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Abstract: Pink-eyed dilution castaneus (Oca2p-cas) is a mutant gene on mouse chromosome 7 that
arose spontaneously in wild Mus musculus castaneus. Homozygotes for Oca2p-cas exhibit pink eyes
and a light gray coat throughout life. In an ordinary mutant strain carrying Oca2p-cas, we previously
discovered a novel spontaneous mutation that gradually increases melanin pigmentation in the
eyes and coat with aging, and we developed a novel mutant strain that was fixed for the novel
phenotype. The purpose of this study was to map major quantitative trait loci (QTLs) for the
novel pigmentation phenotype and for expression levels of four important melanogenesis genes,
microphthalmia-associated transcription factor (Mitf ), tyrosinase (Tyr), tyrosinase-related protein-1
(Tyrp1) and dopachrome tautomerase (Dct). We developed 69 DNA markers and created 303 F2
mice from two reciprocal crosses between novel and ordinary mutant strains. The QTL analysis
using a selective genotyping strategy revealed a significant QTL for eye pigmentation between
34 and 64 Mb on chromosome 13. This QTL explained approximately 20% of the phenotypic variance.
The QTL allele derived from the novel strain increased pigmentation. Although eye pigmentation
was positively correlated with Dct expression, no expression QTLs were found, suggesting that
the pigmentation QTL on chromosome 13 may not be directly in the pathway of any of the four
melanogenesis genes. This study is the first step toward identifying a causal gene for the novel
spontaneous phenotype in mice and is expected to discover a new regulatory mechanism for complex
melanin biosynthesis during aging.

Keywords: pink-eyed dilution castaneus; pigmentation; QTL; mice

1. Introduction

In the mouse, a pilot model animal for humans and livestock, a large number of
genetic loci for pigmentation of the coat and eyes have been reported and their information
is deposited in Mouse Genome Database (MGD) [1]. At the loci, mutant alleles that
control abnormal pigmentation phenotypes are particularly useful not only for elucidating
the complex biological mechanisms of melanin pigmentation but also for understanding
the etiology of human pigmentation disorders [2]. In general, most mutant genes show
congenital phenotypes that do not change throughout life. Uniquely, several mutant
genes, including greying with age (Ga) [3] and faded (fe) [4], have been reported to cause
progressive hair graying with aging. Such a hair graying phenotype has also been reported
in other mammalian species including horses [5], dogs [6] and humans [7].

In wild mice (Mus musculus castaneus), a new coat color mutation, named pink-eyed
dilution castaneus (Oca2p-cas), occurred spontaneously at the Oca2 locus on chromosome
7 [8]. Mice homozygous for Oca2p-cas on the C57BL/6JJcl genetic background have pink
eyes and a gray coat with no phenotypic changes throughout life [8]. Moreover, in the
process of maintaining a mouse strain that was fixed for Oca2p-cas, we discovered a novel
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spontaneous mutant that develops black eyes and a darker coat by 3 months of age due
to increased pigmentation in ocular choroid and hair follicles [9]. The novel mutant mice
have the same deletion of Oca2 exons 15 and 16 as the ordinary mutant mice with no
phenotypic changes throughout life [9]. Furthermore, our previous serum-free primary
culture experiments using epidermal cells from neonatal mice showed that the addition of
L-tyrosine (Tyr) to the culture medium greatly induces the differentiation of melanocytes
from novel mutant mice in a concentration-dependent manner compared to melanocytes
from ordinary mutant mice [10]. Immunocytochemical analysis of cultured melanocytes
showed that protein expression of tyrosinase (Tyr) and tyrosinase-related protein-1 (Tyrp1)
genes is greatly induced or stimulated in melanocytes of both novel and ordinary mice.
However, protein expression of the microphthalmia-associated transcription factor (Mitf )
gene is stimulated only in melanocytes of novel mice, and furthermore, no difference
in protein expression of the dopachrome tautomerase (Dct) gene was observed between
the two mutant mouse strains [10]. It is well known that Tyr, Tyrp1 and Dct genes play
important roles in the biosynthesis of two chemically distinct types of melanin, black-brown
eumelanin and yellow-brown pheomelanin, and Mitf is known to be a master regulator
for both eumelanin and pheomelanin production [11]. To the best of our knowledge, no
spontaneous mutations that cause progressive darkening of hair and eyes with aging have
so far been reported in other mouse strains or in other mammals.

