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Abstract: In the field of gene expression analysis, methods of integrating multiple gene expression
profiles are still being developed and the existing methods have scope for improvement. The
previously proposed tensor decomposition-based unsupervised feature extraction method was
improved by introducing standard deviation optimization. The improved method was applied to
perform an integrated analysis of three tissue-specific gene expression profiles (namely, adipose,
muscle, and liver) for diabetes mellitus, and the results showed that it can detect diseases that are
associated with diabetes (e.g., neurodegenerative diseases) but that cannot be predicted by individual
tissue expression analyses using state-of-the-art methods. Although the selected genes differed from
those identified by the individual tissue analyses, the selected genes are known to be expressed in all
three tissues. Thus, compared with individual tissue analyses, an integrated analysis can provide
more in-depth data and identify additional factors, namely, the association with other diseases.

Keywords: gene expression; tensor decomposition; diabetes mellitus; neurodegenerative diseases

1. Introduction

Gene expression analysis is an important step for investigating diseases and identify-
ing genes that can be used as therapeutic targets or biomarkers or genes that are causes
of disease. Although the development of high throughput sequencing technology (HST)
has led to continuous increases in the amount of gene expression profile data, methods
of integrating multiple gene expression profiles are still being developed. Tensor decom-
position (TD) is a promising candidate method for integrating multiple gene expression
profiles. Using this method, gene expression profiles from multiple tissues of individuals
can be stored as a tensor xijk ∈ RN×M×K, which represents the gene expression of the ith
gene in the jth individual of the kth tissue. TD provides a method of decomposing a tensor
into a series expansion of the product of singular value vectors, each of which represents a
gene assigned to a specific individual or tissue. For example, by applying the higher-order
singular value decomposition (HOSVD) method to xijk, we can obtain the following:

xijk =
N

∑
`1=1

M

∑
`2=1

K

∑
`3=1

G(`1`2`3)u`1iu`2 ju`3k (1)

where G ∈ RN×M×K is a core tensor, u`1i ∈ RN×N , u`2 j ∈ RM×M, u`3k ∈ RM×M are singular
value matrices and orthogonal matrices. We previously proposed a TD-based unsupervised
feature extraction (FE) method [1] and applied it to a wide range of genomic sciences.
Recently, this method was improved by the introduction of standard deviation (SD) opti-
mization and applied to gene expression [2], DNA methylation [3], and histone modification
analyses [4]. Nevertheless, because the updated method was only previously applied to
gene expression measured by HST, whether it is also applicable to gene expression profiles
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retrieved by microarray technology remains to be clarified. In this paper, an integrated
analysis was performed by applying the recently proposed TD-based unsupervised FE
method with SD optimization to microarray-measured gene expression data for diabetes
mellitus from multiple tissues. We found that applying the TD-based unsupervised FE with
SD optimization to gene expression profiles from individual tissues can identify diseases
associated with diabetes that cannot be identified by the other state-of-the-art methods.

There are multiple benefits to using TD to identify DEGs. First, since it is not a
supervised method, it can select DEGs that are biologically more plausible than those
selected using supervised methods. This can be explained using the following example
wherein the aim is to identify DEGs that are distinct between two classes, e.g., patients
and healthy controls. Supervised methods attempt to identify DEGs associated with a
smaller divergence within individual classes, whereas TD allows one to select DEGs with
within-class divergence to some extent (since TD tries to identify the representative state of
distinction between two classes). If the representative state is associated with within-class
divergence that has biological origins, e.g., age and sex, this divergence should not be
penalized. However, supervised methods often do so, whereas the unsupervised method
allows biological within-class divergence. Second, TD can select more stable DEGs, i.e.,
those independent of specific sets of samples considered in the analysis. This is because TD
attempts to identify DEGs coincident with those of the representative state, which should
be robust. Since sub-sampling does not change the representative state drastically, the
gene set selected by TD is not altered drastically either. Third, TD can deal with multiple
conditions. For example, if gene expression is measured in various tissues of several people,
it is natural to format them as gene × person × tissue, which results in a tensor form.
We have listed only a few important advantages here. Readers interested in acquiring
information on other advantages of TD can refer to our recent book [1].

