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Abstract: Recently, we have seen a growing volume of evidence linking the microbiome and human
diseases or clinical outcomes, as well as evidence linking the microbiome and environmental ex-
posures. Now comes the time to assess whether the microbiome mediates the effects of exposures
on the outcomes, which will enable researchers to develop interventions to modulate outcomes by
modifying microbiome compositions. Use of distance matrices is a popular approach to analyzing
complex microbiome data that are high-dimensional, sparse, and compositional. However, the exist-
ing distance-based methods for mediation analysis of microbiome data, MedTest and MODIMA, only
work well in limited scenarios. PERMANOVA is currently the most commonly used distance-based
method for testing microbiome associations. Using the idea of inverse regression, here we extend
PERMANOVA to test microbiome-mediation effects by including both the exposure and the outcome
as covariates and basing the test on the product of their F statistics. This extension of PERMANOVA,
which we call PERMANOVA-med, naturally inherits all the flexible features of PERMANOVA, e.g., al-
lowing adjustment of confounders, accommodating continuous, binary, and multivariate exposure
and outcome variables including survival outcomes, and providing an omnibus test that combines
the results from analyzing multiple distance matrices. Our extensive simulations indicated that
PERMANOVA-med always controlled the type I error and had compelling power over MedTest
and MODIMA. Frequently, MedTest had diminished power and MODIMA had inflated type I error.
Using real data on melanoma immunotherapy response, we demonstrated the wide applicability of
PERMANOVA-med through 16 different mediation analyses, only 6 of which could be performed by
MedTest and 4 by MODIMA.

Keywords: inverse regression; global test; community-level test; microbial community; distance matrix

1. Introduction

Microbiome research has proliferated in the last decade due to booming interests
in the scientific community, increasing power of high-throughput sequencing, and rapid
advancement of data analytics. To date, most microbiome studies have been focused on
bivariate associations between the microbiome and the covariates of interest. We have seen
a rapidly growing volume of evidence linking the microbiome and human diseases such
as obesity [1] or clinical outcomes such as responses to immunotherapy [2]. Similarly, we
have seen the relationship between the microbiome and environmental exposures such as
diet [3]. Meanwhile, many of these environmental exposures have well-established effects
on clinical outcomes. We believe the time has come to assess whether the microbiome plays
a mediating role between exposures and outcomes, as depicted in Figure 1a. Identifying
such a mediating role of the microbiome enables researchers to develop interventions to
modulate the outcomes by modifying the microbiome composition. Accordingly, there is
an urgent need for statistical methods that are designed specifically for mediation analysis
of microbiome data.
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Figure 1. (a) Some effect of an exposure on an outcome is mediated through the microbiome. (b) T
denotes the exposure, M the microbiome (mediator), O the outcome, and Z the confounding covariates.

There are a number of special challenges in mediation analysis of microbiome data.
Microbiome read count data from 16S amplicon or metagenomic sequencing are typically
summarized in a taxa count table, and have unique and complex features. They are
high-dimensional (with typically many more taxa than samples), sparse (having 50–90%
zero counts), compositional (measuring relative abundances that sum to one), and highly
overdispersed. In addition, microbiome studies can be conducted in various observational
or clinical settings, and tend to have diverse attributes. The exposure and outcome variables
may be continuous, binary, or even multivariate (comprising multiple components such
as multiple indicators for a categorical variable). In particular, many clinical outcomes
are in the form of times to event (survival times) with possibly censored values. There
generally exist confounders (e.g., sex and antibiotic use), as a microbial community is easily
modifiable. Finally, the sample sizes are usually small (e.g., 50–100) and the study designs
can be complex (e.g., clustered samples [4] or matched sets [5]).

To circumvent the complexities of microbiome count data, a popular approach is to
first summarize the taxon-level data into a distance (dissimilarity) matrix that measures the
pairwise dissimilarity in the microbiome profiles, and then base the analysis of microbiome
data on the distance matrix [6–10]. This approach provides results at the community level,
which is usually the first step in an analytical pipeline. Numerous distance measures,
with different properties, have been proposed to detect diverse patterns in microbiome
data; the most commonly used ones include Jaccard [11], Bray–Curtis [12], and weighted
and unweighted UniFrac [13,14]. It is well acknowledged that the optimal choice of a
distance measure depends on the underlying variation pattern in a particular dataset,
which is unknown a priori. Therefore, it is a common practice to construct an omnibus test
that combines the results from analyzing different distance matrices.

Two existing methods, MedTest [15] and MODIMA [16], adopted such a distance-
based approach to mediation analysis of microbiome data. Specifically, MedTest uses the
principal components (PCs) of a given distance matrix as multiple mediators and tests
their joint mediation effects. However, the assumption that the exposure–microbiome
association and the microbiome–outcome association coincide at the same set of PCs may
be overly optimistic. Furthermore, the PCs may not capture mediation effects at rare taxa.
Moreover, MedTest does not accommodate multivariate exposures and outcomes in its
current form. MODIMA calculates distance matrices from the exposure, the microbiome,
and the outcome, separately, and employs the distance correlation [17,18] for characterizing
the exposure–microbiome association and the partial distance correlation [19] for the
microbiome–outcome association conditional on the exposure. The distance matrices for
the exposures and outcomes naturally accommodate multivariate variables. However,
MODIMA does not allow adjustment of confounders and does not provide an omnibus
test. Finally, neither MedTest nor MODIMA can handle censored survival times.