In the present study, we morphologically characterized the novel progressive darken-
ing phenotype in greater detail than in our previous study [9] using novel and ordinary
Oca2p-cas mutant strains and their F1 and F2 progenies. Furthermore, we developed new
DNA markers and then performed quantitative trait locus (QTL) analysis for eye pigmen-
tation and eye expression levels of four important melanogenesis genes (Mitf, Tyr, Tyrp1
and Dct) in reciprocal F2 populations between novel and ordinary mutant strains. Since
the difference in pigmentation between the two strains was more pronounced in the eyes
than in the hair, we focused on eye pigmentation rather than hair pigmentation as the trait
for QTL analysis to map major QTLs for eye pigmentation.

2. Materials and Methods
2.1. Animals

All animal experiments were performed in accordance with the guidelines for the care
and use of laboratory animals of Nagoya University, Japan. The protocol was approved by
the Animal Research Committee of Nagoya University.

Ordinary and novel Oca2p-cas mutant mice have been maintained in our laboratory as
B6;Cg-Oca2p-cas/1Nga (hereafter called PINK) and B6;Cg-Oca2p-cas/2Nga (BLACK) strains,
respectively [9]. For analysis of age-related changes in eye color, PINK(F32-34, 36) and
BLACK(F26-31) mice at 1, 2, 3 and 4 months of age were used (N = 11–23/age/strain). For
QTL analysis, two F2 populations, called PBF2 and BPF2, were produced from reciprocal
intercrosses between PINK(F15) and BLACK(F14) mice. The PBF2 population consisted
of 164 F2 mice (80 males and 84 females) from an intercross between a PINK female and
a BLACK male. The BPF2 population consisted of 139 F2 mice (74 males and 65 females)
from an intercross between a BLACK female and a PINK male. All of the mice obtained
were raised in an environment with a room temperature of 23 ± 2 ◦C and a light/dark
cycle of 12:12. Commercial chow pellets (CA-1, CLEA Japan, Tokyo) and tap water were
given ad libitum.

2.2. Whole Genome Sequencing

Genomic DNA was extracted using a DNeasy blood & Tissue kit (Qiagen, Tokyo,
Japan) from ear clips of female littermates (N = 1 per strain) of the BLACK and PINK
parental mice used for F2 populations. The DNA concentration was measured with a Qubit
fluorometer (Thermo Fisher Scientific, Tokyo, Japan). Whole genome sequencing with the
next-generation sequencer Illumina HiSeq2000 was outsourced to BGI Japan (Kobe, Japan).
Sequence reads obtained were mapped to UCSC Mouse Genome Browser NCBI38/mm10
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assembly (RefSeq mm10). All read data sequenced were deposited in the DDBJ Sequence
Read Archive under the accession number DRA006780.

2.3. Stereomicroscopic and Light Microscopic Analyses of Eyes

After taking pictures, mice of parental strains and two F2 populations described
above and reciprocal F1 males (N = 3 per F2 population) were anesthetized with isoflurane
and slaughtered by decapitation. Both eyes of these mice were excised. The right eyes
were immediately flash-frozen with liquid nitrogen for RNA extraction and then stored at
−80 ◦C. The left eyes were immediately fixed in 4% paraformaldehyde in 0.1 M phosphate
buffer, pH 7.4. After fixation of the eyes for 3 days or more, the eyes were photographed
under an Olympus SZX7 Stereomicroscope (Olympus, Tokyo, Japan) equipped with an
Olympus DP70 Digital Microscope Camera (Olympus, Tokyo, Japan).

For light microscopic analysis, the fixed eye samples were embedded in paraffin.
Sample blocks were sectioned into 4-µm-thick sections, and the sections were deparaf-
finized through the use of xylene and ethanol series. Serial sections were subjected to
hematoxylin-eosin staining for structural examination and Fontana-Masson staining for
melanin identification in the retina, as described previously [9]. Slide specimens were
observed under an Olympus BX51 System Microscope (Olympus, Tokyo, Japan) equipped
with an Olympus DP70 Digital Microscope Camera. The other sections were left unstained
to measure brightness in pigmented regions of the retinal pigment epithelium and choroid
(Figure S1) as gray values in 256 color gradation obtained by Fiji-ImageJ software version
1.53c (Bethesda, MD, USA) [12].

2.4. Light Microscopic Analyses of Coat Hair

Coat hair was pulled out from the dorsal region of each mouse. The hair was wrapped
in filter paper and stored at room temperature. The hair samples were dehydrated in a
series of ethanol solutions, cleared in ethanol-xylene and xylene, and embedded in Canada
balsam, as previously described [9]. Slide specimens were observed under the Olympus
BX51 System Microscope.