2. Materials and Methods
2.1. Gene Expression

Gene expression profiles (GSE13268, GSE13269, and GSE13270 [5]) were retrieved
from the Gene Expression Omnibus (GEO), and they were obtained from a study of the
progression of diabetes biomarker diseases in the rat liver, gastrocnemius muscle, and
adipose tissue. Each of these profiles is composed of gene expression profiles from five
individuals seen in two strains, Goto-Kakizaki and WistarKyoto, and they include data for
three tissues (adipose, muscle, and liver) obtained at five time points after treatment.
Three files named GSE13268_series_matrix.txt.gz, GSE13269_series_matrix.txt.gz, and
GSE13270_series_matrix.txt.gz were downloaded from the Supplementary Files in GEO.

Gene expression profiles were formatted as a tensor, with xijkmst ∈ R31099×5×5×2×2×3,
representing the expression of the ith probe in the tth tissue (t = 1: adipose, t = 2: muscle,
t = 3: liver) at the jth time point for the kth replicate and mth treatment at the sth strain.
These values are normalized as follows:

∑
i

xijkmst = 0 (2)

∑
i

x2
ijkmst = 31099 (3)

2.2. Methods

Figure 1 shows the analysis pipeline. Methodological details can be found in the
Supplementary Materials.
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Figure 1. Overall flowchart of the analysis pipeline.

3. Results

To validate the selected genes, 2281 gene symbols are uploaded to Enrichr [6] (For the full
list of selected probes, genes, and enrichment analyses, check the Supplementary Materials).
Table 1 shows the results of the “KEGG 2021 Human” category in Enrichr. Since none of the
terms are related to diabetes except for the top term, i.e., “diabetic cardiomyopathy”, the
process initially appears to be a failure. Nevertheless, a number of the identified diseases
are deeply related to diabetes mellitus. For example, many neurodegenerative diseases
are listed, and diabetes mellitus is widely known to be a risk factor for neurodegenerative
diseases [7–11]. Moreover, diabetes mellitus is known to be associated with thermogene-
sis [12], oxidative phosphorylation [13], and the PPAR signaling pathway [14]. Thus, the
proposed method is successful in contrast to the first impression and can identify many
diseases associated with diabetes mellitus.

Table 1. Top 10 “KEGG 2021 Human” category terms in Enrichr.

Term Overlap p-Value Adjusted p-Value

Diabetic cardiomyopathy 83/203 1.89× 10−31 5.80× 10−29

Prion disease 93/273 7.40× 10−28 1.13× 10−25

Parkinson disease 86/249 2.50× 10−26 2.55× 10−24

Oxidative phosphorylation 60/133 7.92× 10−26 6.06× 10−24

Nonalcoholic fatty liver disease 65/155 1.19× 10−25 7.30× 10−24

Thermogenesis 76/232 8.28× 10−22 4.22× 10−20

Complement and coagulation cascades 42/85 2.26× 10−20 9.85× 10−19

PPAR signaling pathway 39/74 2.58× 10−20 9.85× 10−19

Alzheimer disease 94/369 3.99× 10−18 1.36× 10−16

Huntington disease 83/306 6.48× 10−18 1.98× 10−16

Table 2 shows the top 10 terms in the category “ARCHS4 tissues” in Enrichr. Remark-
ably, gene expression is measured for three of the top four tissues. Similar results are found
for the “Mouse Gene Atlas” category in Enrichr (Table 3). In conclusion, the proposed
method is successful.
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Table 2. Top 10 terms in the “ARCHS4 Tissues” category in Enrichr.

Term Overlap p-Value Adjusted p-Value

LIVER (BULK TISSUE) 481/2316 3.49× 10−63 3.77× 10−61

VENTRICLE 449/2316 1.67× 10−49 9.04× 10−48

SKELETAL MUSCLE (BULK TISSUE) 428/2316 2.34× 10−41 8.42× 10−40

ADIPOSE (BULK TISSUE) 410/2316 6.46× 10−35 1.75× 10−33

MYOBLAST 409/2316 1.42× 10−34 3.08× 10−33

SUBCUTANEOUS ADIPOSE TISSUE 401/2316 6.92× 10−32 1.25× 10−30

ATRIUM 366/2316 2.38× 10−21 3.67× 10−20

HEART (BULK TISSUE) 363/2316 1.53× 10−20 2.07× 10−19

HEPATOCYTE 362/2316 2.82× 10−20 3.39× 10−19

OMENTUM 350/2316 3.25× 10−17 3.51× 10−16

Table 3. Top 10 terms in the “Mouse Gene Atlas” category in Enrichr.