PERMANOVA [7] is currently the most commonly used distance-based method in
analysis of microbiome data. Although it was originally developed for testing microbiome
associations, we find that we can extend PERMANOVA to testing microbiome mediation
effects by using the idea of inverse regression and including both the exposure and the
outcome as covariates whose F statistics capture the exposure–microbiome association
and the microbiome–outcome association conditional on the exposure, respectively. This
extension of PERMANOVA would naturally inherit all the features of PERMANOVA, some
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of which have been a focus of recent development, including adjustment of confounders [4],
test of multivariate covariates, test of censored survival times [20], and an omnibus test
of multiple distance matrices [21]. Thus, the extension of PERMANOVA would be very
appealing to researchers who routinely use PERMANOVA.

In this article, we present PERMANOVA-med, the extension of PERMANOVA to test-
ing the community-level mediation effect of the microbiome. We base PERMANOVA-med
on our implementation of PERMANOVA through the function “permanovaFL” in our R
package LDM [4], which differs from the “adonis2” implementation in the R package vegan
in the permutation scheme and outperformed adonis2 in many situations [4,5,22]. In the
methods section, we first motivate the use of inverse regression and then show how to
extend PERMANOVA to PERMANOVA-med. In this process, we provide an overview of
PERMANOVA, as well as overviews of MedTest and MODIMA to facilitate comparison
with PERMANOVA-med. In the results section, we present extensive simulation studies
in which we numerically compared PERMANOVA-med to MedTest and MODIMA. We
demonstrate the wide applicability of PERMANOVA-med through 16 different media-
tion analyses of the real data on melanoma immunotherapy response. We also applied
PERMANOVA-med to the real data on dietary fiber intake and BMI that were used in the
MedTest paper [15]. We conclude with a discussion section.

2. Materials and Methods
2.1. Motivation toward Inverse Regression

The relationships among the exposure (T), mediator (M), outcome (O), and con-
founders (Z) are depicted in Figure 1b. Assuming a continuous outcome and a continuous
mediator and further assuming no exposure–mediator interaction and no unmeasured
confounding, the classical mediation model [23] specifies a linear model for the mediator
and a linear model for the outcome:

E(M|Z, T) = α0 + αT
ZZ + αTT, (1)

E(O|Z, T, M) = θ0 + θT
ZZ + θTT + θM M. (2)

Note that αT characterizes the effect of T on M given Z, and θM characterizes the effect
of M on O given Z and T. Then, it can be shown that the mediation effect is given by
αTθM [24]. However, it is unclear how to use the microbiome composition data, which are
represented by a distance matrix here, as a mediator. Furthermore, the forward outcome
model (2) is not easily generalizable to an outcome variable that is discrete, multivariate,
or censored survival time.

These limitations motivated us to adopt the inverse regression model that exchanges
the positions of the outcome and the mediator in model (2). Inverse regression is a com-
monly used approach to testing associations [25–27]. It has a key advantage of accommodat-
ing different types of outcome variables including multivariate variables. In what follows,
we show that, by proper orthogonalization of the non-microbiome variables, the inverse
regression model we consider “merges” both models (1) and (2) into one regression model,
which fits nicely into the framework of PERMANOVA that takes the distance matrix as the
response variable.

To be specific, we first sequentially orthogonalize variables Z, T, and O, and de-
note the residual of T after orthogonalizing against Z by Tr and denote the residual of
O after orthogonalizing against (Z, T) by Or. Then, we consider the following inverse
regression model:

E(M|Z, T, O) = β0 + βT
ZZ + βTTr + βOOr. (3)

For now, we view M as a univariate continuous variable, just as in (1) and (2). Model (3)
implies that E(M|Z, T) = β0 + βT

ZZ + βTTr, which is exactly model (1) after replacing T
by Tr. Thus, we easily obtain that βT = αT . Although it is well known that βO 6= θM,
we see that βO = 0 and θM = 0 coincide as they both capture the microbiome–outcome
association given (Z, T). As a result, testing βT βO = 0 is equivalent to testing αTθM = 0,
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i.e., whether there exists a mediation effect through M. We find that model (3) fits nicely
into the PERMANOVA framework, in which we view M as a distance matrix and the linear
regression as a partition of M into additive components corresponding to the orthogonal
factors (Z, Tr, Or).

2.2. Overview of PERMANOVA

PERMANOVA is based on a linear model of covariates that partition a given distance
matrix along each covariate. In particular, when the Euclidean distance measure is used on
the relative abundance data, it is the total variance of relative abundance data across all taxa
that is partitioned into variance explained by each covariate. Following our implementation
in permanovaFL [4], we denote the design matrix of all covariates by X and group the
columns of X into K submodels, i.e., X = (X1, X2, . . . , XK). Each submodel includes
components that will be tested jointly, such as a single covariate, multiple covariates,
or multiple indicators for a categorical covariate. The submodels are first processed into
sequentially orthogonal, unit vectors by the Gram–Schmidt process, so that the partition
of the distance matrix is unambiguous. This requires that the covariates in X follow a
scientifically meaningful order; for example, the confounders should enter first. Let D
denote the n × n distance matrix calculated among n samples, which is often Gower-
centered [28] to become ∆ = −0.5

