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Abstract: Network and systemic approaches to studying human pathologies are helping us to gain
insight into the molecular mechanisms of and potential therapeutic interventions for human diseases,
especially for complex diseases where large numbers of genes are involved. The complex human
pathological landscape is traditionally partitioned into discrete “diseases”; however, that partition is
sometimes problematic, as diseases are highly heterogeneous and can differ greatly from one patient
to another. Moreover, for many pathological states, the set of symptoms (phenotypes) manifested
by the patient is not enough to diagnose a particular disease. On the contrary, phenotypes, by
definition, are directly observable and can be closer to the molecular basis of the pathology. These
clinical phenotypes are also important for personalised medicine, as they can help stratify patients
and design personalised interventions. For these reasons, network and systemic approaches to
pathologies are gradually incorporating phenotypic information. This review covers the current
landscape of phenotype-centred network approaches to study different aspects of human diseases.

Keywords: biological network; network medicine; pathological phenotype; gene priorization

1. Introduction

Living systems are characterised by a large number of components immersed in intri-
cate networks of interactions, making them prototypical examples of complex systems. As
such, many of their properties cannot be understood through the reductionist approach of
molecular biology, which is based on the detailed characterization of individual molecular
components, under the assumption that the properties of the system can be obtained from
a simple combination of these. This approach fails to adequately reflect many aspects of
living systems, which cannot be fully explained by a simple (additive) combination of their
constituent molecular components [1-4]. In many cases, the properties of these components
do not mean much outside the molecular level itself, and it is only in the context of the
complex network of interactions and relationships with other components they acquire a
biological meaning.

An alternative approach to biological phenomena from a systemic point of view,
typically referred to as Systems Biology [5,6], complements the reductionist approach of
Molecular Biology by studying living systems not from the point of view of their molecular
components (“bottom-up”), but from higher levels of biological complexity (“top-down”).
Frequently, these higher levels are represented by large and complex networks coding
relationships between molecular components. Molecular networks are representations of
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relationships between different molecular components, with “relationship” often being
defined in a broad sense. The discipline that mines these networks to extract biological
knowledge is Network Biology [7,8]. Network Biology applies the tools of network analysis
and graph theory to extract useful information from large molecular networks.

Although these systemic approaches are not new, they are experiencing a resur-
gence due to the ongoing revolution in “-omics” techniques, which allow one to obtain
massive sets of relationships between molecular components that can be used to build
molecular networks.

These systemic and network methodologies are not only being applied to basic re-
search but to biotechnological and biomedical problems as well. Many pathologies cannot
be reduced to a failure in a single gene or a small number of genes in a simple, additive way.
These complex diseases are better reflected at the “network level”, allowing the integration
of information on the relationships between genes, drugs, environmental factors and more.
The discipline that approaches human pathologies from this systemic point of view is often
called Network Medicine [9-12].

In medicine in general, and network medicine in particular, the basic unit for par-
titioning the complex human pathological landscape into discrete entities has been the
“disease”. Nevertheless, this continuous landscape can also be partitioned into clinical
signs, also known as symptoms or pathological phenotypes, which can be defined as the
external manifestations of a pathological state (disease). These include entities such as
fever, haemorrhage, inflammation, seizures, etc. Two unrelated diseases can share common
phenotypes; conversely, two related diseases, or even the same disease manifested in differ-
ent individuals, can show different sets of phenotypes. Although diseases were the basic
units in the first network-based approaches to pathologies, network-medicine approaches
focused on clinical phenotypes are becoming increasingly popular.

In this review, we provide an overview of these phenotype-centred network ap-
proaches to human diseases. We start with a short introduction to the main network
concepts and general approaches used in network medicine, and continue with examples of
applications to phenotypes. We also include a table with a summary of the main resources
related this subject.

2. Overview of Network Approaches for Studying Human Pathologies

A network (“Graph”, in mathematical terms) is just a representation of relationships
between entities. Any phenomenon that can be represented as entities linked by relation-
ships can be modelled as a graph. The entities are usually called nodes or vertices, and the
relationships edges (Figure 1a). Both nodes and edges represent entities and relationships
understood in the broadest possible sense. A node can represent a physical entity, such as a
protein, gene, person, or even a computer, or other non-physical concepts, such as cell state,
developmental stage, disease, or computer software. Similarly, edges can represent any
type of generic relationship between nodes, such as physical interactions between proteins,
chemical transformations between metabolites, hypertext links between two web pages, or
subroutine calls in a computer program. Networks with more than one type of node or
edge (e.g., some nodes representing proteins and other metabolites) are termed multipartite
networks (e.g., Figure 2).

Network Medicine is largely concerned with the study of molecular networks, which
represent generic relationships between molecular entities (Figure 1a). In general, these
approaches try to extract disease-related information from the complex topological patterns
present in these large networks.

A plethora of methodologies have been devised for extracting disease-related in-
formation from the topology of a molecular network. For more comprehensive reviews
see [8,9,11]. A key concept in most of these approaches is that of the “disease-related mod-
ule”. A module (also known as “cluster”) is a purely topological concept, and describes
a set of network nodes that are enriched in internal connections (connections between
themselves) compared to external connections (connections with other nodes of the net-