Term Overlap p-Value Adjusted p-Value

mammary gland non-lactating 116/201 7.92× 10−64 7.61× 10−62

skeletal muscle 229/710 5.23× 10−63 2.51× 10−61

liver 243/928 3.58× 10−48 1.14× 10−46

adipose brown 148/456 5.78× 10−41 1.39× 10−39

heart 154/568 2.53× 10−32 4.86× 10−31

kidney 80/554 3.98× 10−4 5.90× 10−3

osteoblast day 21 44/264 4.30× 10−4 5.90× 10−3

bladder 33/195 1.63× 10−3 1.96× 10−2

adipose white 33/199 2.29× 10−3 2.44× 10−2

MEF 45/300 3.33× 10−3 3.20× 10−2

4. Discussion

Although the proposed method successfully integrated gene expression data measured
in three tissues and identified diseases associated with diabetes mellitus, the identified
genes also included genes expressed in all three tissues. If other methods that do not
require an integrated analysis can perform similarly, then complicated methods, such as the
proposed method, will not be required. To determine whether methods without integration
can achieve similar performance, we tested three methods: t test, SAM [15], and limma [16].
Since the t test and SAM methods cannot simultaneously consider the distinction between
the control and treatment as well as the dependence on time, we attempted to identify genes
that presented expression differences between the control and treatment (no consideration
of time dependence). For more details on how to perform these three methods, check the
sample R source code in the Supplementary Materials.

Table 4 shows the number of probes selected by the other methods. These methods
select fewer probes than the proposed method (2542 probes), and the number selected in
muscle is relatively low. According to the limma method, only two probes could be selected
for muscle; thus, the method was not successful. The integrated analysis likely helped
identify more probes, which resulted in more significant enrichment.

Table 4. Number of probes selected by other methods.

Tissue t Test Sam Limma

Adipose 556 773 116
Muscle 100 119 2

liver 947 1090 211

ComBat 4009 180 0

To further validate the genes selected by other methods, we converted probe IDs to
gene symbols and uploaded them to Enrichr. Table 5 presents the results for the other
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methods on the “Mouse Gene Atlas” category in Enrichr. For muscle, neither SAM nor
t test could select muscle as top ranked tissues whereas limma could identify only two
probes as muscle-specific genes (see Table 4). Thus, the other methods are not better than
the proposed method which could identify muscle specificity correctly (Table 3). Figure 2
shows the Venn diagrams between selected genes. Since the proposed method selects
different genes from those specifically selected in individual tissues, an integrated analysis
is a valuable method.
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Figure 2. Venn diagrams between genes selected by various methods. Upper: t test, lower: SAM.
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Table 5. Top three terms by other methods in the “Mouse Gene Atlas” category in Enrichr.