(
I − n−111T)D2(I − n−111T), where D2 is the element-

wise squared D, I is the identity matrix, and 1 is a vector of n ones. The “residual”
distance matrix after projecting off all submodels, except the kth one, takes the form

∆̃k =
(

I − ∑
k′=1,...,K,k′ 6=k

Xk′XT
k′

)
∆
(

I − ∑
k′=1,...,K,k′ 6=k

Xk′XT
k′

)
by noting that XkXT

k is the hat

matrix for the kth submodel. Then, PERMANOVA tests the effect of the kth submodel by
using the F statistic

Fk ∝
Tr
[

XkXT
k ∆̃kXkXT

k

]
Tr
[(

I −
K
∑

k′=1
Xk′XT

k′

)
∆̃k

(
I −

K
∑

k′=1
Xk′XT

k′

)] ,

where Tr(·) is the trace operation. PERMANOVA assesses the significance of the F statistic
via permutation, particularly the Freedman–Lane permutation scheme [29] as implemented
in permanovaFL. The Supplementary Materials of [4] showed that the Freedman–Lane
scheme is equivalent to forming the following statistic for the bth permutation replicate:

F(b)
k ∝

Tr
[

X(b)
k X(b)T

k ∆̃kX(b)
k X(b)T

k

]
Tr
[(

I −
K
∑

k′=1
X(b)

k′ X(b)T

k′

)
∆̃k

(
I −

K
∑

k′=1
X(b)

k′ X(b)T

k′

)] , (4)

where X(b)
k is a row-permuted version of Xk and thus the columns of X(b)

k remain orthogonal.
Note that the residual distance matrices ∆̃ks do not need to be recalculated for each replicate.
In contrast, the permutation scheme implemented in adonis2 replaces all ∆̃ks in Fk and F(b)

k
by the raw distance matrix ∆.

PERMANOVA is very versatile. It can handle censored survival times. As proposed
in [20], the survival times and censoring statuses are first fit by a Cox model (including
non-microbiome risk predictors as covariates) to be converted into the Martingale or
deviance residuals, which are then used as a generic continuous covariate in PERMANOVA.
Because PERMANOVA bases its inference on permutation, it is robust to small sample sizes.
The permutation replicates can also be readily used to construct an omnibus test of multiple
distance matrices, which uses the minimum of the p-values obtained from analyzing each
distance matrix as the final test statistic and uses the corresponding minima from the
permutation replicates to simulate the null distribution. In addition, the permutation can be
conducted in ways that preserve the correlation found in the original data, so PERMANOVA
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can accommodate certain structures of samples such as clustered samples [4] and matched
sets [5]. All the features that PERMANOVA supports were summarized in Figure 2.

Multivariate 

Weighted UniFrac 

Hypothesis               Distance metric             Trait type         Sample structure 
 
 
 
 
 
 
 
 
 
 

                         ´                          ´                          ´ 
 

Omnibus test 
(Tang et al., 2016) 

Time-to-event 
(Hu et al., 2022) 
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(Zhu et al., 2021) 

Mediation 
(This work) 

Unweighted UniFrac 

Clustered 

Association including 
interaction 

Discrete 
Independent Jaccard 

Continuous 

Bray-Curtis 

…
 

Figure 2. Analyses supported by permanovaFL. Analysis types without a citation were introduced
in the original LDM paper [4]. “Clustered” refers to analyses of clustered data where traits of interest
vary by cluster or vary both by and within clusters (some analyses may require special structure
or additional assumptions). “Matched sets” is a special type of clustered data in which all traits of
interest vary within sets. The boxes in bold are key advantages of PERMANOVA-med over MedTest
and MODIMA.

2.3. PERMANOVA-med: Extension of PERMANOVA to Mediation Analysis

Under model (3), we set submodels X1 = Z, X2 = Tr, and X3 = Or, and denote the
PERMANOVA F statistics for testing microbiome associations with Tr and Or by FT and FO,
respectively. Then, we propose to test the existence of a mediation effect by the microbiome,
i.e., H0 : βT βO = 0, using the test statistic

UPERMANOVA-med = FT FO.

To claim a mediation effect by the microbiome, both the exposure–microbiome and
microbiome–outcome associations (given the exposure) are required to be significant.
Thus, the null hypothesis of no mediation is a composite null that consists of no exposure–
microbiome association, no microbiome–outcome association, or neither. Accordingly, we
construct the following statistic for the bth permutation replicate:

U(b)
PERMANOVA-med = max

{
F(b)

T FO, FT F(b)
O , F(b)

T F(b)
O

}
,

where the three product terms correspond to the statistics under the three types of null
hypotheses. Then, the p-value is obtained as the proportion of U(b)

PERMANOVA-med that are
equal to or larger than the observed statistic UPERMANOVA-med. Note that all the F statistics
needed for calculating the p-value are directly available from PERMANOVA. As a result,
our mediation analysis implemented in the PERMANOVA framework naturally inherits
all the features in PERMANOVA.

