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Abstract: Traditional methods concerning type 2 diabetes (T2D) are limited to grouped cells instead
of each single cell, and thus the heterogeneity of single cells is erased. Therefore, it is still challenging
to study T2D based on a single-cell and network perspective. In this study, we construct a conditional
cell-specific network (CCSN) for each single cell for the GSE86469 dataset which is a single-cell
transcriptional set from nondiabetic (ND) and T2D human islet samples, and obtain a conditional
network degree matrix (CNDM). Since beta cells are the key cells leading to T2D, we search for hub
genes in CCSN of beta cells and find that ATP6AP2 is essential for regulation and storage of insulin,
and the renin-angiotensin system involving ATP6AP2 is related to most pathological processes
leading to diabetic nephropathy. The communication between beta cells and other endocrine cells is
performed and three gene pairs with obvious interaction are found. In addition, different expression
genes (DEGs) are found based on CNDM and the gene expression matrix (GEM), respectively. Finally,
‘dark’ genes are identified, and enrichment analysis shows that NFATC2 is involved in the VEGF
signaling pathway and indirectly affects the production of Prostacyclin (PGI2), which may be a
potential biomarker for diabetic nephropathy.

Keywords: CCSN; single-cell; hub gene; ‘dark’ gene; signaling pathway

1. Introduction

T2D is a metabolic disorder characterized by hyperglycemia caused by one or both of
insulin resistance and insufficient insulin production. People with T2D are at high risk for
many serious health-threatening complications, including cardiovascular diseases, blind-
ness, kidney failure, limb amputations, premature death, fractures, frailty, depression, and
cognitive decline [1]. Diabetes affected 422 million people and directly caused 4.9 million
deaths according to the global report on diabetes in 2014. Therefore, exploring the potential
pathogenesis of T2D is of great significance for diabetes prevention and treatment. There
has been a great deal of literature on T2D, most of which was based on bulk RNA-seq data,
and heterogeneity between single cells was often overlooked.

Single-cell RNA sequencing can uncover unexpected subpopulations, rare cellular
states, or novel transcriptional machinery [2,3] and may provide an opportunity to gain
insight into cell-specific network systems. The rapid growth of single-cell datasets has shed
new light on the complex mechanisms behind cellular heterogeneity. Li et al. used single-
cell RNA-seq to establish a comprehensive transcriptome database for the cell types that
are present in primary human pancreatic islets and identified human-specific expression
patterns in alpha and beta cells [4]. Based on continuous pseudo-time spectrum analysis,
Bao et al. found beta cell transition among different cell states [5]. Lawlor et al. identified
fundamental cell type-specific features of pancreatic islet function [6]. Segerstolpe et al.
revealed subpopulations of alpha, beta, and acinar cells [7].
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Single-cell RNA sequencing has promoted the study of cellular heterogeneity and
functional diversity. However, most of the current single-cell data algorithms focus on the
analysis of gene expression levels. In addition, there are few studies on single-cell gene
association networks. To fully extract the information for single-cell data, Li et al. trans-
formed ‘unstable’ gene expression data into ‘stable’ gene association data by constructing a
gene–gene direct association network at the single-cell level [8].

In this study, according to the clustering results of dataset GSE86469 by Lawlor et al. [6],
we search for hub genes in the CCSN network of beta cells and identify genes with high
network correlation. The communication between beta cells and other endocrine cells is
analyzed to find gene pairs with obvious interaction. In addition, based on CCSN, we
uncover some ‘dark’ genes, which are non-differential in gene expression but sensitive to
network degree. We discover that calcium-regulated NFAT protein encoded by ‘dark’ gene
NFATC2 binding to DNA-related sites in the nucleus can induce the expression of COX2,
and thereby affects the production of PGI2 in the VEGF signaling pathway. NFAT has been
shown to play an important role in the pathogenesis of diabetes and the development of
vascular complications. As a consequence, NFATC2 may be a new potential biomarker for
diabetic nephropathy.

This study has the following advantages:

1. We build a cell-specific direct correlation network from the perspective of gene associ-
ation based on CCSN, which fundamentally reduces large noise and instability.

2. Based on CCSN, hub genes with high network correlation in CCSN and pathways
related to T2D are identified, which can provide more reliable biomarkers for T2D
prognosis and treatment.