2.5. Real-Time qPCR Analysis

Total RNA was extracted from frozen eyes of mice that exhibited the darkest and
lightest eye colors in the PBF2 population by using TRI Reagent (Cosmo Bio, Tokyo, Japan)
according to the manufacturer’s instructions. The cDNA was synthesized from 1 µg of
total RNA using a PrimeScriptTM RT reagent Kit with gDNA Eraser (Takara Bio, Otsu,
Japan) according to the manufacturer’s instructions. Quantitative real-time PCR (RT-qPCR)
analysis was carried out in a 10.0-µL reaction volume on a StepOnePlus Real-Time PCR
system (Thermo Fisher Scientific, Tokyo, Japan) with SYBR Premix Ex Taq™ II (Tli RNaseH
Plus) (Takara Bio). Primer sequences for four melanogenesis genes, Mitf, Tyr, Tyrp1 and
Dct, and an endogenous control gene, glyceraldehyde-3-phosphate dehydrogenase (Gapdh),
are listed in Table S1. The primers were custom synthesized. The precision of qPCR
for the endogenous gene and each of the melanogenesis-related genes was examined by
dissociation curves, PCR amplification efficiencies and R2 values for quantitative relative
standard curves with four serial dilution points of the BLACK mouse cDNA (20 ng, 4 ng,
0.8 ng and 0.16 ng). All samples were analyzed in triplicate. The expression levels of the
melanogenesis-related genes were normalized to that of Gapdh and measured using the
2−∆∆CT method.

2.6. Marker Development

The DNA markers based on SNPs and indels were newly developed to determine
the genotypes of F2 mice for QTL analysis. Whole genome sequence data obtained as
described above were analyzed by using Integrative Genomics Viewer version 2.11.9 (IGV,
https://www.igv.org (accessed on 1 April 2020)) [13] in order to obtain information on
SNPs and indels that differ between BLACK and PINK strains. To design PCR primer pairs

https://www.igv.org
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for SNP markers and indel markers, approximately 3000-bp regions including target SNPs
and indels were searched for using Primer3Plus software (https://www.bioinformatics.
nl/cgi-bin/primer3plus/primer3plus.cgi (accessed on 1 May 2018)) [14]. The designed
primer pairs were checked for non-specific amplification using Primer-Blast software
(https://www.ncbi.nlm.nih.gov/tools/primer-blast/ (accessed on 1 May 2018)) [15].

Three types of PCR-based DNA markers were developed and are listed in Table S2.
Two types were SNP markers based on a restriction fragment length polymorphism (RFLP)
and a base pair mismatch between one of the primer pairs and its template. For the RFLP
marker, an SNP was present within the recognition site of a restriction enzyme that cleaved
only one allele and did not cleave the other allele. For the mismatch marker, two pairs of
allele-specific primers were designed according to a method previously reported [16]. One
primer pair was introduced with an artificial base pair mismatch in the third nucleotide
closest to the 3’end of the primer that corresponded to the SNP site, and its target band was
not amplified. The other primer pair did not have such a base pair mismatch and its target
band was amplified. The last type of DNA markers was indel markers, which amplified
different sizes of target bands depending on insertion and deletion.

2.7. Genotyping and Linkage Map Construction

For genotyping the DNA markers that were developed, genomic DNA was extracted
by a standard method from ear clips of parental strain mice and their F1 and F2 mice.
The genotypes of the mice were determined by PCR amplification and agarose gel elec-
trophoresis as previously described [17]. For RFLP markers, after PCR amplification, PCR
products were treated with restriction enzymes (Takara Bio and NEB Japan, Tokyo, Japan)
(see Table S2) according to the manufacturer’s instructions. After examining the segregation
distortion of the marker genotypes in the F2 population from the expected segregation
ratio of 1:2:1 with a chi-square test, a linkage map was constructed using the Kosambi map
function of Map Manager QTX b20 software with linkage criterion of p = 0.001 [18].

2.8. QTL Analysis

Before QTL analysis, the effects of sex, F2 population and their interaction on pheno-
typic traits were tested using a linear model of JMP Pro version 15.2.1 (SAS Institute Japan,
Tokyo, Japan). If the effects were significant at nominal 5% levels, they were included as
additive and/or interactive covariates in a model of QTL analysis described below.