2.4. Overview of MedTest and MODIMA

MedTest considers microbiome “features” to be the eigenvectors of the Gower-centered
distance matrix ∆, denoted by u1, u2, . . . , uL, that are associated with the L positive eigen-
values, denoted by λ1, λ2, . . . , λL. MedTest assumes that these microbiome features are
the units through which the microbiome exert the mediation effect. Thus, it adopts a
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test statistic that is a sum of feature-specific mediation effects, each weighted by λl (the
percentage of variance explained by that feature):

UMedTest =
L

∑
l=1

λl |uT
l Tr||uT

l Or|,

where |.| is the absolute value function. Note that uT
l Tr and uT

l Or are the sample Pearson
correlation coefficients that measure the associations between the lth feature and the
exposure and the outcome, respectively; the sample Pearson correlation coefficient does not
easily accommodate multivariate exposure or outcome variables. Similar to PERMANOVA-
med, MedTest calculates the maximum of the statistics corresponding to the three types of
null hypotheses for the bth permutation replicate:

U(b)
MedTest = max

{ L

∑
l=1

λl |uT
l T(b)

r ||uT
l Or|,

L

∑
l=1

λl |uT
l Tr||uT

l O(b)
r |,

L

∑
l=1

λl |uT
l T(b)

r ||uT
l O(b)

r |
}

,

where T(b)
r and O(b)

r are permuted vectors of Tr and Or, respectively. Finally, the p-value
is obtained as the proportion of U(b)

MedTest that are equal to or larger than the observed
statistic UMedTest. The power of MedTest may critically depend on whether the exposure–
microbiome association and the microbiome–outcome association coincide at the same set
of PCs. Furthermore, when the true mediators in the community are rare taxa, the PCs may
not effectively capture the variation at these mediators.

In addition to the distance matrix D from the microbiome profiles, MODIMA also
requires the n× n distance matrices (usually the Euclidean distance) being calculated from
the exposure data and the outcome data, separately, which we denote by DT and DO,
respectively. These distance matrices naturally accommodate multivariate variables. Then,
MODIMA uses the distance correlation [18], dCor(DT , D), for measuring the exposure–
microbiome association, which parallels the Pearson correlation with the major differ-
ence being that the centered product moment transformation is applied to the distance
matrices rather than data vectors. MODIMA uses the partial distance correlation [19],
pdCor(DO, D|DT), for measuring the microbiome–outcome association conditional on the
exposure, which parallels the Pearson partial correlation. MODIMA adopts the following
test statistic:

UMODIMA = dCor(DT , D)× pdCor(DO, D|DT),

and the following statistic for the bth permutation replicate:

U(b)
MODIMA =

{
dCor(D(b)

T , D)× pdCor(DO, D|DT), if dCor(DT , D) ≤ pdCor(DO, D|DT)

dCor(DT , D)× pdCor(D(b)
O , D|DT), if dCor(DT , D) > pdCor(DO, D|DT),

where D(b)
T and D(b)

O are obtained by permuting both rows and columns of the DT and DO
matrices, respectively. Although this way of constructing the null statistic appears different
from those in PERMANOVA-med and MedTest, they seem asymptotically equivalent.
Finally, the p-value is calculated as the proportion of U(b)

MODIMA that are equal to or larger
than the observed statistic UMODIMA. Note that, in this process, the confounding covariate Z
cannot be adjusted. Furthermore, the MODIMA paper pointed out a lack of correspondence
between conditional independence and zero partial distance correlation, e.g., a non-zero
partial correlation in scenarios with conditionally independent variables. It implies that
MODIMA may generate false positive findings under the null hypothesis of no mediation,
especially when there is a strong direct effect of the exposure on the outcome (θT in
model (2)).
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2.5. Availability and Implementation

PERMANOVA-med has been added to the existing function “permanovaFL” in our
R package LDM, which is available on GitHub at https://github.com/yijuanhu/LDM
(accessed on 1 May 2022).

3. Results
3.1. Simulation Studies

Our simulations were based on data on 856 taxa of the upper respiratory tract (URT)
microbiome [30], and the mediator model (1) and the forward outcome model (2) as gener-
ative models. We considered both binary and continuous exposure variables, continuous
outcome variables, and 100 or 200 sample size (n); note that both MedTest and MODIMA
papers considered continuous exposures only. In what follows, we number the taxa by
decreasing relative abundance so that taxon 1 is the most abundant. We considered 3
mediation mechanisms, in which we assumed the mediating taxa were the top 5 most
abundant taxa (taxa 1–5), 100 relatively rare taxa (taxa 51–150), and a mixture of abun-
dant and relatively rare taxa (taxa 4, 5, 51, and 52), which are referred to as M-common,
M-rare, and M-mixed, respectively. We further assumed that the mediating taxa played
the role through their relative abundances in M-common and M-mixed and through their
presence–absence (0/1) statuses in M-rare.