3. By CCSN method, we are able to uncover ‘dark’ genes, which are non-differential in
gene expression but sensitive to the degree value. These genes cannot be found by
traditional differential analysis methods and may play important roles in network
regulation of T2D. GO and KEGG functional enrichment analysis show that some
‘dark’ genes are involved in T2D-related pathways and might be potential biomarkers
for T2D and its complications.

2. Materials and Methods
2.1. Data Pre-Processing

We download the original dataset GSE86469 from the NCBI (https://www.ncbi.nlm.
nih.gov (accessed on 1 October 2021)) website, which is the RNA-seq profile of 638 human
pancreatic islet/other single cells obtained from 5 non-diabetic and 3 type 2 diabetic
cadaveric organ donors. The original dataset contains 26,616 genes and 638 cells. The
638 cells include 380 single-cell samples from healthy people and 258 single-cell samples
from patients with T2D. Lawlor et al. carried out Gaussian mixture modeling (GMM) on
the dataset [6]. The 638 cells were clustered into alpha, beta, delta, gamma, ductal, acinar,
stellate, and some unrecognized cells as ‘other’. Among them, alpha, beta, delta and gamma
belong to endocrine cells. Then we convert the original dataset into GEM with 17420 genes
through quality control and gene id conversion. Finally, the logarithm log(1 + x) is applied
to normalize the GEM with 17,420 rows/genes and 638 columns/cells [9,10]. The pancreatic
adenocarcinoma (PAAD) data used in the prognostic analysis came from survival data
from UCSC Xena (https://xenabrowser.net/ (accessed on 12 February 2022)).

2.2. Construction of CCSN

In this study, CCSN is constructed for each endocrine cell based on the cell-specific
network (CSN) proposed by Dai et al. [11] and the CCSN proposed by Li et al. [8].

First, for a given cell k, we choose the largest importance genes as the conditional
genes. Then the association between genes is calculated using the statistic constructed by
Li et al. [8]. If the statistic is greater than the alpha quantile of the distribution, it means that
there is association between genes; otherwise there is no association. Further, we integrate
the CCSNs of all cells belonging to the same type into a network. Finally, we transform

https://www.ncbi.nlm.nih.gov
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https://xenabrowser.net/


Genes 2022, 13, 1155 3 of 15

the network into CNDM for ease of computation. The details of CCSN are provided in the
Supplementary File S1.

The flowchart based on the dataset GSE86469 is given in Figure 1.
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(v) The analysis of ‘dark’ genes.

2.3. Identification of Hub Genes Based on CCSN

Insufficient insulin secretion or insulin resistance is an important cause of elevated
blood sugar levels. Therefore, by network analysis of insulin-secreting of beta cells, the main
genes and pathways related to T2D are identified, which can provide a new understanding
of the potential molecular mechanism of disease and provide more reliable biomarkers
for T2D prognosis and treatment. Based on the clustering results by Lawlor et al. [6], we
extract the GEM of 96 beta cells from the dataset and establish the CCSN of beta cells. The
top 20 hub genes associated with T2D, according to the maximum clique centrality (MCC)
scores from the cytoHubba plugin in Cytoscape, are screened.

2.4. Cell–Cell Communication

Cell–cell communication mediated by ligand-receptor complex is essential for co-
ordinating a variety of biological processes such as development, differentiation and
inflammation. Efremova et al. developed CellPhoneDB which can predict abundant cel-
lular interactions between two cell types from single cell transcriptome data [12]. For the
genes expressed by the cell population, the percentage of cells expressing the gene and the
average value of gene expression are calculated. The cluster tags of all cells are randomly
arranged for 1000 times (optional values), and the average expression level of receptors
in the cluster and the average expression level of ligands in the interaction cluster are
determined. If the observed average is in the top 5%, the p value of the interaction is
0.05. According to the number of significant receptor ligand pairs enriched in the two cell
types, the highly specific interactions between cell types are sorted to manually screen the
biologically related interactions.
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2.5. ‘Dark’ Genes Revealed by CNDM

Differential expression analysis is performed using the Bioconductor package edgeR.
DEGs of endocrine cells are screened based on GEM and CNDM, respectively. Comparisons
between T2D and ND single-cell transcriptomes are performed for the same cell types (e.g.,
T2D Alpha cells vs. ND Alpha cells). The genes with FDR < 5% are identified as DEGs
(Supplemental Table S1). DEGs with significant difference in the degree value but have
no differential expression are regarded as ‘dark’ genes. In brief, ‘dark’ genes show no
significant difference (p > 0.05; t-test) in the expression level between the diseased and
non-diseased states, but there is a significant difference (FDR < 0.05; t-test) in the network
correlation degree. ‘Dark’ genes are enriched in key functional pathways and perform well
in prognosis.