Genes 2022, 13, 1081

30f15

work) (Figure 1). Topologically, they represent sub-networks that present some degree
of independence from the rest of the network. In biological networks, these topological
modules have been shown to represent functional modules, comprising functionally re-
lated sets of molecular entities [13]. For example, in protein interaction networks, it has
been shown that they correspond to interacting proteins involved in the same biological
process and/or forming a molecular complex (e.g., ribosome, proteasome) or working
together in a signalling pathway [14-16]; in metabolic networks, they typically correspond
to related metabolites involved in the same metabolic pathway [17]; in gene regulatory
networks, they correspond to sets of related transcription factors involved in controlling
a given cellular process [18]. Consequently, topological modules of biological networks
can be considered functional modules (Figure 1b). Interestingly, it has also been shown
that topological modules often represent disease-related modules, in the sense that genes
associated with a given disease, when mapped into a biological network, tend to cluster
together (e.g., [19-23]) (Figure 1b). In cancer, a complex disease characterised by a progres-
sive accumulation of mutations, it has been shown that it is the concentration of mutated
genes in network modules that characterises the transition from health to disease, rather
than the general increase in the number of mutations [20]. Even in very complex diseases
involving hundreds to thousands of genes, these tend to concentrate in a reduced number
of modules/pathways (e.g., autism [24]). This relationship of topological modules with
functional and disease-related modules forms the basis of most approaches in Network
Medicine. This allows us to connect diseases with their underlying molecular mechanisms.
Node: gone

metabolite,
disease, ...

Topological
module

Connection (edge):
physical interaction,
functional linkage,
co-expression,

Biological function X
chemical reaction ... .

o Associated to disease Y

Topological
modules

(a) (b)

Figure 1. (a) Schematic representation of a generic biological network coding linkages between
different molecular entities. This schematic network has three topological modules (clusters). Real
biological networks can have tens of thousands of nodes and hundreds of thousands of relationships.
(b) Relationships between topological, functional, and disease-related modules. The proteins involved
in a specific function (“X”) are coloured red. Those associated with a given disease (e.g., those whose
mutation is known to cause “disease Y”) are highlighted with green halos. Proteins known to be
involved in “X” tend to cluster in the network. Those associated with disease “Y” tend to cluster
in the same topological module, indicating that disease “Y” may be related to a malfunction of the
biological process “X”. Alterations of other proteins in the same topological /functional module may
also lead to the same disease as they disrupt the same process, even if they have not been detected yet
(e.g., gene “b”). Conversely, genes far apart from the cluster might be discarded (e.g., “a”). Network
propagation methods would tend to expand that initial set of Y-associated genes to the whole
topological cluster as well as discard nonrelated genes.
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Figure 2. Overview of the use of multipartite networks to obtain phenotype-gene and phenotype-
phenotype associations. (a) A phenotype—patient-gene tripartite network is constructed from patient
data, such that a given phenotype in the cohort is linked to a gene in the cohort when there is at
least one patient in the cohort who both manifests the phenotype and has a mutation that maps to
the gene. Once the network has been built, it can be analysed to find those phenotype—gene pairs
that are highly and specifically connected over many patients, using a statistical test to determine
whether there is evidence that the pair is associated. There is also a third set of phenotype gene pairs,
which are not connected via any patient (e.g., A-2), these are also considered not to be associated.
(b) A phenotype—patient bipartite network is constructed from patient data, such that phenotypes
are connected to patients when there is at least one patient in the cohort manifesting the phenotype.
Once built, the network can be analysed to find pairs of associated phenotypes that are connected by
many patients in a specific manner, using a statistical test. As with the phenotype—gene pairs, there
are phenotype-phenotype pairs that are not connected by any patient (e.g., B-C). These must also be
considered not associated.

There are many approaches for locating these disease-related modules from an initial
set of “seed” genes/proteins associated with a given disease [25,26]. These methods,
usually termed “network propagation” or “network diffusion” approaches [26,27], detect
the topological modules enriched in these seed genes (Figure 1b) using a variety of strategies.
The seed genes are those known to be associated with the disease according to different
pieces of evidence, such as phenotypic (e.g., disease-associated expression change) or
genotypic data (mutations in affected individuals) [28].

Locating these disease-related modules is important for different reasons. On one
hand, it allows the filtering of the original set of genes, discarding or adding new ones
based on their belonging/closeness to the module (e.g., genes “a” and “b” respectively in
Figure 1b). This is related to approaches for “gene priorisation” [29,30] that use network
information, which are now routinely used for filtering, for example, the large set of
variants showing up in “genome-wide association analysis” (GWAS) studies. It also
allows one to predict new genes potentially associated with the disease, which could,
for example, be more “druggable” (e.g., “b” in Figure 1b). Another advantage is that
locating the modules associated with a disease allows it to be related to one or more
biological functions (e.g., biological /metabolic pathways, macromolecular complexes),
due to the relationship between topological modules and functional modules described
earlier. This gives further insight into the cellular basis of the disease. Finally, as the
network topology and connections represent different molecular mechanisms, having a
picture of the network context of the disease-related genes allows us to better understand
those mechanisms (e.g., which gene activates which other one in cascades of transcription
regulation) and eventually design therapeutic interventions aimed at, for example, re-
wiring a malfunctioning network (e.g., [31]).
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Network approaches to human pathologies are not restricted to those molecular
networks representing relationships between molecular entities. Many other disease-
related data have been modelled as networks and studied from that point of view. These
include drug-target relationships, drug—drug relationships, drug—disease associations,
drug-side effect and disease—disease associations [32].

3. Phenotypes and Molecular Networks

To perform computational studies in general and systemic studies in particular on
large collections of biomedical data, they have to be represented in a computer-tractable
way, using standardised vocabularies (e.g., formal and standardised identifiers for genes,
proteins) and ontologies (formal ways of representing knowledge, such as relationships
between entities). In the case of phenotype data, there are multiple resources that provide
these vocabularies and ontologies to describe different aspects of the human phenotypic
landscape. A widely used vocabulary is that generated by the “Human Phenotype Ontology”
(HPO) [33]. The HPO consists of a set of keywords describing human phenotypes related in
a hierarchy, in which one can navigate from very general terms (e.g., “abnormality of the
nervous system”) down to more specific ones (e.g., “seizure” — “non-motor seizure”).