Specifically, for a binary exposure Ti, we assigned half of the samples Ti = 1 and
the other half Ti = 0. For a continuous exposure Ti, we sampled Ti from the Beta(2, 2)
distribution. We initially set the baseline relative abundances of all taxa for all samples
to the population means that were estimated from the real data, which we denote by
πi = (πi1, πi2, . . . , πi J). To induce the effects of the exposure on the mediating taxa, we
decreased πij by the percentage βTMTi (∈ [0, 1]) for taxa 3–5 in M-common and taxa 5 and
51 in M-mixed, and then redistributed the decreased amount evenly over the remaining
mediating taxa, i.e., taxa 1–2 in M-common and taxa 4 and 52 in M-mixed. In M-rare, we
set πij for the mediating taxa to 0 with the probability βTMTi independently, and increased
πij of the most abundant taxon by the total mass that had been set to 0 (which did not affect
the presence–absence statuses of the most abundant taxon as it was always present). This
way of modifying πi did not change the relative abundances of non-associated taxa (except
for the most abundant taxon in M-rare) and the modified πi still satisfied the compositional
constraint (unit sum). Note that βTM characterizes the exposure–microbiome (T-M) associa-
tion and βTM = 0 corresponds to no T-M association. Next, we drew the sample-specific
composition πi = (πi1, πi2, . . . , πi J) from the Dirichlet distribution Dir(πi, θ), where the
overdispersion parameter θ was set to 0.02 (as estimated from the real data). Then, we
generated the read count data using the Multinomial distribution with mean πi and library
size (sequencing depth) sampled from N(10,000; (10,000/3)2) and truncated at 2000. Finally,
we scaled each read count by the library size to obtain the observed relative abundance,
denoted by Mij for taxon j in sample i.

In M-common and M-mixed, we generated the continuous outcome Oi from the fol-
lowing model that allows different directions for the effects of different taxa on the outcome:

Oi = βTOTi + βMOscale

(
∑

j∈A1

Mij − ∑
j∈A2

Mij

)
+ εi, (5)

where A1 and A2 are the “increasing” and “decreasing” subsets of mediating taxa as
determined above and εi ∼ N(0, 0.52). In M-rare, we define A1 and A2 to include taxa
51–100 and taxa 101–150, respectively, and replaced Mij in (5) by I(Mij 6= 0). We also
considered a modification of the microbiome–outcome (M-O) association by restricting A1
and A2 to a subset of originally selected taxa, i.e., taxa 4 and 5 in M-common, taxa 51 and
52 in M-mixed, and taxa 101–150 in M-rare.

We simulated a binary confounder Zi in settings with a binary exposure. Note that
a confounder is associated with the exposure, the microbiome, and the outcome simul-

https://github.com/yijuanhu/LDM
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taneously (Figure 1b). First, we generated Zi = 1 with probability 0.7 among samples
with Ti = 1 and with probability 0.3 among those with Ti = 0. Then, we used the same
operation as used for simulating the T-M association, except that we replaced βTMTi by
γZMZi with γZM = 0.6, to further modify πij based on Zi for the mediating taxa that had
been modified based on Ti. Finally, we added the term γZOZi with γZO = 0.7 to model (5).

We applied PERMANOVA-med and compared it to MedTest and MODIMA, for testing
the mediation effect of the microbiome in the simulated data. In M-common and M-mixed,
all tests were based on the Bray–Curtis distance. In M-rare, all tests were based on the
Jaccard distance. The type I error and power of all tests were assessed at the nominal level
0.05 based on 10,000 and 1000 replicates of data, respectively.

3.2. Simulation Results

We first present results for the simulated data without a confounder. The power of
the PERMANOVA-med, MedTest, and MODIMA with varying values of βMO, βTM, βTO,
and sample size n are displayed in Figures 3–5 for M-common, M-mixed, and M-rare,
respectively. The numerical values of the type I error rates (when βMO = 0) shown in these
figures are also listed in Table 1.

In M-common with a binary exposure, when the same abundant taxa (taxa 1–5) were
used to generate both the T-M and M-O associations (Figure 3a), MedTest was slightly
more powerful than PERMANOVA-med, possibly because the top PCs used by MedTest
effectively captured both the T-M and M-O associations. When a subset of taxa (taxa 4 and
5) were used for generating the M-O association (Figure 3b), the power of MedTest declined
much more quickly than the power of PERMANOVA-med, as the PCs that captured the
T-M association (e.g., PC1) may not coincide with the PCs that captured the M-O association
(e.g., PC2). MODIMA seemed to be very powerful in some cases (e.g., Figure 3a), but its
performance was sensitive to the value of βTO. In particular, MODIMA generated inflated
type I error when βTO was enlarged to 0.8 and especially when n was also increased from
100 to 200.

In M-common with a continuous exposure, which tended to result in more complex
variation patterns in the data than a binary exposure, MedTest (and MODIMA) lost the
advantage in power to PERMANOVA-med, even when taxa 1–5 were used for both the
T-M and M-O associations (Figure 3c). Again, MedTest lost further, considerable power to
PERMANOVA-med when taxa 4 and 5 were used for the M-O association (Figure 3d) and
MODIMA yielded inflated type I error when βTO and n were both large.

As expected, PERMANOVA-med always had significantly higher power than MedTest
in M-mixed (Figure 4), and the power difference was more pronounced in M-rare (Figure 5),
since PCs became less efficient in capturing variations in less abundant taxa. In M-rare,
MODIMA was uniformly less powerful than PERMANOVA-med, even its type I error was
clearly inflated.

