominant, autosomal recessive, or de

novo for each phenotype by executing:
gemini autosomal_dominant/autosomal_recessive/de_novo input.db
GEMINI strict inheritance rules were applied, where at least a full trio (i.e., both

parents are present for a proband) is required to infer the inheritance pattern.

2.5. Reference Population Dataset

WGS data from 15,708 (gnomAD v.2.1.1 non-neuro genome, Broad Institute, Cam-
bridge, MA, USA) and 76,156 (gnomAD v.3 non-neuro, Broad Institute, Cambridge, MA,
USA) unrelated individuals without a neurological condition, and whole-exome sequenc-
ing data from 125,748 unrelated individuals without a neurological condition (gnomAD
v.2.1.1 non-neuro exome, Broad Institute, Cambridge, MA, USA) were obtained from the
Genome Aggregation Database (gnomAD) [22] and used as reference populations. Variants
that failed gnomAD quality control metrics (i.e., with RF, AC0, InbreedingCoeff, etc. in the
“Filters” field) were excluded. Variant alternative allele frequencies (AF) in gnomAD popu-
lations were used to identify rare alleles in the general population. An AF cutoff of 1% for
dominant and recessive and 0.1% for de novo variants in all datasets was applied for miRNA
and 3′ UTR variants. For variants which do not have AF values in all gnomAD datasets,
the AF cutoffs were applied based on available databases. Variants that are not identified
in gnomAD databases were instead filtered by cohort AF among the NJLAGS samples (1%
for dominant and recessive and absent in all other samples for de novo variants).
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2.6. Brain Expression Data

Expressions of miRNA and protein-coding genes in the brain were extracted from the
Gene Tissue Expression project (GTEx) [23], the BrainSpan Atlas of the Developing Human
Brain project [24], and the Human Developmental Biology Resource (HDBR) [25]. Detailed
data processing procedures were described previously [26]. We selected genes and miRNAs
that have a transcript per million (TPM) value greater than 5 in any of the datasets.

2.7. Gene Ontology Enrichment Analysis and Protein–Protein Interaction Network Analysis

Gene Ontology (GO) enrichment analysis was performed using ConsensusPathDB [27].
GO terms with a false-discovery rate (FDR) < 0.05 were considered enriched and terms
with less than 600 total genes within the group were selected to increase the specificity of
the enrichment results.

A protein–protein interaction network was built to investigate the potential interac-
tions between candidate miRNA target genes and 3′ UTR genes. ConsensusPathDB [27],
STRING [28], and GIANT_v2 [29] were used to generate a list of known gene interactions.
Detailed data processing procedures were described previously [26,30]. Edges with at least
two database interactions were considered high-confidence interactions for the network.
Additional known NDD genes collected from previous studies (Table S2, [26]) were in-
cluded in the network analysis. Isolated and self-directed interactions were removed from
the network.

3. Results
3.1. Cohort Description

We obtained WGS variants of 272 individuals from 73 families (Table S1). 65 males
and 18 females were diagnosed with ASD (Table 1). All 73 families contained at least one
individual diagnosed with ASD, LI, or RI, and 59 and 47 families contained at least one
individual diagnosed with SRS and ADHD. Across all disorders, 35 and 67 families fit a
dominant or a recessive/de novo mode of inheritance, respectively (Table 1). Due to a lack
of ASD affected parents in the cohort of sequenced individuals, no families met the criteria
for dominant inheritance pattern for ASD.

Table 1. Summary of Samples and Families.

Patients Male Female Families Dominant Recessive/de
novo

ASD 83 65 18 73 0 67

LI 117 86 31 73 9 58

RI 134 96 38 73 9 42

SRS 83 60 23 59 25 43

ADHD 63 43 20 47 10 24

All Samples 272 166 106 73 35 67
The first three columns are the total number of affected individuals, male, and female affected individuals,
respectively. Families indicate the total number of families that contain at least one affected individual with the
respective phenotype. Dominant and Recessive/de novo are the number of families that meet the criteria for the
specific mode of inheritance.