Human diseases, characterised by a profile of distinctive HPO terms, can be clus-
tered according to their phenotypic similarities. It has been known for a long time that
many diseases and syndromes with similar phenotypes are caused by functionally related
genes [21,34]. The extreme case is that of genetically heterogeneous diseases caused by
genes involved in the same biological unit (such as a macromolecular complex, a pathway
or process, or even an organelle). For example, the different types of Ehlers-Danlos syn-
dromes are often caused by mutations in collagen genes or collagen interacting proteins
that modify the structure, production or processing of collagen fibres. A large-scale study
showed that genes causing the same (genetically heterogeneous) disease were frequently
found to interact [35].

Beyond genetically heterogeneous diseases, several computational studies have ob-
served that phenotypic similarity of otherwise distinct diseases is widely associated with
shared protein interactions, both direct [36] as well as second-order interactions [37]. As
mentioned above, diseases are organised in non-random modules in the human interac-
tome, meaning that genes related to the same disease tend to be close in the interactome or
even form a topological module [23]. The same modular organization observed for diseases
has been quantified at the phenotype level [38], showing that genes associated with the
same phenotype in genetic diseases tend to be close in the network of protein—protein
interactions. Similarly, molecular-related phenotypes tend to overlap in the network, while
unrelated phenotypes tend to be further apart.

4. Disease—-Gene Predictions Using Phenotypic Descriptions and Molecular Networks

Early disease—gene prediction methods (e.g., [39,40]) were based on phenotypic de-
scriptions of diseases, but did not use molecular networks. Direct protein interactions in
human and model organisms were first used to predict novel genes associated with geneti-
cally heterogeneous diseases [41]. Lage et al. constructed a phenome-interactome network
for human diseases, and used it to prioritise candidate genes [42]. In the absence at that
time of curated phenotypic annotations such as those provided by the HPO, phenotypes
were automatically extracted from OMIM records [43] using UMLS concepts [44]. UMLS
defines a standardised vocabulary of medical concepts, and OMIM is a database of human
genetic disorders. Since then, various studies have proposed a range of network-based
methods to predict and prioritise novel disease-related genes [45], and several tools have
been made available for this task (for a review see [30]).

Several approaches analyse a single molecular network (i.e., “homogeneous” network,
with a single type of nodes and linkages). In these molecular network-based approaches,
new genes are found in the proximity of known disease genes (“seed” genes). Algorithms
that rely on global network distances, like random walk with restart (RWR) and network
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diffusion, have been shown to outperform those that use local distances [46]. Integrated
functional networks provide better results than single-type interaction networks [47].

In the case of complex, oligogenic or genetically heterogeneous diseases, the seed is
usually the set of already known disease genes [48]. However, how can we define seed genes
for patients with rare conditions that have no clear clinical diagnosis? A possible strategy
is to compile seed genes from conditions with clinical manifestations (phenotypes) similar
to those observed in the patient [27,49,50]. Using this strategy, methods that analyses the
output of genome-wide sequencing platforms, such as Exomiser [51] and Phen-Gene [52],
allow researchers to score candidate genes using a network-based approach. In these
approaches, the clinical manifestations of patients should be provided using a controlled
vocabulary, such as the HPO. These manifestations are then automatically compared to
those of known diseases to construct a set of seed genes to start the network analysis.
Several disease similarity metrics can be used to find phenotypically similar diseases (for a
recent review see [53]).

Instead of using a single molecular network and establishing initial probabilities for
seed genes based on phenotypic similarities, alternative approaches analyse multipartite
(heterogeneous) networks. RWRH (random walk with restart on heterogeneous network)
combines a disease-disease network (constructed based on phenotypic similarity) with
the molecular network [54]. These two networks are linked by the connections between
diseases and molecular nodes, generating a bipartite network. This approach was shown to
outperform the equivalent method using a single molecular network in the task of assigning
genes to diseases.

Disease—phenotype associations can be explicitly modelled as a bipartite network.
This disease—phenotype network, together with parenthood relationships between phe-
notypes, a molecular network, and the corresponding inter-network links, establishes a
tripartite network (diseases, phenotypes, and genes). This tripartite network, or context-
sensitive network (CSN) has been shown to outperform RWRH in assigning genes to their
corresponding diseases [55].

5. Phenotype—-Gene Predictions

Similar methods to those described above aimed at predicting disease-related genes
using molecular networks can be used to associate genes with phenotypes. The inverse
problem, the prediction of phenotypes for a given gene/protein is outside the scope of this
review (see CAFA challenge [56]).

Li et al. integrated protein interactions as well as disease and phenotype information
to predict novel genes associated with phenotypes [57]. Their motivation was the study of
the molecular mechanisms underlying phenotypes, which are the basis for personalised
diagnosis and treatment in traditional Chinese medicine. Kahanda et al. used protein—
protein interactions combined with other types of data, such as functional annotation and
literature to predict phenotype-gene associations [58]. Another approach for assigning
genes to phenotypes is that developed by Petegrosso et al., who used a transfer learning
approach (tIDLP) on a tripartite network that contains HPO terms (and their parenthood re-
lationships), Gene Ontology (GO) terms representing functional annotations (together with
their ontological relationships) and a molecular network (protein—protein interactions) [59].
Gonzalez-Perez et al. [60] compared an RWR approach to a connectivity significance ap-
proach [19] using a single molecular network, obtaining overall better results with RWR.
Yang et al. used a multipartite network embedding algorithm (LSGER) [61]. They obtained
an overall improvement compared to FSGER (Fisher-based statistical model, as a baseline
method) and PRINCE [27].