To map QTLs cost-effectively, we used a selective genotyping strategy in which only
phenotypic extreme individuals were selected from high and low 20–25% of a population
and were genotyped for QTL mapping [19]. The QTL analysis was carried out using
the simple interval mapping method based on Haley-Knott regression by the function
calc.genoprob of R/qtl package version 4.1.2 [20]. To detect QTLs with main effects on a
trait, a single-QTL genome scan with a single QTL model was performed by the function
scanone of R/qtl. Logarithms of the odds (LOD) scores were calculated at a 1-cM interval
across the linkage map constructed. To detect QTLs with additive effects and/or epistatic
interaction effects, a two-dimensional genome scan with a two-QTL model was performed
by the function scantwo of R/qtl. LOD scores were calculated at a 2.4-cM interval (which
was average maker spacing) across the linkage map. Genome-wide significance threshold
levels at 0.1%, 5% and 10% levels were computed with 10,000 permutations for scanone
and 500 permutations for scantwo.

To find QTLs with context-specific effects on a trait, a single-QTL genome scan was
performed for each sex and each population separately, using combined trait data of sex
and population. Genome-wide significance threshold levels at 0.1%, 5% and 10% levels
for scanone were computed with 10,000 permutations for each sex and each population
separately. If QTLs were found at the 10% threshold level in each sex or each population,
the statistical significance of QTL-by-sex or QTL-by-population interactions was tested
according to the method previously described [20].

https://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
https://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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For each QTL identified, the percentage of phenotypic variance explained (% Var),
additive and dominant effects, and a 1.8-LOD drop (comparable to 95%) confidence interval
(CI) were calculated by the function fitqtl of R/qtl. The additive effect was half of the trait
difference between two homozygotes for the allele derived from the BLACK strain and
the allele derived from the PINK strain. The dominant effect was the difference between
heterozygotes for BLACK and PINK alleles and the average between two homozygotes. The
degree of dominance (ratio of the dominant effect to the additive effect) was calculated, and
it was used to determine the mode of inheritance of the QTL as previously described [21].

2.9. Statistical Analysis

Differences in traits among four groups that combined two sexes and two F2 popu-
lations were compared by two-way analysis of variance (ANOVA), followed by Tukey’s
honestly significant difference (HSD) post hoc test with JMP Pro. Spearman’s rank correla-
tions between phenotypic traits were calculated in each population by JMP Pro.

3. Results
3.1. Sequencing and Phenotyping of Parental Strains
3.1.1. Sequencing

To determine whether sequence differences in the Oca2p-cas gene occurred at the
time of creation of the F2 populations, whole genome sequencing was performed on two
female littermates of BLACK and PINK parental mice, and their alignment statistics are
summarized in Table S3. As shown in Figure S2, the BLACK and PINK females had the same
three deletions in the Oca2 gene. One deletion was 4137 bp in length and contained exons
15 and 16. This deletion was previously reported as a causal mutation of Oca2p-cas [9]. The
other two deletions were newly found in introns 6 and 17 with lengths of approximately
380 bp and 213 bp, respectively. In the Herc2 gene, which is known as an enhancer to
regulate Oca2 expression [22], the BLACK and PINK females had the same 2919-bp deletion
in intron 48 (Figure S3). Comparisons of Oca2 and Herc2 sequences with RefSeq mm10
revealed that the two genes in BLACK and PINK strains may have originated in wild
M. m. castaneus.

3.1.2. Phenotyping

The appearance of PINK and BLACK mice was examined chronologically at 1, 2, 3
and 4 months of age (N = 11–23/age/strain). As is evident in Figure 1a, BLACK mice
showed a gradual darkening of eye color from 1 to 3 months of age, while PINK mice did
not show any change. This age-related change was validated by observation of changes in
eyeball color from 1 to 4 months of age (Figure 1b). Some variation in eyeball coloration
was seen in BLACK mice. Light microscopic analysis of hematoxylin-eosin-stained and
Fontana-Masson-stained eyes revealed that the choroid of a BLACK male at 9 months of
age was more heavily pigmented than that of a PINK female at 11 months of age and
that their F1 mouse showed intermediate pigmentation between the two parental mice
(Figure S4).