3.2. miRNA Variant Identification

Out of 25,987,740 variants, 5104 variants overlapped miRNA genes and were an-
notated for the miRNA regions (e.g., seed, mature, etc.). Using the GEMINI program,
we categorized the variants by their inheritance pattern for each phenotype. A total of
632 variants matched one of the segregation patterns (dominant, recessive, or de novo)
(Figure 1, see Table S3 for details). Among them, we selected the 193 miRNA variants in
seed and mature regions for downstream analysis, because variants in mature miRNAs
and seed regions are most likely to affect the miRNA function. Among the 193 variants, 110
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are within miRNAs expressed in the brain (see Methods for detail). To select rare variants,
we applied AF filtering of less than 1% for dominant and recessive variants and 0.1% for de
novo variants in individuals in the gnomAD database. After filtering, five unique miRNA
variants from four families meet the AF cutoff under the dominant mode of inheritance
(Table 2).
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Figure 1. miRNA variant filtering steps. After selecting all variants within miRNAs, we filtered
variants based on their inheritance pattern, miRNA region annotation, brain expression pattern, and
population allele frequency to select final candidate variants.

Out of the five variants, two variants, rs371749301 and rs550720421, were identified in
family FAM58 and segregated with the RI phenotype. Two additional variants (rs200279579,
rs761222509) segregated with RI in families FAM5 and FAM66 and one segregated with LI
(rs565141718) in family FAM13, respectively (Table 2).
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Table 2. miRNA candidate variants.

miRNA Region Target
Genes chr pos rsID Ref Alt AF_2_exome AF_2_genome AF_3 Family Inheritance Phenotype

hsa-miR-
6780a-3p seed 179 chr17 40860121 rs200279579 A G 1.23 × 10−4 9.42 × 10−5 1.26 × 10−4 FAM5 dominant RI

hsa-miR-
1225-5p mature 43 chr16 2140269 rs371749301 C A 1.48 × 10−5 4.72 × 10−5 2.00 × 10−4 FAM58 dominant RI

hsa-miR-
2277-3p mature 37 chr5 92956416 rs550720421 G T 4.62 × 10−4 4.24 × 10−4 8.83 × 10−4 FAM58 dominant RI

hsa-miR-
548j-5p mature 42 chr22 26951249 rs565141718 C T 3.95 × 10−4 4.70 × 10−5 1.41 × 10−4 FAM13 dominant LI

hsa-miR-
100-5p mature 26 chr11 122022992 rs761222509 G A 1.93 × 10−5 N/A 7.42 × 10−6 FAM66 dominant RI

miRNA: HGNC Symbol. Region: miRNA region. Target Genes: the number of miRNA target genes predicted by TargetScanHuman. chr: Chromosome. pos: Variant position. rsID:
DBSNP150 reference SNV number. Ref: Reference allele. Alt: Alternate Allele. AF_2_exome: Population AF from gnomAD v2 non-neuro exome database. AF_2_genome: Population AF
from gnomAD v2 non-neuro genome database. AF_3: Population AF from gnomAD v3_non_neuro database. Family: Affected Family ID. Inheritance: Inheritance mode for the affected
family. Phenotype: Phenotype of the affected individual.
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3.3. 3′ UTR miRNA Binding Site Variant Identification

In addition to miRNA variants, variants in miRNA binding sites in the 3′ UTR of
miRNA target genes can also affect miRNA regulation. Next, we identified variants in
the miRNA binding sites. In the dataset, 1,181,148 variants were identified within 3′ UTR
regions. These variants were subject to similar variant filtering criteria as miRNA variants
(Figure 2). Using GEMINI, 155,802 variants fell within one of the three inheritance pattern
categories. TargetscanHuman was then used to identify 1092 variants that overlapped
predicted miRNA conserved target sites (context++ score < −0.4). Applying an AF fil-
ter of 1% for dominant and recessive variants and 0.1% for de novo variants resulted in
153 unique variants in 152 brain-express genes (Table 3), see Supplemental Table S4 for
details). A total of 6, 9, 18, and 7 families containing variants segregate in the dominant
pattern for ADHD, LI, RI, and SRS, respectively (Figure 3A). Because some patients have
multiple diagnoses, some variants meet certain segregation pattern in multiple phenotypes
(Table S4). Therefore, 29, 6, and 10 unique families contain variants segregating in dominant,
recessive, and de novo patterns, respectively (Figure 3).
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Table 3. Summary of 3′UTR Candidate Genes. Total number of genes found in each phenotype and
inheritance pattern.