It is worth mentioning that the accuracy of phenotype—-gene predictions depends
not only on the method used, but also on several biomedical factors. This was shown in
a recent study [60] in which the performance of RWR to predict genes associated with
phenotypes was assessed and related to aspects like disease onset and pace of progression,
phenotype prevalence, and gene product function. The biomedical factors that most
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affected prediction performance were the monogenic or oligogenic nature of the disease,
the type of phenotype, and the mode of inheritance. Better predictions were obtained
for genes involved in oligogenic diseases (in contrast to monogenic diseases). Neoplasm
phenotypes and abnormalities of the blood were among the best predicted phenotypes,
in contrast to abnormalities of the eye or the nervous system that were poorly predicted.
Phenotype-genes of autosomal-dominant inherited diseases obtained better global results
than those with autosomal recessive inheritance.

There are other ways to associate genes with phenotypes that involve networks,
although not necessarily molecular networks. For example, PhenFun [62] connects pheno-
types with genes based on a cohort of patients with genomic disorders. This is achieved
by identifying the genomic regions shared by multiple patients and connecting the genes
that map to these regions to the phenotypes exhibited by these patients. Then, those pheno-
types that are connected to the same gene via multiple patients are considered potentially
associated. The strength and significance of the association is assessed using statistical
methodology, as illustrated in Figure 2a and described in detail in [62]. They also used
the genes associated with each phenotype to look for functional enrichment in terms of
biological pathways. This was based on the assumption that it might be a specific pathway
that leads to the phenotype, and alterations in different genes from the same pathway
might lead to the same effects.

6. Phenotypes and Patient Stratification

One of the overarching themes of clinical research in the last decade has been the
recognition that a one-size-fits-all disease label is often insulfficient. It has been known for a
long time that common diseases such as asthma are really composed of many subgroups
or endotypes, characterised by differences in term of manifested phenotypes as well
as often distinct underlying mechanisms [63]. A powerful way to discover subgroups
within a disease is by stratifying patients. This can be done based purely on molecular
data, such as using genetics and “omics” datasets to build gene signatures and model the
underlying processes [64,65].

However, much can be achieved using phenotypic data. Patients should be well phe-
notyped, both in terms of breadth (ensuring all aspects of the patient’s disease is covered)
and also depth (ensuring that the description of the disease is suitably precise). Most of
the methods used to cluster patients are unsupervised approaches such as hierarchical
clustering or related methods such as Partitioning Around Medoids (PAM), applied to a
matrix of patients and factors.

It should be made clear that terminology is important here—there are studies that
classify patients into different groups which they refer to as “phenotypes”, classifying
based on factors such as levels of serum proteins [66] and scores on clinical tests [67]. In
these studies, they are often talking about a small number of phenotypes. Conversely, in
other work, phenotypes (such as HPO terms assigned to patients) are considered the factors
themselves, and are used to perform clustering of the patients into groups.

In recent work, researchers looked in detail at how to assess phenotyping breadth and
depth in a patient cohort [68]. Patients from three cohorts with very different properties
were clustered based on their phenotypic profiles. For the cohorts with more inconsis-
tent and less informative phenotypic data, it was found that many patients ended up
in uninformative clusters, which included only a small number of very broad and un-
specific phenotypes such as “intellectual disability”. Clearly, such broad groups are not
sufficient or informative for stratifying patients in a useful manner, and it was suggested
to remove uninformative patients from the dataset, given that filtering patients based on
very minimal criteria (included patients must have more than two pathological phenotypes
assigned) greatly changes the properties of the dataset and the grouping. Of course, if
possible, further clinical examination can also improve the information available in patient
phenotypic profiles [68].
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Various methods exist for this purpose. Work in the field of pain has long used
quantitative sensory testing (QST) for patient testing [69]; however, its utility is often
questioned [70]. In recent work from Vollert et al., QST sensory profiles were used to stratify
patients into one of three groups, “sensory loss” “thermal hyperalgesia” or “mechanical
hyperalgesia” [67], using a deterministic algorithm based on features in their QST profile.
Moreover, they also suggested a probabilistic algorithm that allowed a patient to potentially
be assigned to more than one group.

Combining phenotype data with genetic data allows us to better understand the
reasons for the stratification of patients. In seminal work from the BRIDGE-BPD consortium,
looking at heritable bleeding and platelet disorders (BPD), Westbury et al. performed
patient clustering on cohort members based on HPO data [71]. They found that the patient
groups formed by the clustering corresponded to suspected BPD syndromes and pedigree
membership. Patients with variants in specific genes also tended to cluster together,
showing that patient stratification cannot only tell us how patients are related, but perhaps
why, i.e., the underlying molecular/genetic mechanisms.

There has been increased interest in this area over recent years due to the COVID-19
pandemic. In a new and exciting study Mueller et al. used immune phenotypes for
patient stratification [66]. More specifically, they measured serum cytokine levels for each
patient and then performed clustering on the data, identifying three major groups of
patients. Interestingly, group membership was highly correlated with the results of certain
clinical tests.

Bringing together personalised medicine and molecular networks, there have also
been several papers that perform network analysis at the individual level. Work by Liu
et al. used expression data and protein interactions from the STRING database [72] to build
sample-specific networks [73]. Other studies have focused on transcriptomic data, using
linear interpolation in an attempt to reverse engineer single sample networks [74]. These
personalised network approaches are set to improve greatly, as we move from bulk RNA
sequencing to single-cell RNA sequencing, allowing a huge amount of information to be
obtained at the individual level. Already, methods are being developed to analyse such
data and produce networks down to the cellular level [75].

7. Phenotypes and Co-Morbidity

As well as stratifying patients, phenotype data from patient cohorts and disease
databases can be used to identify patterns of co-dependency and comorbidity between
phenotypes. There are methods to achieve this-based directly on phenotype co-occurrence
within patient cohorts, or across many thousands or even millions of patients based on
hospital records.