3. Results
3.1. Hub Gene Analysis

The top 20 ranked nodes are selected using the maximum clique centrality (MCC)
method in the cytoHubba plugin in Cytoscape (Table 1). These 20 genes are used as hub
genes, and their network relationship is shown in Figure 2. The network of the 20 hub genes
is shown with red (high ranking) and yellow nodes (low ranking) based on the ranking score.

GO enrichment results are displayed under the threshold value of 0.01. The 20 hub
genes are mainly concentrated in macromolecular complex, extracellular exosome, kine-
tochore, ribonucleoprotein complex, and mainly participated in the nuclear-transcribed
mRNA catabolic process, nonsense-mediated decay, translational initiation and other bi-
ological processes (Table 2). A macromolecular complex is a stable set of (two or more)
interacting protein molecules. Exosome as a novel biomarker reflecting cell behavior in
normal and pathological conditions, e.g., diabetes, is the center of academic attention.

Table 1. The top 20 ranked nodes are selected using the MCC method in the cytoHubba plugin
in Cytoscape.

Rank Name Score

1 ATP1B1 39
2 RIN2 22
3 EIF3E 18
4 AP000476.1 15
5 ACER3 11
6 CBX5 10
6 HIST1H4C 10
8 TFDP2 9
9 RPS29 8
9 PTPRS 8
9 CEP97 8
12 RPS3 7
13 NGFRAP1 6
13 XPO1 6
13 PLEKHH1 6
16 ECHDC2 5
16 EFCAB11 5
16 BIRC5 5
16 ATP6AP2 5
16 HSP90AB1 5
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Table 2. GO Analysis of Hub Genes.

Enriched Biological Process Enriched p Value

macromolecular complex (GO:0032991) 0.001387
nuclear-transcribed mRNA catabolic process,
nonsense-mediated decay (GO:0000184) 0.003306

extracellular exosome (GO:0070062) 0.003644
translational initiation (GO:0006413) 0.003925
Kinetochore (GO:0000776) 0.004606
ribonucleoprotein complex (GO:1990904) 0.006289

KEGG enrichment results are displayed under the threshold value of 0.05, and 20 hub
genes are enriched to 8 pathways (Table 3). In cases of pancreatic beta cell hyperplasia
associated with insulin resistance, ribosomal biogenesis is increased. The renin angiotensin
system is involved in most of the pathological processes that result in diabetic nephropathy.
This system has a central role in the pathophysiology of diabetic nephropathy [13]. Kidney
tissues can act on REN indirectly through the Renin pathway, which induces ATP6AP2 to
promote protein synthesis and anti-apoptosis and regeneration. In addition, ATP6AP2 is
critical for regulating the stored insulin pool and a balanced regulation of granule turnover
is key to maintaining beta cell function and diabetes prevention. ATP6AP2 deficiency
is the exacerbated generation and accumulation of multigranular bodies that consume
the cytoplasm of beta cells, ensnaring insulin secretory granules (SGs) and thus causing
insulin-deficient diabetes [14]. We find that there is Coronavirus disease-COVID-19 in the
enriched pathway. SARS-CoV-2 is known to infect human beta cells and possibly alters islet
function, suggesting that diabetics are at high risk of contracting COVID-19. Diabetes may
be a risk factor for salmonellosis due to decreased gastric acidity and prolonged gastric
transit time [15]. HSP90AB1 and RPS3 can activate a DNA molecule to TNFα directly or
indirectly involved in the NF-κB pathway. The IKK/NF-κB pathway plays a critical role in
the induction and maintenance of the inflammatory state underlying metabolic diseases
such as obesity and T2D [16]. HSP90AB1 has been identified as a potential therapeutic
target for metabolic diseases including diabetes, and suppression of HSP90AB1 is a valid
therapeutic clinically relevant strategy in the management of dysregulated metabolic
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disease and insulin resistance [17]. The gene pathway association network diagram in
functional enrichment analysis is shown in Figure 3.