ASD ADHD LI RI SRS Total
Unique

Dominant (AF < 1%) 0 26 30 79 33 138

Recessive (AF < 1%) 3 2 3 3 2 5

de novo (AF < 0.1%) 9 4 6 5 4 10

Total Unique 12 32 39 87 39 152
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3.4. Candidate Gene Analysis

To understand the functional impact of variants in miRNAs and their binding sites
on genes and molecular pathways, we first identified target genes of segregating miRNA
variants. We selected genes that are expressed in brain tissues for their biological relevance
(see Methods for detail). RI had four miRNAs with 284 target genes, and LI had one
miRNA with 42 target genes (Table S5). Next, we selected brain-expressed genes containing
segregating variants in the 3′ UTR miRNA binding sites. A total of 12, 32, 39, 87, and
39 unique genes were selected for ASD, ADHD, LI, RI, and SRS, respectively (Table 3 and
Table S5).

Four genes, ONECUT2, OSBP, SCP2, and TUB, appeared as targets of candidate
miRNAs and contained variants in their 3′ UTR miRNA target region (Table 4). For
example, Family FAM5 carried a mutation within the seed region of hsa-miR-6780a-3p
(rs200279579; chr17:40860121-A-G) which targets SCP2 (Sterol Carrier Protein 2). Family
FAM2 contained a mutation within the SCP2 3′ UTR region (rs182947399; chr1:53516762-
A-T) which affects the SCP2/miR-150-5p binding axis. Both mutations segregate in a
dominant pattern with the RI phenotype.

Two candidate genes, RBM24 and UGCG, overlapped multiple phenotypes in more
than one family (Table 4). UGCG (UDP-Glucose Ceramide Glucosyltransferase) is a key
gene for the biosynthesis of glycosphingolipids. The dominant variant (rs201977317;
chr9:114695431-GA-G) appeared in family FAM5 for RI and families FAM5, FAM36, and
FAM37 for SRS. The importance of UGCG and the role of glycosphingolipids in brain
development has been reported previously [31,32].
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Table 4. Top Candidate Genes.

Gene miRNA
Variant

3′ UTR
Variant

Gene
Max

Brain Ex-
pression

Other
NDD pLI Previous

Studies miRNA Inheritance Family Phenotype chr pos rsID AF_gnomAD Inheritance Family Phenotype

ONECUT2 66 NA 0.91 [33] hsa-miR-
6780a-3p dominant FAM5 RI chr18 55155836 rs147208471 7.27 × 10−4 dominant FAM56 SRS

OSBP 61.03 NA 1.00 [34] hsa-miR-
6780a-3p dominant FAM5 RI chr11 59343007 rs149325846 3.61 × 10−3 dominant FAM14;

FAM66 RI

SCP2 65.43 ASD_Low 0.00 [35] hsa-miR-
6780a-3p dominant FAM5 RI chr1 53516762 rs182947399 1.33 × 10−3 dominant FAM2 ADHD

TUB 187 NA 0.00 [36,37] hsa-miR-
6780a-3p dominant FAM5 RI chr11 8123523 rs1379616749 3.12 × 10−4 dominant FAM70 RI

RBM24 49.40 NA 0.09 [38] chr6 17292448 rs914886490 2.60 × 10−4 de novo FAM5;
FAM59 ADHD,LI

UGCG 86 NA 0.94 [31,32] chr9 114695431 rs201977317 4.54 × 10−3 dominant
FAM5;

FAM36;
FAM37

RI,SRS

Other NDD: genes implicated in NDDs from previous studies (Table S2). pLI: the probability the gene is loss-of-function intolerant. AF_gnomAD: maximum variant AF in the three
gnomAD databases. Other headers are the same as in Table 2.
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3.5. Gene Ontology Terms Early Forebrain Patterning and Apoptotic Process Involved in
Development Are Enriched

To explore the possible shared relationship and affected pathways between our two
sets of genes, we performed a GO over-representation analysis to identify neurodevelop-
mental terms in each phenotype (Table S6). Each gene list showed enrichment in pathways
and terms related to brain structure and development. For example, “Forebrain dor-
sal/ventral pattern formation” (GO:0021798, q = 0.0038) is a small category consisting of
five genes, three of which (GSX2, SIX3, NKX2-1) appear in our RI candidate genes. Other
top terms include “apoptotic process involved in development” (GO:1902742, q = 0.003)
and “actin cytoskeleton” (GO:0015629, q = 0.038) in LI and ASD candidate genes, respec-
tively, and may suggest the importance of the regulation of apoptosis and actin in the
context of neurodevelopment.