Many methods based on patient data use International Statistical Classification of
Diseases and Related Health Problems (ICD) codes [76]. For example, in pioneering work,
Hidalgo et al. used ICD-9 codes from thirteen million patients to identify comorbid disease
relationships [77]. For each pair of diseases, they calculated relative risk of both being
affected in the same patient to quantify comorbidity (Pearson’s correlation coefficient was
also used). The pair information was then used to construct a Phenotypic Disease Network
(PDN), which showed phenotypes belonging to specific disease families tending to be
close in the PDN. This work has been heavily cited, and similar approaches have been
applied to a range of other diseases, including ischemic heart disease [78], in which a PDN
of comorbid phenotypes was built for sufferers of this disease. It has also been recently
applied to look at comorbidity in depression [79], for which the authors used Pearson’s
correlation to measure comorbidity between a large spectrum of phenotypic conditions.
Both works used ICD-10 codes. Comorbidity networks can also be built between ICD-10
derived diseases. Such a method has been applied to type-2 diabetes, for example [80].
Other work has leveraged the relative risk calculation alongside temporal data to build
disease progression networks, with clear potential use for diagnosis and prognosis [81].
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ICD codes are widely used for creating hospital bills and insurance claims and as such
are highly used and readily available. While ICD codes have the advantage of allowing the
analysis of very large numbers of patients, the system has been criticised, largely due to
potential bias related to their use in billing and other related administrative tasks [82]. The
“human phenotype ontology” (HPO) described earlier provides an alternative system for
assigning phenotypes, which due to its tree-like structure and other attributes, is well suited
to comorbidity analysis. To this end, the PhenCo methodology was developed [83], which
takes patient cohort data, consisting of phenotypic profiles for patients, annotated using the
HPO. These profiles are then deconstructed to produce a bipartite network linking patients
and profiles, such that it is possible to identify pairs of phenotypes that are shared by many
patients (Figure 2b). Moreover, these pairs of phenotypes can be scored, such that those
pairs that tend to occur together more often are scored highly.

These phenotype pairs by themselves are of interest as they help better understand
phenotypic patterns within the cohort and formally quantify clinicians’ intuitions of how
certain phenotypes tend to manifest together within their cohort. However, the real power
of the method occurs when the pairs are combined to produce a phenotype network.
PhenCo not only builds such a network, but implements an edge-based clustering method
to obtain clusters of phenotypes that tend to occur together. Furthermore, it can integrate
the phenotypic data with genomic data, such that phenotypes can be associated with
functional systems, in a similar manner to the previously described PhenFun system [62].
This allows identification of clusters of phenotypes that overlap together, as well as clusters
where the component phenotypes map to the same functional systems, providing insight
into the molecular cause of the clustered phenotypes (Figure 2a).

There are also approaches that use HPO terms alongside data obtained directly from
disease databases such as OMIM [43] and Orphanet [84]. For example, a recent study using
the PhenoClusters methodology [85] gave insights into neuromuscular disease (NMD). The
method obtains NMD related diseases from OMIM using keyword searching and expert
manual curation. It then extracts NMD-related phenotypes by looking for HPO terms that
are overrepresented within the NMD-related diseases. These are used to build a bipartite
network, connecting phenotypes with diseases, and in a manner analogous to the PhenCo
method described above, to find phenotypes that tend to occur together across diseases.
These phenotype pairs are scored and can be assembled together to build networks that
can in turn be clustered. Moreover, known disease-gene association data can be used
to find clusters of related phenotypes that are associated with genes involved in similar
pathways. Through collaboration with experts in the field of NMDs, it was possible to
identify important clusters that can aid in differential diagnosis [85].

There are additional methods that, while not measuring comorbidity directly, attempt
to look for relationships between phenotypes by incorporating additional data sources.
In a study described earlier [38], similarities between phenotypes were quantified using
the properties of the interactome. Similar work to this study combined HPO pheno-
types with protein—protein interaction data, by mapping phenotypes to the interactome,
and calculating similarity between the modules formed within the interactome by the
distinct phenotypes [86].

As well as HPO terms and ICD codes, exciting approaches have also used symptom
terms in the Medical Subject Headings (MeSH) [87] metadata fields of PubMed entries to
build a human symptoms—disease network [37]. This idea has been extended to produce
a tool that is capable of retrieving from the scientific literature relationships between
HPO terms and terms from other annotation systems, including Gene Ontology as well
as different biomedical ontologies [88]. However, this method differs in terms of the
underlying approach, in that it searches for the terms within the abstracts of PubMed
articles, rather than relying on the MeSH fields.
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8. Resources

Most of the resources mentioned (e.g., databases and software tools) are free for
academics and can be accessed on-line. In this section, we include a table with a summary
of the main resources commented in this review as well as others related to the subject,
including their web addressed (Table 1).

Table 1. Main online resources related to network approaches to diseases and phenotypes.

Name

Description URL' Reference

CytoScape

Widely used software for

interactively representing and

studying biological networks. https:/ /cytoscape.org/ [89]
Freely available for different

operative systems

STRING

Resource with networks of

interactions and functional

relationships between proteins ~ https:/ /string-db.org/ [72]
in different organisms, inferred

from different evidences

Controlled structured
vocabulary for describing

Human Phenotype Ontology (HPO)  different aspects https:/ /hpo.jax.org/app/ [33]

of human disease
phenotypes/clinical signs

Online Mendelian Inheritance in

Catalogue of human
genetic disorders and https:/ /www.omim.org/ [43]

Man (OMIM) their related genes
Orphanet Resource with information on https:/ /www.orpha.net/ [84]
P rare diseases and orphan drugs ps: ww-orpha.