Term Overlap p-Value Adjusted p-Value

t test

Adipose

adipose brown 38/456 4.17× 10−12 3.92× 10−10

mammary gland lact 12/104 3.87× 10−6 1.82× 10−4

macrophage peri LPS thio 0 h 18/353 1.14× 10−3 3.59× 10−2

Muscle

adipose brown 29/456 4.34× 10−26 2.26× 10−24

heart 21/568 3.88× 10−14 1.01× 10−12

mammary gland lact 4/104 1.15× 10−3 1.99× 10−2

Liver

liver 90/928 2.53× 10−16 2.38× 10−14

adipose brown 40/456 9.53× 10−7 4.48× 10−5

kidney 40/554 9.11× 10−5 2.86× 10−3

ComBat

bone marrow 107/413 1.04× 10−10 9.98× 10−9

osteoblast day 21 75/264 8.31× 10−10 3.99× 10−8

embryonic stem line V26 2 p16 149/728 9.44× 10−7 3.02× 10−5

sam

Adipose

adipose brown 51/456 2.61× 10−16 2.48× 10−14

mammary gland lact 12/104 5.67× 10−5 2.69× 10−3

macrophage peri LPS thio 0 h 23/353 3.54× 10−4 1.12× 10−2

Muscle

adipose brown 33/456 2.16× 10−29 1.21× 10−27

heart 23/568 7.01× 10−15 1.96× 10−13

mammary gland lact 4/104 1.91× 10−3 3.47× 10−2

Liver

liver 93/928 3.10× 10−14 2.91× 10−12

adipose brown 43/456 1.63× 10−6 7.66× 10−5

kidney 43/554 1.76× 10−4 5.51× 10−3

Cell cycle 11/124 2.95× 10−9 4.71× 10−7

Oocyte meiosis 9/129 6.65× 10−7 5.32× 10−5

Progesterone-mediated oocyte maturation 8/100 1.00× 10−6 5.34× 10−5

limma

Adipose

adipose brown 14/456 4.19× 10−8 2.85× 10−6

adipose white 4/199 1.61× 10−2 5.46× 10−1

intestine small 6/466 2.59× 10−2 5.87× 10−1

Liver

liver 33/928 2.39× 10−11 1.60× 10−9

adipose brown 7/456 1.31× 10−1 1.00× 100

heart 8/568 1.57× 10−1 1.00× 100

Finally, based on the genes associated with probes shown in Table 4, we found that the
“KEGG 2021 Human” category in Enrichr does not include neurodegenerative diseases (see
the Supplementary Materials). Thus, the association between neurodegenerative diseases
and diabetes mellitus can be found only when an integrated analysis, such as the proposed
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method, is employed. In this sense, an integrated analysis is more than a simple union of
individual analyses and can identify factors that cannot be identified by individual analyses,
such as potentially associated diseases. Thus, an integrated analysis of gene expression
profiles in individual tissues provides more in-depth information than individual analyses,
at least for certain cases. Thus, integrated analyses of gene expression profiles in individual
tissues should be encouraged.

It may be plausible for other integrated methods to perform similarly. If this is true, the
advanced methods that we have proposed here are not required. To rule out this possibility,
we apply ComBat [17] to remove the batch effect between the three tissue types since we
selected genes whose expressions are independent of tissues as can be seen in Figure S1;
Table 4 shows the results. It is seldom reported to be successful. Limma failed to select any
DEGs, and the numbers of genes selected by the t test and SAM are markedly different
from each other in contrast to the identification of tissue-specific DEGs, whose numbers are
more coincident across the three methods (Table 4).

Biological validation is also worse; Table 5 shows the result of the “Mouse Gene
Atlas”. None of the tissues used in the experiments are listed, whereas the proposed
method is (Table 3). In addition to this, based on the genes associated with probes shown
in Table 4, we found that the “KEGG 2021 Human” category in Enrichr does not include
neurodegenerative diseases (see the Supplementary Materials) that were detected using
the proposed method (Table 1). In conclusion, integrated analysis using ComBat is inferior
to the proposed method.

One might wonder why an integrated analysis of three tissues from patients with
diabetes mellitus can identify associations with neurodegenerative diseases. The PCA and
TD-based unsupervised FE methods are frequently able to detect disease associations. We
previously identified an association between cancer and amyotrophic lateral sclerosis [18]
without investigating cancer gene expression and an association between heart diseases and
posttraumatic stress disorder [19] without investigating brain gene expression. Therefore,
we were not surprised that the integrated analysis using the proposed method was able to
identify disease associations. To our knowledge, few studies have attempted to predict the
association between diseases using gene expression, although many studies have focused
on the associations between genes and disease [20–22] and between drugs and disease
association [23–25]. Our proposed strategy would be useful for such studies.

5. Conclusions

In this study, we applied the proposed TD-based unsupervised FE with SD optimiza-
tion method to perform an integrated analysis of gene expression measured in three distinct
tissues using microarray architecture; moreover, the proposed method had not been applied
to such data in previous studies. The results show that the proposed method can identify
more genes than individual analyses. The selected genes are known to be expressed in all
three tissues, and they are also enriched in many neurodegenerative diseases that have a
known association with diabetes mellitus but cannot be identified by individual analysis. In
this sense, integrated analyses might have the ability to identify additional factors relative
to individual analyses.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
genes13061097/s1, Supplementary methods, Figure S1: Singular value vectors when HOSVD is
applied to data sets, Figure S2: Histogram of 1−Pi, Table S1: The core tensor when HOSVD is applied
to data sets. Full list of selected probes, genes and enrichment analysis.
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