Table 3. KEGG Analysis of Hub Genes.

Enriched Biological Process Enriched p Value

hsa03010: Ribosome 0.015199
hsa05207: Chemical carcinogenesis—receptor activation 0.026454
hsa04614: Renin-angiotensin system 0.027904
hsa04964: Proximal tubule bicarbonate reclamation 0.027904
hsa05171: Coronavirus disease—COVID-19 0.031280
hsa05132: Salmonella infection 0.035643
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In addition, we conduct prognostic analysis of hub genes, and the results are shown
in the Supplementary file.

3.2. Cell–Cell Communication Analysis

The communication between beta and the other three endocrine cell types shows
that the interaction between INS_INSR (insulin receptor), INS_IDE (insulin degrading
enzyme) and INS_LILRB1 (leukocyte immunoglobulin-like receptor) is obvious (Figure 4).
We discover that these genes interacting significantly with the insulin (INS) gene are directly
or indirectly involved in the development of T2D.

INS is responsible for the production of insulin from beta cells of the pancreas, and the
binding of insulin or other ligands to this receptor (INSR) activates an insulin signaling
pathway that regulates glucose uptake and release. Any functional defect of INSR gene
will directly affect the action of insulin and cause insulin resistance, thus leading to the
development of T2D [18]. IDE gene encodes a zinc metallopeptidase that degrades intracel-
lular insulin, and thereby terminates insulin activity, as well as participating in intercellular
peptide signaling by degrading diverse peptides such as glucagon, amylin, bradykinin,
and kallidin. The preferential affinity of this enzyme for insulin results in insulin-mediated
inhibition of the degradation of other peptides such as beta-amyloid. Deficiencies in this
protein’s function are associated with Alzheimer’s disease and T2D. LILRB1 is also called
microRNA7 (miR-7). MiR-7 is an evolutionarily highly conserved miRNA and considered to
be a typical neuroendocrine miRNA. MiR-7 is highly expressed in neuroendocrine organs
such as the pancreas and brain, which can regulate important aspects of pancreatic biology
and function. Potential miR-7 targets are enriched in insulin signal transduction, which
indicate that the gene may indirectly affect regulation of insulin [19].
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3.3. ‘Dark’ Gene Analysis

Based on GEM and CNDM, we find 13 ‘dark’ genes (Supplemental Table S2). Figure 5
shows the differences of gene expression and degree value of ‘dark’ genes FAM189A2 and
TNFAIP6 between ND and T2D. The results showed that for the ‘dark’ genes, there are no
significant differences at the gene expression level, but significant changes (FDR < 0.05;
log-rank text) are observed at the network correlation degree level.
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3.3.1. Prognostic Analysis of ‘Dark’ Genes

The prognostic analysis of chronic diseases has great biological significance. However,
due to the lack of corresponding prognostic data in the study of T2D at present, the
prognostic analysis of T2D cannot be performed directly. It is reported that diabetes is
associated with an increased risk of PAAD in both males and females and that diabetes
mellitus is both an early manifestation and an etiologic factor of PAAD [20]. To explore the
effect of ‘dark’ genes on patients with diabetes, we use the data of PAAD, which is closely
related to T2D to analyze the prognosis of T2D, in order to reveal the mechanism of the
development of T2D from another viewpoint.

Firstly, we analyze the prognosis of these ‘dark’ genes, respectively, based on gene
expression and degree value by dividing the samples into two groups based on the median
of genes’ expression or degree value. The high group is a group with higher value and
the low group is a group with a lower value. Secondly, based on the result of prognosis,
the ‘dark’ genes can be categorized into two types of molecules as a mutual marker for all
samples. Those genes with high scores that cause poor prognosis are termed “negative dark
genes”, and those genes with high scores that cause good prognosis are termed “positive
dark genes”. If “negative dark genes” appear in a sample, the prognosis would be more
negative than that of other samples. Similarly, if “positive dark genes” appear in a sample,
the prognosis would be more positive.