Controlled vocabulary used to

Medical Subject Headings (MeSH)  annotate PubMed https:/ /www.ncbi.nlm.nih.gov/mesh/ [87]
bibliographic entries
Relationships between

CoMent biomedical concepts extracted https://sysbiol.cnb.csic.es/CoMent/ [88]

from the literature

1 All URLs accessed on January 2022.

9. Discussion

Molecular biology revolutionised medicine by providing insight into the molecular
mechanisms underlying pathological processes. The diagnosis and the treatment of many
human diseases changed as molecular entities (e.g., genes, proteins, metabolites) started
to be used as markers of a disease or targets to cure it. This molecular approach is highly
“reductionist”, in the sense that a single, or a very small number of molecular entities, is
assumed to be the cause (and target for an eventual treatment) of a disease. That assumption,
fundamentally correct for some pathologies (e.g., monogenic diseases), has problems when
applied to many complex pathologies such as cancer or Alzheimer’s. To complement these
reductionist approaches, systems- and network-biology methods are being applied to the
study of human pathologies, in what sometimes is called “Network Medicine”. The change
of paradigm in these new approaches is that, due to their complexity, most diseases are
better reflected at the level of complex networks, instead of single genes. Even in “classic”
monogenic diseases, the causative gene is immersed in complex networks and hence, even
if the onset of the disease depends on that single gene, other important factors, such as
its severity or patient-specific manifestations depend on many other genes/mutations,
requiring a more systemic approach for understanding them (e.g., cystic fibrosis [90]). From
this point of view, diseases are seen as emergent properties of complex networks, which are
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affected by both genetic and environmental factors, and as perturbations in the network
structure (e.g., re-wiring) more than in the nodes (genes) themselves [8].

Approaching pathologies from a phenotypic point of view has some advantages with
respect to the traditional disease-based point of view. Clinical signs can be closer to the
molecular mechanism(s) behind the pathology, as they are more directly related to the
phenotypic manifestations. Moreover, by definition, clinical signs are directly observable,
and in many cases even quantifiable, and hence they can be reported for any pathological
condition. Sometimes a particular disease cannot be diagnosed and only a collection
of symptoms is reported. Clinical signs are also key for personalised medicine, as the
patient symptom profiles can help in their stratification and the design of personalised
interventions. For these reasons, network and systemic approaches to diseases are also
gradually adopting this point of view and incorporating phenotypic information.

To incorporate phenotypic information, controlled vocabularies and ontologies for
formally representing that kind of data are required, such as that developed by the HPO
and other resources such as IDC or MeSH. Similarly, new methodologies for massively
extracting phenotypic information from un-structured resources and representing them
using those ontologies are also important (e.g., CoMent [88]). This would allow us to
identify pathological phenotypes that tend to occur together across potentially millions of
patients, in a similar manner to the previously mentioned methods PhenCo and PhenoClus-
ters. Similarly, tools such as CoMent could potentially be extended to obtain co-occurrent
phenotypes, as such pairs of phenotypes that tend to be mentioned together or not at all
may represent potentially comorbid phenotypes.

To conclude, it is clear that the ongoing revolution in the generation of biological data,
improvements in computational techniques for data analysis, particularly network analysis,
and the ever-increasing recognition of the importance of deep phenotyping of patients [91],
are providing us with a wealth of potential for better understanding disease and eventually
finding better treatments.

Author Contributions: Writing—original draft preparation, writing—review and editing, ].A.G.R.,
J.P, M.C., E.D.-S. and EP. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially funded by The Spanish Ministry of Economy and Competitiveness
with European Regional Development Fund [grant numbers PID2019-108096RB-C21 and PID2019-
108096RB-C22]; the European Food Safety Authority [grant number GP/EFSA/ENCO/2020/02];
the Andalusian Government with European Regional Development Fund [grant numbers UMA18-
FEDERJA-102 and PAIDI 2020:PY20-00372]; Fundacion Progreso y Salud [grant number PI-0075-2017],
also from the Andalusian Government; the Ramoén Areces foundation, which funds project for the
investigation of rare disease (National call for research on life and material sciences, XIX edition);
the University of Malaga (Ayudas del I Plan Propio) and the Institute of Health Carlos III which
funds the IMPaCT-Data project. The CIBERER is an initiative from the Institute of Health Carlos III.
The conclusions, findings and opinions expressed in this scientific paper reflect only the view of the
authors and not the official position of the European Food Safety Authority.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

1. Mazzocchi, F. Complexity in Biology. Exceeding the Limits of Reductionism and Determinism Using Complexity Theory. EMBO
Rep. 2008, 9, 10-14. [CrossRef]

2. Oltvai, Z.N.; Barabasi, A.-L. Life’s Complexity Pyramid. Science 2002, 298, 763-764. [CrossRef]

3. van Regenmortel, M.H. Reductionism and Complexity in Molecular Biology. Scientists Now Have the Tools to Unravel Biological
and Overcome the Limitations of Reductionism. EMBO Rep. 2004, 5, 1016-1020. [CrossRef]

4. Avi Ma’ayan Complex Systems Biology. . R. Soc. Interface 2017, 14, 20170391. [CrossRef]

5. Nurse, P. Systems Biology: Understanding Cells. Nature 2003, 424, 883. [CrossRef]

6. Kitano, H. Systems Biology: A Brief Overview. Science 2002, 295, 1662-1664. [CrossRef]


http://doi.org/10.1038/sj.embor.7401147
http://doi.org/10.1126/science.1078563
http://doi.org/10.1038/sj.embor.7400284
http://doi.org/10.1098/rsif.2017.0391
http://doi.org/10.1038/424883a
http://doi.org/10.1126/science.1069492

Genes 2022, 13, 1081 12 of 15

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Barabasi, A.L.; Oltvai, Z.N. Network Biology: Understanding the Cell’s Functional Organization. Nat. Rev. Genet. 2004, 5, 101-113.
[CrossRef]