Finally, when a confounder was added to the simulated data, MODIMA, without the
capability to adjust for the confounding effect, produced very inflated type I error (Table 2).
Note that, PERMANOVA-med and MedTest always controlled the type I error below the
nominal level, with (Table 2) or without (Table 1) the confounder.
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Figure 3. Simulation results in analysis of simulated data under M-common. (a) Binary exposure,
taxa 1–5 for the M-O association. (b) Binary exposure, taxa 4 and 5 for the M-O association. (c) Con-
tinuous exposure, taxa 1–5 for the M-O association. (d) Continuous exposure, taxa 4 and 5 for the
M-O association.
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Figure 4. Simulation results in analysis of simulated data under M-mixed. (a) Binary exposure, taxa
4, 5, 51, and 52 for the M-O association. (b) Binary exposure, taxa 51 and 52 for the M-O association.
(c) Continuous exposure, taxa 4, 5, 51, and 52 for the M-O association. (d) Continuous exposure, taxa
51 and 52 for the M-O association.
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Figure 5. Simulation results in analysis of simulated data under M-rare. (a) Binary exposure,
taxa 51–150 for the M-O association. (b) Binary exposure, taxa 101–150 for the M-O association.
(c) Continuous exposure, taxa 51–150 for the M-O association. (d) Continuous exposure, taxa 101–150
for the M-O association.
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Table 1. Type I error (at the level 0.05) in analysis of simulated data without a confounder.

Scenario Exposure βTM βTO n PERMANOVA-med MedTest MODIMA

M-common Binary 0.2 0.1 100 0.012 0.021 0.017
0.4 0.1 100 0.044 0.049 0.046
0.4 0.8 100 0.044 0.049 0.086
0.4 0.8 200 0.046 0.052 0.126

Continuous 0.4 0.1 100 0.009 0.016 0.013
0.6 0.1 100 0.026 0.032 0.025
0.6 0.8 100 0.026 0.032 0.040
0.6 0.8 200 0.048 0.045 0.072

M-mixed Binary 0.4 0.1 100 0.014 0.019 0.017
0.6 0.1 100 0.039 0.043 0.040
0.6 0.8 100 0.039 0.043 0.047
0.6 0.8 200 0.048 0.049 0.068

Continuous 0.6 0.1 100 0.004 0.010 0.007
0.8 0.1 100 0.011 0.016 0.013
0.8 0.8 100 0.011 0.016 0.016
0.8 0.8 200 0.027 0.033 0.038

M-rare Binary 0.2 0.1 100 0.039 0.041 0.042
0.4 0.1 100 0.050 0.028 0.041
0.4 0.8 100 0.050 0.028 0.088
0.4 0.8 200 0.052 0.023 0.125

Continuous 0.6 0.1 100 0.045 0.046 0.042
0.8 0.1 100 0.044 0.034 0.039
0.8 0.8 100 0.044 0.034 0.082
0.8 0.8 200 0.049 0.026 0.125

Note: The type I error results were generated at βMO = 0 (i.e., no M-O association), and thus the same for datasets
using different sets of taxa for generating the M-O association. βTM characterizes the exposure-microbiome
association. βTO characterizes the direct effect of the exposure on the outcome.

Table 2. Type I error (at the level 0.05) in analysis of simulated data with a binary exposure and a
binary confounder.

Scenario βTM PERMANOVA-med MedTest MODIMA

M-common 0.2 0.008 0.014 0.242
0.4 0.035 0.040 0.385

M-mixed 0.4 0.006 0.015 0.056
0.6 0.020 0.029 0.103

M-rare 0.2 0.026 0.036 0.279
0.4 0.046 0.035 0.238

Note: βTO = 0.1, βMO = 0, and n = 100. MODIMA does not allow adjustment of confounders.

3.3. Real Data on Melanoma Immunotherapy Response

The real data [31] we used were generated from a cohort of 167 melanoma patients,
who received immune checkpoint blockade (ICB) treatment and were classified as 106 re-
sponders and 61 non-responders. Their progression-free survival times (in days) were
observed for 61 patients, censored for 49 patients, and missing for 57 patients. Their gut
microbiome were profiled via shotgun metagenomic sequencing to generate a taxa count
table including 225 taxa (lowest taxon known for a feature, up to species). These patients
were further asked to complete a lifestyle survey, which included assessment of dietary
fiber intake and use of probiotic supplements within the past month; 110 provided data for
probiotic use, 94 provided data for dietary fiber intake, and 89 provided data for both.

Spencer et al. [31] found in this dataset that higher dietary fiber intake was associated
with significantly improved progression-free survival, with the most pronounced benefit
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observed in patients with sufficient dietary fiber intake and no probiotic use. They also
found marginal significance for the association of dietary fiber intake and response to
ICB. In addition, the influence of the gut microbiome on immunotherapy response has
been demonstrated in numerous human cohorts as well as in preclinical models [2,32],
and the human gut microbiome is itself shaped by diet [3] and medication use [33]. Given
this interplay between diet and medication use, gut microbiome, and immunotherapy
response, a natural question that arose was then whether some effect of dietary fiber intake
and probiotic use on immunotherapy response in this dataset was mediated through the
gut microbiome.