For PAAD, Figure 6 shows that ‘dark’ genes play an important role in the prognosis of
patients with PAAD. For SLC43A1, at the level of gene expression, the effect on the survival
rate of patients is very small, which does not reach statistical significance (p = 0.54 > 0.05;
log-rank test), but in the level of degree value of genes, the survival rate of patients is
significantly different (p = 0.025 < 0.05; log-rank test). It is obvious that the survival rate
of patients with high SLC43A1 degree value is significantly higher than that of patients
with low degree value, which is associated with “positive dark genes”. The prognostic
results mean that SLC43A1 has potential application value in accurate medical treatment or
personalized treatment of pancreatic problems.
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For SLC43A1, elevated concentrations of circulating branched-chain amino acids
(BCAA) have emerged as an early predictive/prognostic indicator of PAAD develop-
ment [21]. Furthermore, elevated circulating BCAA levels are also associated with numer-
ous states characterized by an inflammatory response and insulin resistance (IR), namely
obesity and diabetes [22,23]. Based on the study, elevated circulating levels of BCAA are
associated with insulin resistance and incident T2D, and BCAA may be useful biomarkers
for monitoring the early response to therapeutic interventions for T2D [24]. BCAA trans-
port into the cell across the plasma membrane is primarily carried out by a heterodimeric
protein known as the large neutral amino acid transporter (LNAA) [25]. LNAA consists
of a 55 kDa SLC7A5 subunit (subunit 1, LAT1, CD98 light chain) and a 68 kDa SLC3A2



Genes 2022, 13, 1155 9 of 15

subunit (subunit 2, CD98 heavy chain) [26]. BCAA transporters heterodimerizing with
SLC3A2 include SLC7A8 (LAT2), SLC43A1 (LAT3), and SLC43A2 (LAT4) [27]. Therefore,
SLC43A1 (LAT3), as a part of BCAA transporter, participates in the transport of elevated
circulating BCAA and has some connection with T2D.

3.3.2. ‘Dark’ Gene Pathway Analysis

Under the threshold value of 0.05, 13 ‘dark’ genes are mainly enriched in filopodium.
In terms of molecular function, this is mainly related to carboxylic ester hydrolase activity
(Table 4). Filopodium are observed at the advancing front of the migrating cell and are
implicated in cell motility as well as in cell-substrate adhesion. Carboxylic ester hydrolase
is a serum marker of acute pancreatitis, and recurrent pancreatitis can lead to diabetes.
Carboxylic ester hydrolases act on ester bonds (EC 3.1.1.) and are often applied in sev-
eral biotechnological processes. In addition, ‘dark’ genes enriched six KEGG pathways,
including the Axon guidance, VEGF signaling pathway, etc. (Table 5). Islet-expressed
axon-guiding molecules possess essential cell–cell connectivity for the maintenance of
normal islet function in adulthood. Vascular endothelial growth factor (VEGF) is one of
the major factors promoting diabetic retinopathy (DR) [28]. Previous studies have demon-
strated impaired phagocytosis of FC-γ receptors in monocytes of T2D patients with chronic
hyperglycemia [29].

Table 4. GO Analysis of ‘Dark’ Genes.

Enriched Biological Process Enriched p Value

carboxylic ester hydrolase activity (GO:0052689) 0.018599
filopodium (GO:0030175) 0.046597

Table 5. KEGG Analysis of ‘Dark’ Genes.

Enriched Biological Process Enriched p Value

hsa04360: Axon guidance 0.002895
hsa04370: VEGF signaling pathway 0.028677
hsa04662: B cell receptor signaling pathway 0.039688
hsa05235: PD-L1 expression and PD-1 checkpoint pathway in cancer 0.043020
hsa04658: Th1 and Th2 cell differentiation 0.044445
hsa04666: Fc gamma R-mediated phagocytosis 0.046818

3.4. The Underlying Signaling Mechanisms Revealed by ‘Dark’ Genes NFATC2 and UNC5D

To further clarify the association of ‘dark’ genes and DEGs in the pathway, we focus
KEGG analysis on the two pathways most associated with the progression of T2D and its
complications, namely Axon guidance and VEGF signaling pathway. The circulating axon
guidance pathway (AGP) proteins are associated with risk of end stage kidney disease
(ESKD), and diabetic nephropathy as the leading cause of ESKD is one of the most common
long-term microvascular complications of diabetes mellitus. There are several signaling
pathways that are stimulated in diabetes and potentially cross-talk to help each other
control VEGF release. VEGF-A is associated with the development of diabetic nephropathy.