McGillivray, P; Clarke, D.; Meyerson, W.; Zhang, J.; Lee, D.; Gu, M.; Kumar, S.; Zhou, H.; Gerstein, M.B. Network Analysis as a
Grand Unifier in Biomedical Data Science. Annu. Rev. Biomed. Data Sci. 2018, 1, 153-180. [CrossRef]

Barabasi, A.-L.; Gulbahce, N.; Loscalzo, ]. Network Medicine: A Network-Based Approach to Human Disease. Nat. Rev. Genet.
2011, 12, 56-68. [CrossRef]

Furlong, L.I. Human Diseases through the Lens of Network Biology. Trends Genet. 2013, 29, 150-159. [CrossRef]

Chagoyen, M.; Ranea, ].A.; Pazos, F. Applications of Molecular Networks in Biomedicine. Biol. Methods Protoc. 2019, 4, bpz012.
[CrossRef]

Zanzoni, A.; Soler-Lopez, M.; Aloy, P. A Network Medicine Approach to Human Disease. FEBS Lett. 2009, 583, 1759-1765.
[CrossRef]

Mitra, K.; Carvunis, A.-R.; Ramesh, S.K,; Ideker, T. Integrative Approaches for Finding Modular Structure in Biological Networks.
Nat. Rev. Genet. 2013, 14, 719-732. [CrossRef]

Gavin, A.C.; Aloy, P,; Grandi, P; Krause, R.; Boesche, M.; Marzioch, M.; Rau, C.; Jensen, L.J.; Bastuck, S.; Dumpelfeld, B.; et al.
Proteome Survey Reveals Modularity of the Yeast Cell Machinery. Nature 2006, 440, 631-636. [CrossRef]

Lin, C.-Y; Lee, T.-L.; Chiu, Y.-Y;; Lin, Y.-W,; Lo, Y.-S,; Lin, C.-T.; Yang, ].-M. Module Organization and Variance in Protein-Protein
Interaction Networks. Sci. Rep. 2015, 5, 9386. [CrossRef]

Hsia, C.-W.; Ho, M.-Y,; Shui, H.-A,; Tsai, C.-B.; Tseng, M.-J. Analysis of Dermal Papilla Cell Interactome Using STRING Database
to Profile the Ex Vivo Hair Growth Inhibition Effect of a Vinca Alkaloid Drug, Colchicine. Int. ]. Mol. Sci. 2015, 16, 3579-3598.
[CrossRef]

Ravasz, E.; Somera, L.; Mongru, D.A ; Oltvai, Z.N.; Barabasi, A.L. Hierarchical Organization of Modularity in Metabolic Networks.
Science 2002, 297, 1551-1555. [CrossRef]

Freyre-Gonzdlez, ].A.; Alonso-Pavon, J.A.; Trevifio-Quintanilla, L.G.; Collado-Vides, J. Functional Architecture of Escherichia
Coli: New Insights Provided by a Natural Decomposition Approach. Genome Biol. 2008, 9, R154. [CrossRef]

Ghiassian, S.D.; Menche, J.; Barabasi, A.-L. A DIseAse MOdule Detection (DIAMOnND) Algorithm Derived from a Systematic
Analysis of Connectivity Patterns of Disease Proteins in the Human Interactome. PLoS Comput. Biol. 2015, 11, e1004120. [CrossRef]
Shin, D,; Lee, J.; Gong, J.-R.; Cho, K.-H. Percolation Transition of Cooperative Mutational Effects in Colorectal Tumorigenesis. Nat.
Commun. 2017, 8, 1270. [CrossRef]

Oti, M.; Brunner, H.G. The Modular Nature of Genetic Diseases. Clin. Genet. 2007, 71, 1-11. [CrossRef]

Rossin, E.J.; Lage, K.; Raychaudhuri, S.; Xavier, R.J.; Tatar, D.; Benita, Y.; Cotsapas, C.; Daly, M.]. Proteins Encoded in Genomic
Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology. PLoS Genet. 2011,
7,€1001273. [CrossRef]

Menche, J.; Sharma, A.; Kitsak, M.; Ghiassian, S.D.; Vidal, M.; Loscalzo, ].; Barabasi, A.-L. Uncovering Disease-Disease Relation-
ships through the Incomplete Interactome. Science 2015, 347, 1257601. [CrossRef]

Krishnan, A.; Zhang, R.; Yao, V,; Theesfeld, C.L.; Wong, A K.; Tadych, A.; Volfovsky, N.; Packer, A.; Lash, A.; Troyanskaya, O.G.
Genome-Wide Prediction and Functional Characterization of the Genetic Basis of Autism Spectrum Disorder. Nat. Neurosci. 2016,
19, 1454. Available online: https:/ /www.nature.com/articles /nn.4353#supplementary-information (accessed on 1 January 2022).
[CrossRef]

Cho, D.Y,; Kim, Y.A.; Przytycka, TM. Chapter 5: Network Biology Approach to Complex Diseases. PLoS Comp. Biol. 2012,
8, €1002820. [CrossRef]

Cowen, L.; Ideker, T.; Raphael, B.J.; Sharan, R. Network Propagation: A Universal Amplifier of Genetic Associations. Nature Rev.
Genet. 2017, 18, 551. [CrossRef]

Vanunu, O.; Magger, O.; Ruppin, E.; Shlomi, T.; Sharan, R. Associating Genes and Protein Complexes with Disease via Network
Propagation. PLoS Comput. Biol. 2010, 6, €1000641. [CrossRef]

Kim, Y.A; Przytycka, T.M. Bridging the Gap between Genotype and Phenotype via Network Approaches. Front. Genet. 2012,
3,227. [CrossRef]

Moreau, Y.; Tranchevent, L.C. Computational Tools for Prioritizing Candidate Genes: Boosting Disease Gene Discovery. Nat. Rev.
Genet. 2012, 13, 523-536. [CrossRef]