3.6. Protein–Protein Interactions

A protein–protein interaction (PPI) network can help identify shared etiology among
families despite the heterogeneity of single gene variants among individuals. Therefore, we
constructed a PPI network for both miRNA target genes and 3′ UTR genes. Seventeen out of
326 miRNA target genes and 18 out of 152 3′ UTR genes have high-confidence interactions
within a single network (Figure 4, Table S7). An enrichment analysis on the 35 connected
genes showed enrichment in terms such as “regulation of neuron death” (GO:1901214,
q = 1.21 × 10−4). While these genes are not directly connected, it demonstrates a control
of neuronal development from many different pathways that our candidate genes may
be involved in. One of our top terms was “calcium-mediated signaling” (GO:0019722,
q = 2.23 × 10−5) and overlapped 6 genes. Other terms are listed in Table S8. In addition,
five genes, MTOR, AGO1, EP300, XPO1, and PPP3CA, have been implicated in ASD by the
SFARI database. AGO1 (Argonaute RISC Component 1), is the protein directly involved in
the miRNA-mRNA binding complex and lends further credence to miRNA involvement in
ASD and related NDDS.
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highlighted region included genes enriched in regulation of neuron death (GO:1901214).

We then constructed additional networks between our candidate genes and known
NDD genes to further explore the effect of our genes in NDDs (Figure 5, Table S10). The
ADHD network (Figure 5B) shows a tightly clustered set of calcium voltage gated and
glutamate receptor genes, both of which have been shown to be possible mechanisms linked
to ASD and ADHD [39]. The RI and LI PPI networks contain genes involved in chromatin
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and transcription factor binding and cell cycle control (Figure 5C,D). Common genes that
appear in multiple networks include MAPK3 and PTEN. MAPK3 is located within the
chromosome 16p11.2 band that is associated with 16p11.2 deletion syndrome, characterized
by intellectual disability and developmental delay [40]. PTEN has been reported to be
involved in a miRNA regulatory network and mutations in PTEN are present in 20% of
children with both ASD and macrocephaly [7,41]. Candidate genes also interact with
NTRK1 and NTRK3, Neurotrophic Receptor Tyrosine Kinases, which interact with nerve
growth factors.
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non-candidate genes were not shown. Edges with only one protein–protein database evidence were
not shown in (C,E). Highlighted regions included genes in GO terms.



Genes 2022, 13, 1329 12 of 16

4. Discussion

The genetic etiology of ASD has been studied extensively; however, many ASD
patients have no known genetic cause [4]. Due to the role of miRNA in brain development,
variants in miRNAs and their binding targets in 3′ UTRs could contribute genetically to
the emergence of ASD. In this study, we sought to identify candidate genes affected by
miRNA/mRNA interaction variants by leveraging the WGS data generated from families
collected by NJLAGS.

By studying segregating variants that were also rare in the general population, we
identified five miRNA and 153 3′ UTR high-confidence variants in 39 families across the
five phenotypes. Although the large number of variants prevented us from performing
experimental validation, all five miRNA candidate variants and the vast majority of the 3′

UTR variants (146 out of 153) were either reported as high-quality variants in the gnomAD
project or in multiple samples in our dataset. Combining with our stringent genotype
segregation screening, we expect that most of the candidate variants are authentic. These
variants are located in the seed/mature region of miRNAs or in conserved 3′ UTR miRNA
target sites and have a high probability of disrupting the complementary base pairing in
the miRNA-mRNA complex. Six genes (Table 4) have high-confidence variants in multiple
families, making them strong candidates as risk genes. TUB (TUB Bipartite Transcription
Factor) and SCP2 have been studied in individuals with neuronal disorders [35,36]. TUB is
part of the Tubby signaling pathways that are important during neurodevelopment [37].
A TUB frameshift mutation in three siblings was associated with retinal dystrophy and
obesity [36]. SCP2 is responsible for mediating the transfer of common phospholipids,
cholesterol, and gangliosides, and is implicated in Leukoencephalopathy with Dystonia
and Motor Neuropathy [35]. For the remaining genes, in vivo studies provide evidence of
their role in neuronal development. ONECUT2 (One Cut Homeobox 2) is known to regulate
early retinal progenitor cells [33]. A study of N2A mice neuroblast cell lines discovered
that the overexpression of OSBP (Oxysterol Binding Protein) decreased miR-124 mediated
neurite growth [34]. RBM24 (RNA Binding Motif Protein 24) is an RNA-binding protein
that is responsible for skeletal myogenesis, heart development, vertebrae sensory organ
differentiation, and embryonic germ layer formation [38]. UGCG (UDP-Glucose Ceramide
Glucosyltransferase) is important in the neural differentiation process [31]. Ugcg inhibition
in embryonic mouse cell lines was found to decrease neural cell marker proteins GFAP
and MAP-2 [31]. While the six candidate genes appear in different processes, possibly
due to the heterogeneity of the disorders, previous studies have shown that each gene
plays important roles during neuronal development, and the disruption of their expression
regulation could have contributed to the disorders in these families.