3.2. Phenotyping of F2 Mice
3.2.1. Eye Morphology

The eye color of both PBF2 and BPF2 mice gradually changed from light to dark, as
easily observed by the naked eye (Figure 2). PBF2 mice showed a bimodal distribution of
eye color. To perform selective genotyping, 26–28% of the darkest and lightest individuals
were selected from the PBF2 population (Figure 2a), while 24% of those individuals were
selected from the BPF2 population (Figure 2b). Light microscopy of hematoxylin-eosin-
stained and Fontana-Masson-stained eyes in the PBF2 population revealed that the retinal
pigment epithelium and choroid of black-eyed mice were more heavily pigmented than
those of pink-eyed mice at 4 months of age (Figure 3). In contrast, age-related changes in
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dorsal awl hair color from 3 weeks to 4 months of age appeared to be less clear in both
pink-eyed and black-eyed mice (Figure S5).
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Figure 1. Age-related changes in eye color of ordinary pink-eyed (PINK) and novel black-eyed
(BLACK) mutant strains on the C57BL/6JJcl background: (a) External appearances of a PINK mouse
at the F36 generation and a BLACK mouse at the F31 generation. The same mouse in each strain
was photographed from 1 to 3 months of age; (b) stereomicrographs of eyeballs from PINK mice at
F32–33 generations and BLACK mice at F26–29 generations.

 
 

 

 
Genes 2022, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/genes 

 
 
 
 
 
 

 

Figure 2. Distribution of eye color in F2 mice at 4 months of age: (a) 164 mice in the PBF2 population
obtained from an intercross between a PINK female and a BLACK male; (b) 139 mice in the BPF2
population obtained from an intercross between a BLACK female and a PINK male. Approximately
25% of the mice with the darkest eye color surrounded by a black border and the lightest eye color
surrounded by a red border were selected from each F2 population. N indicates the number of
mice selected.
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Figure 3. Stereomicroscopic and light-microscopic analyses of eyes from pink-eyed and black-
eyed PBF2 male mice at 4 months of age: (a,b) Stereomicrographs; (c,d) unstained micrographs;
(e,f) hematoxylin-eosin-stained micrographs; (g,h) Fontana-Masson-stained micrographs. RPE and
Ch indicate retinal pigment epithelium and choroid, respectively. Scale bars show (a,b) 1 mm and
(c–h) 100 µm.

Mice with abnormal eye morphology occasionally appeared in the PBF2 and BPF2
populations. Eye abnormalities in 17 mice in the PBF2 population were morphologically
classified into four types: cataract, microphthalmia, anophthalmia and eyelid coloboma
(Figure S6 and Table 1). These abnormalities were also seen in two parental strains of PINK
and BLACK.

Table 1. Number of eye abnormalities observed in 17 mice of the PBF2 population.

Abnormality
Male Female Total No. of

CasesLeft Eye Right Eye Both Eyes Left Eye Right Eye Both Eyes

Cataract 1 0 0 5 3 0 9
Microphthalmia 0 1 0 2 0 1 4
Anophthalmia 0 0 0 0 4 1 5

Eyelid coloboma 0 0 0 3 1 0 4
Total no. of cases 1 1 0 10 8 2 22

Five of the 17 mice had two abnormalities, each of which was counted separately.
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3.2.2. Traits

For QTL analysis, traits of two pigmentations (binary and gray values) and four gene
expression levels (Mitf, Tyr, Dct and Tyrp1) were measured in eyes of selected individuals in
the PBF2 and BPF2 populations (see Figure 2 for the numbers of selected individuals) and
their measurements are summarized in Table 2. The binary value was obtained by scoring
the darkest individuals as 1 and the lightest individuals as 0 by the naked eye. The Tyr
expression level was significantly different between the two populations and also between
males and females, but the population-by-sex interaction was not significant. The Tyrp1
expression level showed a significant difference only between the two populations. The
other traits did not show any significant differences.

Table 2. Trait measurements in PBF2 and BPF2 populations and the effects of population and sex on
the measurements.

PBF2 BPF2 p-Value

Trait Male Female Male Female Population Sex Population × Sex

Binary value 0.47 ± 0.08 0.48 ± 0.08 0.50 ± 0.08 0.48 ± 0.09 0.86 0.97 0.82
Gray value 180.8 ± 5.2 179.4 ± 5.3 NA NA NA 0.85 NA

Mitf expression 1.17 ± 0.05 1.23 ± 0.06 1.15 ± 0.06 1.10 ± 0.06 0.19 0.92 0.41
Tyr expression 1.30 ± 0.06 a,b 1.48 ± 0.06 a 1.12 ± 0.06 b 1.21 ± 0.07 b 0.00044 0.039 0.50
Dct expression 1.53 ± 0.07 1.62 ± 0.08 1.69 ± 0.08 1.62 ± 0.09 0.32 0.91 0.32

Tyrp1 expression 1.49 ± 0.06 a,b 1.56 ± 0.07 a 1.20 ± 0.07 c 1.26 ± 0.08 b,c 0.000038 0.33 0.97

p-values were obtained by two-way ANOVA; a–c Least squares means ± SEM with different superscript letters
within a trait indicate significant differences among four groups combined for sex and population at p < 0.05
(Tukey’s HSD test); NA, not applicable.