We performed a variety of mediation analyses using this dataset. For the outcome, we
considered both the progression-free survival and the response to ICB, the former of which
is a possibly censored survival time variable and the latter is a binary variable. For the
exposure, we considered the dietary fiber intake (sufficient or insufficient), the probiotic
use (no/yes), and the four-level categorical variable defined by both dietary fiber intake
and probiotics use. Following [31], we additionally compared patients with sufficient
dietary fiber intake and no probiotic use to all other three groups. We selected body mass
index (BMI), prior treatment, lactate dehydrogenase level (LDH), and stage as potential
confounders based on our analysis of bivariate associations, and we performed each
mediation analysis with and without adjustment of these confounders. In all 16 mediation
analyses, we applied PERMANOVA-med, MedTest, and MODIMA whenever they were
applicable. For each method, we constructed tests based on the Bray–Curtis and Jaccard
distance measures separately, as well as the omnibus test of both distance measures (except
for MODIMA).

All p-values were summarized in Table 3. None of the p-values were significant at
the 0.05 level, possibly due to the small sample sizes. Nevertheless, Table 3 demonstrated
the wide applicability of PERMANOVA-med and the limited capabilities of MedTest and
MODIMA. Specifically, neither MedTest nor MODIMA can handle censored survival times
(the progression-free survival); MODIMA cannot adjust confounders (BMI et al.) nor
provide an omnibus test (that combines Bray–Curtis and Jaccard); MedTest cannot handle
multivariate exposures (the four-level categorical variable).

Table 3. p-values from 16 mediation analyses of the data on melanoma immunotherapy response.

PERMANOVA-med MedTest MODIMA
Outcome Exposure

n BC J Omni BC J Omni BC J Omni

No adjustment of covariates
Progression-free Fiber intake 89 0.808 0.965 0.958 - - - - - -
survival Probiotics 110 0.913 0.716 0.899 - - - - - -

Fiber + probiotics (4 levels) 89 0.777 0.975 0.953 - - - - - -
Sufficient fiber + no probiotics 89 0.717 0.965 0.910 - - - - - -

Response to ICB Fiber intake 94 0.727 0.955 0.903 0.624 0.636 0.837 0.384 0.935 -
Probiotics 110 0.888 0.589 0.794 0.978 0.698 0.898 0.915 0.381 -
Fiber + probiotics (4 levels) 89 0.620 0.980 0.827 - - - 0.430 0.947 -
Sufficient fiber + no probiotics 89 0.490 0.955 0.697 0.276 0.626 0.455 0.441 0.947 -

Adjusting for BMI, prior treatment, LDH, stage
Progression-free Fiber intake 89 0.786 0.990 0.936 - - - - - -
survival Probiotics 110 0.983 0.788 0.947 - - - - - -

Fiber + probiotics (4 levels) 89 0.770 0.995 0.935 - - - - - -
Sufficient fiber + no probiotics 89 0.725 0.980 0.903 - - - - - -

Response to ICB Fiber intake 94 0.870 0.920 0.975 0.832 0.935 0.966 - - -
Probiotics 110 0.973 0.433 0.630 0.911 0.539 0.773 - - -
Fiber + probiotics (4 levels) 89 0.760 0.975 0.928 - - - - - -
Sufficient fiber + no probiotics 89 0.644 0.925 0.850 0.453 0.973 0.682 - - -

Note: BC: Bray-Curtis; J: Jaccard; Omni: the omnibus test that combines the results from analyzing the Bray-Curtis
and Jaccard distances; n: sample size; -: not applicable.
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3.4. Real Data on Dietary Fiber Intake and BMI

We also used the real data that were generated from a cross-sectional study of 98
healthy human subjects, to test whether the effect of dietary fiber intake on BMI was
mediated by the gut microbiome. This dataset was previously used by the MedTest
paper [15] and described in more detail there. In this dataset, the operational taxonomic
unit (OTU) table generated from 16S amplicon sequencing has been rarefied to 2387 read
counts per sample and consisted of 4290 OTUs (with at least one count in at least one
sample); dietary fiber intake (as assessed by percent calories from dietary fiber) and BMI
were both continuous variables. Following the MedTest paper, we constructed the Bray–
Curtis, Jaccard, and unweighted, weighted, and generalized UniFrac distance matrices
from this OTU table, and we tested the mediation effect by the gut microbiome in the effect
of dietary fiber intake on BMI without adjustment of any confounder. This was a simple
scenario in which PERMANOVA-med, MedTest, and MODIMA were all applicable. We
thus applied the three methods to each distance matrix separately, and we obtained results
for the omnibus test of all five distance matrices from PERMANOVA-med and MedTest.

In addition, we noted that the uniform library size (2387) was much lower than the
number of OTUs (4290), which implies that there must exist a large number of extremely
rare OTUs. It is well known that extremely rare OTUs tend to be errors due to sequencing,
misclassification or contamination, and a common practice is to filter out OTUs that have
non-zero counts in fewer than five samples [34]. This filter is particularly important for
analysis that is based on presence–absence data (e.g., the Jaccard and unweighted UniFrac
distance matrices), which is more sensitive to any non-zero counts than analysis based on
relative abundance data. Therefore, we also repeated the aforementioned procedure using
the filtered OTU table, which consisted of 885 OTUs.