As expected with the heterogeneity of ASD, our study found hundreds of genes that
were unique to single families. To further elucidate the contribution of these candidate
genes, we conducted functional enrichment analyses and constructed PPI networks with
known NDD genes. The results showed that our miRNA target genes are involved in
processes which are important to neurodevelopment. For example, the ASD phenotype
showed enrichment of the GO term “actin cytoskeleton”, which is a component of dendritic
spine formation and plasticity [42]. A study of stem cells from human exfoliated deciduous
teeth of 13 ASD patients showed impaired actin polymerization in ASD patients and
demonstrated a possible mechanism of NDDs [43]. Three genes from our RI group, GSX2,
SIX3, and NKX2-1, are known to be expressed in the early forebrain and are responsible
for forebrain dorsal-ventral pattern formation during early cortical development [44–46],
an important developmental stage for ASD [47]. Additional functional analysis of our 37
genes in a PPI network (Figure 4) resulted in an enrichment of regulation of neuron death.
Neuronal apoptosis is an important mechanism during neurodevelopment and has been
implicated in ASD. For example, a comparison of neuron counts of seven autistic and six
control children found 67% more neurons in the prefrontal cortex in autistic children than
the mean. Additionally, a failure of subplate apoptosis in the prenatal brain is proposed
as one reason for increase neuron counts in ASD children [48]. A look into our phenotype
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subgraphs (Figure 5) reveals that our candidate genes target some key autism risk genes.
For example, PTEN appears to be strongly connected in our network and has appeared as
a high confidence risk gene for individuals with ASD and macrocephaly [49–51]. Overall,
our findings as well as previous studies suggest that our discovered variants affect genes
that have an important impact on neurogenesis.

Our study had a few limitations. First, it had a relatively small cohort size. This
necessitates further study with a larger sample size for increased statistical power. We
also only examined variants with a simple segregation pattern and limited our analysis
to interactions among variants. With a large sample size, methods incorporating variants
with incomplete penetrance (i.e., not following a strict segregation pattern) could further
improve the power of the analysis. Expanding the region of analysis beyond miRNA seed
regions paired with tools to predict gain or loss of binding sites such as SBSA [52] could
also aid in identifying additional pathogenic variants in future works.

Psychiatric disorders in general have a large polygenic component [53], with variants
distributed throughout the genome with varying effect sizes [54]. The genetic overlap be-
tween psychiatric disorders is considerable but not total. The importance of understanding
the degree and specificity of overlap between disorders and closely related phenotypes
is multifaceted, including implications of homogeneity in recruiting subjects for clinical
research, understanding shared genetic risk, and for biological studies across disease con-
texts. Here, we focused on ASD, ADHD, LI, RI, and the SRS. Evaluating the relationship
between ASD, LI, and RI was among the main goals of the NJLAGS study, with recruiting
choices intended to identify families with high genetic burden for both ASD and language
impairments (both spoken, LI, and written, RI) [11,55–58]. The SRS is a quantitative scale
that captures a key component of the ASD phenotype, since social skills are a pillar of diag-
nosis [59]. To date, the relationship between language (LI/RI) and ASD has shown to be
complex [11,58], with this study further showing indications of the polygenic nature of that
relationship. ADHD is well known to be genetically related to RI, but again, when applied
to families selected for ASD, the relationship is complex and requires further studies [60].

5. Conclusions

In conclusion, our study identified a number of high-confidence segregating variants
that could affect the miRNA/mRNA regulation pathway. Many candidate genes and path-
ways play important roles in neuronal development and could contribute to the etiology
of ASD and associated disorders. Previous studies have identified non-coding regulatory
mutations associated with ASD. While our study did not replicate the findings from these
studies [9,10], our results support the miRNA regulation pathway as an important contrib-
utor to the etiology of ASD and related NDDs. Future studies with experimental functional
validation could further elucidate the roles of our identified genes in the etiology of ASD
and related NDDs.
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