As shown in Table S4, Spearman’s rank correlation analysis revealed that the binary
value showed a highly significant positive correlation with the gray value. Both binary
and gray values were positively correlated with Dct expression levels only, but the four
gene expression levels were positively correlated with each other at the 5% level after
Bonferroni correction.

3.3. Marker Development and Linkake Map Construction

Whole genome sequencing identified 243,411 and 145,937 SNPs specific to BLACK
and PINK strains, respectively. Similarly, 68,409 and 43,069 indel variants were detected in
BLACK and PINK strains, respectively. Based on the SNP and indel information, 110 PCR
primer pairs were designed to develop RFLP, mismatch and indel markers. Genotyping
of BLACK, PINK and their F1 mice showed that 73 of the 110 markers were informative
between BLACK and PINK strains. Among the 73 markers, 69 statistically met the expected
segregation ratio of 1:2:1 at the nominal 5% level in the 88 individuals selected from the
PBF2 population. Finally, at least two of the 69 markers were placed on each chromosome
to cover all autosomes and the X chromosome. Details of the marker information, such as
primer sequences and PCR conditions, are shown in Table S2.

After genotyping 88 and 67 individuals selected from the PBF2 and BPF2 populations,
respectively, three genetic linkage maps for the 69 markers were constructed with Map
Manager QTX software, as shown in Figure 4. Summary statistics for the linkage maps
are shown in Tables S5–S7. In the PBF2 population, 64 of the 69 markers were assigned to
18 linkage groups on 19 autosomes and the X chromosome with an average marker spacing
of 14.3 cM (Table S5). In the BPF2 population, 54 markers were assigned to 23 linkage
groups on 19 autosomes and the X chromosome with an average marker spacing of 14.5 cM
(Table S6). In the combined F2 population, 62 markers were assigned to 17 linkage groups
on 19 autosomes and the X chromosome with an average marker spacing of 14.9 cM
(Table S7). The total length of the linkage maps varied from 608.1 to 672.1 cM.
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3.4. QTL Analysis
3.4.1. Main-Effect QTL

To detect QTLs with main effects on traits of eye pigmentation and gene expression
levels, a single-QTL genome scan using the linkage map constructed above was performed
with R/qtl software in each of the three F2 populations. Genome-wide LOD score plots for
all traits are shown in Figure S7. No QTLs with main effects on gene expression levels were
identified at genome-wide 10% threshold levels, except for eye pigmentation for binary
and gray values described below.

As shown in Figure 5a and Table 3, in the PBF2 population, a significant QTL with a
main effect on binary values with a peak LOD score of 4.5 was identified at 8.8 cM (54.6 Mb)
on chromosome 13 with a 95% CI of 34–64 Mb, at the genome-wide 5% threshold level. At
the same map position, a significant QTL affecting gray values (LOD = 4.6) was found. The
LOD scores for both values changed in almost the same pattern across chromosome 13,
with a slightly higher LOD score for gray values than that for binary values (Figure 5a).
The QTLs for binary and gray values explained about 21% of the corresponding phenotypic
variance, and their alleles derived from the BLACK strain increased pigmentation in a
dominant fashion (Table 3 and Figure S8).
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Table 3. Summary of QTLs for eye pigmentation on chromosome 13 identified in this study.

Population Trait Position 1 LOD % Var Nearest
Marker CI 2 Additive

Effect 3
Dominant

Effect 3 d/a Inheritance

PBF2 Binary value 8.8 (54.6) 4.5 ** 20.8 13_54 0–20.0 (34–64) 0.27 ± 0.05 0.19 ± 0.10 0.70 Dominant
PBF2 Gray value 8.8 (54.6) 4.6 ** 21.8 13_54 0–23.0 (34–64) 19.90 ± 4.31 11.10 ± 6.71 0.56 Dominant

Combined F2 Binary value 9.0 (54.8) 5.2 *** 14.3 13_54 0–19.0 (34–64) 0.25 ± 0.05 0.06 ± 0.08 0.24 Additive

1 Linkage position in cM and physical position in Mb (based on RefSeq mm10) in parenthesis; 2 95% confidence
interval (CI) in cM and physical interval in Mb in parenthesis; 3 The positive sign of the additive and dominant
effects (mean ± SEM) indicates that the allele derived from the BLACK strain increased the trait value; a/d,
Degree of dominance that is a ratio of the dominant effect to the additive effect; ***, ** Significant at genome-wide
0.1% and 5% levels, respectively (see Table S8 for LOD threshold levels).