All p-values were summarized in Table 4. In analysis of unfiltered data, we obtained
MedTest p-values that resembled those reported in the MedTest paper (their Table 2 [15]);
the minor variations can be attributed to stochastic randomness in the permutation pro-
cedure. Specifically, MedTest yielded small p-values, 0.004 and 0.0739 for the Jaccard and
unweighted UniFrac distances, respectively, suggesting the existence of mediation effect at
the presence–absence scale. For the two distances, PERMANOVA-med yielded p-values
0.032 and 0.049, and MODIMA yielded 0.008 and 0.056, all of which were consistent with
the MedTest results. After filtering out extremely rare OTUs, the results of PERMANOVA-
med and MODIMA stayed largely unchanged, which was expected as extremely rare
OTUs should not have a large influence. However, the MedTest p-values for Jaccard and
unweighted UniFrac both became very nonsignificant (0.114 and 0.766), possibly due to the
change of PCs. For the omnibus test, PERMANOVA-med produced stable and marginally
significant p-values, 0.0859 before filtering and 0.0929 after filtering; MedTest produced
highly variable p-values, 0.011 before and 0.335 after; MODIMA did not provide results for
such a test.

Table 4. p-values from testing the mediation effect by the gut microbiome in the effect of dietary
fiber intake on BMI.

Method BC J UniFrac WUniFrac GUniFrac Omni

No filter
PERMANOVA-med 0.304 0.032 0.0490 0.597 0.235 0.0859
MedTest 0.530 0.00400 0.0739 0.792 0.521 0.0110
MODIMA 0.087 0.00800 0.0560 0.451 0.250 -

With filter
PERMANOVA-med 0.289 0.036 0.0769 0.586 0.252 0.0929
MedTest 0.526 0.114 0.766 0.706 0.438 0.335
MODIMA 0.084 0.005 0.077 0.351 0.193 -

Note: BC: Bray-Curtis; J: Jaccard; UniFrac: unweighted UniFrac; WUniFrac: weighted UniFrac; GUniFrac:
generalized UniFrac [14]; Omni: the omnibus test that combines the results from analyzing all five distances. The
filter excluded taxa that were found in fewer than five samples.
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4. Discussion

We presented PERMANOVA-med, an extension of PERMANOVA to mediation
analysis of microbiome data. Through extensive simulation studies, we observed that
PERMANOVA-med did not uniformly outperform MedTest. However, the scenarios
in which PERMANOVA-med did outperform seemed more realistic and more general,
e.g., scenarios with a mixture of abundant and less abundant mediating taxa, relatively
rare mediating taxa, or different sets of taxa associated with the exposure and the outcome.
Even in the single scenario that PERMANOVA-med lost power to MedTest (Figure 3a),
the power loss was relatively small. The power comparison between PERMANOVA-med
and MODIMA was more difficult, as MODIMA often lost control of the type I error. Never-
theless, there were many more scenarios in which PERMANOVA-med had higher power
than MODIMA than scenarios when it was the opposite.

The main advantage of PERMANOVA-med over MedTest and MODIMA is its wide
applicability to a variety of mediation analyses of microbiome data, which was achieved
by using our existing function permanovaFL. Through analysis of the simulated data
and the real data, we have illustrated most features in Figure 2 that are supported by
permanovaFL, such as multivariate exposures, survival outcomes, and omnibus tests of
multiple distance measures. Although we did not cover clustered or matched-set data in
this article, these types of data are emerging rapidly in recent years and may also call for
mediation analysis. PERMANOVA-med is well positioned to accommodate such data in
its current form. Further, PERMANOVA-med is not constrained to analysis of microbiome
data but applicable to any high-dimensional data (e.g., genomic, epigenomic, metabolomic,
proteomic, and cytokine data) that can be summarized into distance matrices.

Caution is required in interpreting results from PERMANOVA-med (as well as
MedTest and MODIMA). Strictly speaking, a significant p-value from PERMANOVA-
med only means that the microbiome are associated with both the exposure and the
exposure-adjusted outcome. External information on causal direction is needed to declare
that the microbiome truly mediate the effect of the exposure on the outcome. Although the
causal directions in the exposure–outcome and exposure–microbiome relationships may be
evident in many cases, the causal direction between the microbiome and the outcome is
often less clear because the change of microbiome may well be a consequence of the change
of outcome rather than a cause.

PERMANOVA-med is limited to testing the mediation effect by the microbiome at the
community level. We have previously developed the linear decomposition model (LDM)
that unifies the community-level and taxon-level tests into one framework in the context
of testing microbiome associations with traits of interest [4]. Using the idea of inverse
regression, we have also extended the LDM, called LDM-med, to testing microbiome
mediation at both the community and individual taxon levels [35]; some of those results
mirror the results we obtained here. Aside from the capability of LDM-med to detect
individual mediating taxa, a major difference between the two works is how we define the
mediation effect by the microbiome. In the current work, we declare a mediation effect
whenever the exposure perturbs some part of the microbial community and some part
of the community influence the outcome; the two parts do not necessarily overlap (e.g.,
involving different taxa). This definition is reasonable here because, in distance-based
analysis, a microbial community is viewed as a whole interconnected entity. The definition
of microbiome mediation in [35] was more stringent. Because the main focus there was to
detect individual taxa that act as mediators, only taxa that are first affected by the exposure
and then influence the outcome were declared to be mediating taxa, and only a community
that has mediating taxa in it was declared to have a global mediation effect. In practice, how
to choose between PERMANOVA-med and LDM-med depends on what type of mediation
is of most interest.
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