3.4.1. ‘Dark’ Gene NFATC2 Is a Key Transcription Factor of Axon Guidance and VEGF
Signaling Pathway Related to Diabetes Complications

We discover that ‘dark’ gene NFATC2 is involved in Axon guidance and VEGF signal-
ing pathway and is a common key transcription factor in these two pathways. The NFAT
family of transcription factors is composed of five members, Nfatc1-4 and Nfat5, expressed
in pancreatic islets where they are thought to integrate calcium signals to coordinate gene
expression and regulate growth, differentiation and cellular response to environmental
cues [30]. NFAT has been shown to play an important role in the pathogenesis of diabetes
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and the development of vascular complications. NFATC2 is a key regulator of beta cell pro-
liferation and function. Simonett et al. identified approximately 250 direct transcriptional
targets of NFAT in human islets [31].

In Axon guidance pathway, Netrin-1 binds with DCC multimer to further activate
PLCγ, indirectly acting on Ca2+ to activate CaN to dephosphorylate NFAT (NFATC2)
(Figures 7a and 8). Netrin is a member of the laminin-like protein family and may be
extensively involved in the regulation of angiogenesis, inflammation, tissue remodeling,
and cancer. DCC is established as a receptor for netrin-1, and PLCγ1 plays a role in axon
extension and guidance by mediating netrin-1/DCC signaling. CaN (PPP3C) is the catalytic
subunit of Protein Phosphatase 2B (PP2B) holoenzyme (aka calcineurin), and activates a
vertebrate-specific transcription factor called NFATc. Calcineurin/NFAT signaling pathway
is important in axonal growth and guidance during vertebrate development. Diabetes has
been shown to cause insufficient axonal growth [32]. The extension and organization of
sensory axon projection and commissural axon growth are both dependent upon NFAT
activity.
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In VEGF signaling pathway, VEGF(VEGFA) activates the receptor VEGFR2(KDR) and
binds to it, PLCγ1 as a signal transducer converts an extracellular stimulus into intracellular
signals by generating inositol-1,4,5-trisphosphate (IP3), and IP3 and Ca2+ induce CALN
to dephosphorylate NFAT (NFATC2). NFAT proteins and their activation in the nucleus
and binding to DNA-related sites can easily induce the expression of downstream target
genes, PGI2 is metabolized from arachidonic acid via cyclooxygenase (COX)-1 and COX-2
in an initial metabolic step (Figures 7b and 8). VEGF family members are crucial to the
normal development and maintenance of the vascular and lymphatic systems. In the
kidney, VEGF is almost exclusively expressed in glomerular and tubular epithelial cells,
while the VEGF type-2 receptor (VEGF-R2)/KDR is mainly present in glomerular and
tubular endothelial cells, but also in interstitial cells. Upregulation of VEGFA in diabetic
kidneys protects the microvasculature from injury and that reduction of VEGFA in diabetes
may be harmful [33]. VEGFs and its receptor VEGFR-2 (KDR) have a significant impact on
the process of angiogenesis. Disturbances in physiologic angiogenesis can cause diabetic
retinopathy and nephropathy and inhibit angiogenesis in transplant rejection in diabetic
recipients. In T2D, glomerular lesions are created in the form of an increase in glomerular
endothelial cell number in consequence of imbalance in cell proliferation and apoptosis. The
main role in this process is attributed to VEGF-A expression following high glucose levels
in the early phases of diabetes [34]. VEGFR-2 inhibitors prevent angiogenesis and lymph
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angiogenesis, and some biologics such as ramucirumab (Cyramza), bevacizumab (Avastin),
ranibizumab (Lucentis) have been approved to target VEGF and VEGF receptors [35].
Evidence suggests that diabetes mellitus is associated with PGI2 dysregulation; reduced
PGI2 production by the vascular wall has been proposed as a possible cause of macro-
or microangiopathy in diabetes mellitus [36]. Prostacyclin synthase (PGIS) deficiency
induced renal fibrosis along with the notable irregulation of renal hemodynamics, tubular
atrophy, surface irregularities and cysts, and overexpression of PGIS contributed to the renal
protection against endotoxemia-related Acute kidney injury (AKI). Studies in subcutaneous
arteries from patients with diabetes mellitus suggest that COX-2 expression is increased,
whereas prostacyclin synthase expression is decreased [37]. Although selective inhibition
of COX-2 can improve the endothelial dysfunction, it has the potential harm of a decreased
PGI2 level. Prostacyclin is downregulated in patients with diabetes mellitus who are
at high risk of cardiovascular disease, kidney disease and other diseases. Once-daily
treatment and standby PGI2 may provide the greatest degree of protection. NFATC2, which
can indirectly affect the output of PGI2 and related signaling pathways, provides new
therapeutic targets for diabetic nephropathy. NFATC2 may be a new potential biomarker of
diabetic nephropathy.
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3.4.2. ‘Dark’ Gene UNC5D Is Involved in a Potential Signaling Pathway in the
Development of Diabetes-Related Complications Axon Guidance