The nearest marker, 13_54, to the detected QTL on chromosome 13 was an indel
marker (Table S2). The forward and reverse primers for this marker were located in
intron 2 and exon 4, respectively, of the ADP-ribosylation factor-like 10 (Arl10) gene. At
this marker locus, the PCR product size of the allele derived from the PINK strain was
1770 bp, matching with that of the allele derived from the reference C57BL/6J strain. In
contrast, the product size of the allele derived from the BLACK strain was 970 bp due to a
deletion that appears to include part of Arl10 exon 4.

No QTLs for binary values were found in the BPF2 population (Figure 5b). However,
a highly significant QTL for this trait (LOD = 5.2) was identified at 9.0 cM (54.8 Mb) on
chromosome 13 at the genome-wide 0.1% threshold level in the combined F2 population
(Figure 5c). This QTL explained 14.3% of the phenotypic variance, and the BLACK-derived
allele increased pigmentation in an additive fashion (Table 3). In both PBF2 and combined
F2 populations, an additional small LOD peak was seen at approximately 3 cM (Figure 5a,c).
However, a two-dimensional genome scan did not provide statistical evidence for the
presence of the additional QTL.

3.4.2. Context-Specific QTL

As described in 3.2.2, Tyr and Tyrp1 expression levels showed a significant difference
between PBF2 and BPF2 populations (Table 2). To determine whether population-specific
QTLs are present, a single-QTL genome scan was performed in each population separately.
However, no population-specific QTLs were identified at genome-wide 10% threshold
levels (Figure S9). Tyrp1 expression showed a significant sex difference (Table 2), but no
sex-specific QTLs were found at the genome-wide 10% threshold level (Figure S10).

4. Discussion

For QTL mapping, we newly developed 69 DNA markers that were located on
19 autosomes and the X chromosome with an average marker spacing of 14–15 cM. This
spacing is not a very small spacing because a marker spacing of 30 cM is generally known
to be optimal for initial QTL mapping using an F2 population [23]. Furthermore, QTL
analyses in backcrosses and F2 populations generally localize a QTL to a large genomic
interval of 10–50 cM, as previously reviewed [24]. Thus, the number of markers developed
in this study is by no means small for mapping major QTLs in the F2 population. However,
we cannot rule out the possibility that QTLs were missed on chromosomal regions not
covered by the markers developed.

We used two strategies for QTL mapping to reduce the cost and effort of phenotyping
and genotyping as much as possible. One strategy was to use binary values as an easy-to-
measure trait. Its validity was verified in the PBF2 population by our two results: the high
positive correlation between the binary trait and microscopically measured gray values and
the similarity of parameter estimates for the two QTLs affecting binary and gray values.
The two results clearly indicate that the two QTLs are the same locus. The failure to detect
a binary QTL in the BPF2 population might be due to two possible reasons. One is the
smaller sample size of the BPF2 population, whose QTL was found in PBF2 and combined
F2 populations. The other is that the BPF2 mice had lower eye color contrast than the
PBF2 mice. The other strategy was to use selective genotyping. We selected 24–28% of
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the extreme individuals from each of the PBF2 and BPF2 populations. This percentage of
selected individuals is considered to be sufficient for QTL mapping because it has been
reported that selecting 20–25% in each tail of a phenotypic distribution is sufficient to
accurately map a QTL and that selecting more than 20–25% does not reduce the length of
the 95% CI [25].

The chromosome 13 QTL found in the present study explained approximately 20%
of the phenotypic variance. This proportion may have been overestimated by the Beavis
effect [26] due to the small size of the F2 mice used in QTL mapping. Recently, using an
integrated approach of gene expression, congenic/subcongenic strain analysis, quantitative
complementation testing and causal analysis, we successfully identified the lymphocyte
antigen 75 (Ly75) gene as the causal gene for Pbwg1.5, a QTL that affects resistance to
obesity in mice [27]. The additive effect of Pbwg1.5 was reported to be 0.38 in standard
deviation units and the dominant effect was 0.03 [17], suggesting that the phenotypic effect
of Pbwg1.5 is small. On the other hand, when the measurements obtained in the present
study were converted to units of standard deviation, the additive effect of the pigmentation
QTL for binary and gray values in the PBF2 population ranged from 0.54 to 0.58, and the
dominant effect ranged from 0.32 to 0.38. This indicates that the phenotypic effect of the
pigmentation QTL is greater than that of Pbwg1.5. Thus, future genetic analysis using
congenic and subcongenic strains may confirm the pigmentation QTL and further identify
the causal gene.

In the present study, we found no sequence differences between BLACK and PINK
strains for Oca2p-cas and its enhancer Herc2 on chromosome 7. Furthermore, no expression
QTLs were found for Mitf, Tyr, Tyrp1 and Dct genes on chromosomes 6, 7, 4 and 14,
respectively, although there was a positive correlation between Dct expression and eye
pigmentation (binary and gray values). These results clearly indicate that none of the six
genes is responsible for the novel mutant phenotype, suggesting that the pigmentation
QTL on chromosome 13 may not be directly in the pathway of any of the six genes.

The 13_54 marker nearest to the chromosome 13 QTL was located on the Arl10 gene.
The BLACK-derived allele at this marker locus had a deletion that appears to include part
of Arl10 exon 4. According to MGD (last database update 5 March /2022) [1], mice knocked
out for Arl10 show decreased bone mineral content, decreased lean body mass and increase
total body fat amount. In the PBF2 population, body weight was measured at 4 months of
age, but bone mineral content and body fat mass were not measured. We performed QTL
analysis for body weight, but no QTLs were identified.

Using MGD [1], we searched for protein-coding genes in the 95% CI (34–64 Mb)
of the chromosome 13 QTL and obtained a list of five genes for pigmentation and eye
morphology. These genes are biogenesis of lysosomal organelles complex-1, subunit
5, muted (Bloc1s5), transcription factor AP-2, α (Tfap2a), dystrobrevin-binding protein
1 (Dtnbp1), msh homeobox 2 (Msx2) and growth arrest-specific 1 (Gas1). Mutations in
Bloc1s5 [28,29] and Dtnbp1 [30,31] have been reported to cause pigment dilution in both
eyes and coat, prolonged bleeding time and inner ear abnormalities. The human homologs,
BLOC1S5 and DTNBP1, are known to be causal genes for Hermansky-Pudlak Syndromic
albinism types 11 and 7, respectively [32]. In normal mouse melanocytes, it has been
reported that MITF and TFAP2A proteins bind together to the enhancer element in the
intron 4 of interferon regulatory factor (4Irf4) and cooperatively regulate Irf4 expression,
resulting in activation of Tyr expression and thus normal pigmentation [33]. Conversely,
disruption of TFAP2A binding decreases Irf4 expression and then pigmentation. Mice
knocked out for Msx2 exhibit cornea-lentoid adhesions and microphthalmia due to a
developmental failure of the lens, a phenotype similar to human Peters anomaly [34]. In
addition, mice knocked out for Gas1 exhibit microphthalmia in which the ventral retinal
pigmented epithelium is overproliferated and converted into the neural retina [35].

In aged hairless mice, localized epidermal hyperpigmentation is reported on the trunk,
even in the absence of UV irradiation, and it becomes darker with age [36], similar to
melasma or lentigines in human skin [37]. As previously reviewed [38], haploinsufficiency
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in the a disintegrin and metallopeptidase domain 10 (Adam10) gene causes freckle-like
patches in hairless mice. These mice not only exhibit freckle-like pigmentation on the dorsal
aspect of the forelegs, but also diffuse pigmentation on the trunk in adults, a phenotype
that serves as a mouse model for the reticulate acropigmentation of Kitamura disease
in humans. Notably, haploinsufficiency of Adam10 alone, without homozygous hairless
mutations, does not cause this pigmentation. In addition to the hairless mice, the present
novel Oca2p-cas mutant may provide a useful animal model for elucidating the mechanisms
of age-related pigmentation in humans and other mammals.

In conclusion, this study is the first step toward identifying a causal gene for the
chromosome 13 QTL affecting age-related pigmentation in our novel spontaneous mouse
mutant. This causal gene may not be directly in the pathway of any of four important
melanogenesis genes (Mitf, Tyr, Tyrp1 and Dct). We are now developing a congenic strain
carrying the QTL interval on the genetic background of the PINK strain. Identification of
the causal gene will lead to the discovery of a new regulatory mechanism for age-related
melanin biosynthesis.
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