Netrin-1 forms a ternary complex with DCC and UNC-5 complexes, the ternary com-
plex binding to Shp2 to activate the signal transduction pathway for repulsion (Figure 7a).
Netrin-1 seems to cluster different receptors together, leading to alternative signaling out-
comes. One such receptor is UNC5. Therefore, DCC plays a key role in a molecular switch
to turn attraction to repulsion. UNC5 dependent repulsion requires the presence of DCC to
be expressed on the individual growth cone [38]. UNC-5 receptors have been proposed as
putative tumor suppressor genes. More and more attention has been paid to the inhibition



Genes 2022, 13, 1155 12 of 15

of UNC5 receptor and its biological function in human malignant tumors, UNC5D could
be a potential diagnostic biomarker and therapeutic target for metastatic prostate cancer
(PCa) [39]. However, the mechanism of UNC5D expression in diabetes is still unclear.

4. Discussion

In this study, inspired by the CCSN method [8] and the clustering results of dataset
GSE86469 [6], we construct a CCSN for each single cell and search for hub genes in the
CCSN network of beta cells to find genes with high network correlation. We find that
ATP6AP2 is critical for the regulation of insulin and is key to the maintenance of beta
cell function and the prevention of diabetes. HSP90AB1 may serve as a potential new
target for the treatment of metabolic diseases, including diabetes. The analysis of cell–cell
communication between beta cells and other endocrine cells shows that there were three
gene pairs with obvious interaction, namely INS_INSR, INS_IDE and INS_LILRB1. In
addition, CNDM and GEM are used to find out ‘dark’ genes. Prognostic analysis and
enrichment analysis of ‘dark’ genes show that NFATC2 indirectly affects PGI2 production
in VEGF signaling pathway, which has a certain impact on the treatment of diabetic
nephropathy and can be used as a potential therapeutic drug target.

The construction of CCSN can more reliably describe cell types from the perspective of
gene association, identify hub genes and explore their roles in network regulation. Cell–cell
communication mediated by ligand receptor complex intercellular communication for
coordination of various biological processes is crucial. In the biomedical field, DEGs are
important for the discovery of new biomarkers, regulators and drug targets. However,
some non-DEGs may also be involved in important biological processes and should not
be ignored. By CNDM, we can reveal these ‘dark’ genes, and some ‘dark’ genes are
enriched in key functional pathways and perform well in prognosis [40]. Due to the lack
of corresponding prognostic data in the study of T2D, we use the data of PAAD, which is
closely related to T2D to analyze the prognosis of T2D, in order to reveal the mechanism
of the development of T2D from another viewpoint. But the outcome will not be able to
directly reflect the ‘dark’ genes’ effect T2D.

5. Conclusions

In the present study, by constructing CCSN for each single cell for the GSE86469
dataset which is a single-cell transcriptional set from ND and T2D human islet samples,
we can have a full understanding of the pathogenesis of T2D from the single-cell level and
network perspective. Research on T2D-related pathways involved in ‘dark’ genes can help
us explore potential signaling pathways and therapeutic potential biomarkers, which may
be helpful for the treatment and prevention of T2D.
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