Zolotareva, O.; Kleine, M. A Survey of Gene Prioritization Tools for Mendelian and Complex Human Diseases. ]. Integr. Bioinform.
2019, 16, 20180069. [CrossRef]

Lee, M.]; Ye, A.S.; Gardino, A.K.; Heijink, A.M.; Sorger, PK.; MacBeath, G.; Yaffe, M.B. Sequential Application of Anticancer
Drugs Enhances Cell Death by Rewiring Apoptotic Signaling Networks. Cell 2012, 149, 780-794. [CrossRef] [PubMed]
Shahreza, M.L.; Ghadiri, N.; Mousavi, S.R.; Varshosaz, J.; Green, ].R. A Review of Network-Based Approaches to Drug Reposi-
tioning. Brief. Bioinform. 2017, 19, 878-892. [CrossRef] [PubMed]

Kohler, S.; Carmody, L.; Vasilevsky, N.; Jacobsen, ].O.B.; Danis, D.; Gourdine, ].-P.; Gargano, M.; Harris, N.L.; Matentzoglu, N.;
McMurry, J.A.; et al. Expansion of the Human Phenotype Ontology (HPO) Knowledge Base and Resources. Nucleic Acids Res.
2019, 47, D1018-D1027. [CrossRef] [PubMed]

Brunner, H.G.; van Driel, M.A. From Syndrome Families to Functional Genomics. Nat. Rev. Genet. 2004, 5, 545-551. [CrossRef]
[PubMed]


http://doi.org/10.1038/nrg1272
http://doi.org/10.1146/annurev-biodatasci-080917-013444
http://doi.org/10.1038/nrg2918
http://doi.org/10.1016/j.tig.2012.11.004
http://doi.org/10.1093/biomethods/bpz012
http://doi.org/10.1016/j.febslet.2009.03.001
http://doi.org/10.1038/nrg3552
http://doi.org/10.1038/nature04532
http://doi.org/10.1038/srep09386
http://doi.org/10.3390/ijms16023579
http://doi.org/10.1126/science.1073374
http://doi.org/10.1186/gb-2008-9-10-r154
http://doi.org/10.1371/journal.pcbi.1004120
http://doi.org/10.1038/s41467-017-01171-6
http://doi.org/10.1111/j.1399-0004.2006.00708.x
http://doi.org/10.1371/journal.pgen.1001273
http://doi.org/10.1126/science.1257601
https://www.nature.com/articles/nn.4353#supplementary-information
http://doi.org/10.1038/nn.4353
http://doi.org/10.1371/journal.pcbi.1002820
http://doi.org/10.1038/nrg.2017.38
http://doi.org/10.1371/journal.pcbi.1000641
http://doi.org/10.3389/fgene.2012.00227
http://doi.org/10.1038/nrg3253
http://doi.org/10.1515/jib-2018-0069
http://doi.org/10.1016/j.cell.2012.03.031
http://www.ncbi.nlm.nih.gov/pubmed/22579283
http://doi.org/10.1093/bib/bbx017
http://www.ncbi.nlm.nih.gov/pubmed/28334136
http://doi.org/10.1093/nar/gky1105
http://www.ncbi.nlm.nih.gov/pubmed/30476213
http://doi.org/10.1038/nrg1383
http://www.ncbi.nlm.nih.gov/pubmed/15211356

Genes 2022, 13, 1081 13 of 15

35.

36.

37.
38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Goh, K.-I.; Cusick, M.E,; Valle, D.; Childs, B.; Vidal, M.; Barabasi, A.-L. The Human Disease Network. Proc. Natl. Acad. Sci. USA
2007, 104, 8685-8690. [CrossRef]

Van Driel, M.A_; Bruggeman, J.; Vriend, G.; Brunner, H.G.; Leunissen, J.A.M. A Text-Mining Analysis of the Human Phenome.
Eur. J. Hum. Genet. 2006, 14, 535-542. [CrossRef]

Zhou, X.; Menche, ].; Barabasi, A.-L.; Sharma, A. Human Symptoms-Disease Network. Nat. Commun. 2014, 5, 4212. [CrossRef]
Chagoyen, M.; Pazos, F. Characterization of Clinical Signs in the Human Interactome. Bioinformatics 2016, 32, 1761-1765.
[CrossRef]

Perez-Iratxeta, C.; Bork, P.; Andrade, M.A. Association of Genes to Genetically Inherited Diseases Using Data Mining. Nat. Genet.
2002, 31, 316-319. [CrossRef]

Freudenberg, J.; Propping, P. A Similarity-Based Method for Genome-Wide Prediction of Disease-Relevant Human Genes.
Bioinformatics 2002, 18 (Suppl. S2), S110-5115. [CrossRef]

Oti, M; Snel, B.; Huynen, M. A_; Brunner, H.G. Predicting Disease Genes Using Protein-Protein Interactions. J. Med. Genet. 2006,
43, 691-698. [CrossRef] [PubMed]

Lage, K.; Karlberg, E.O.; Sterling, Z.M.; Olason, PI; Pedersen, A.G.; Rigina, O.; Hinsby, A.M.; Ttimer, Z.; Pociot, F,;
Tommerup, N.; et al. A Human Phenome-Interactome Network of Protein Complexes Implicated in Genetic Disorders. Nat.
Biotechnol. 2007, 25, 309-316. [CrossRef] [PubMed]

Hamosh, A.; Scott, A.F.; Amberger, J.S.; Bocchini, C.A.; McKusick, V.A. Online Mendelian Inheritance in Man (OMIM), a
Knowledgebase of Human Genes and Genetic Disorders. Nucleic Acids Res. 2005, 33, D514-D517. [CrossRef] [PubMed]
Bodenreider, O. The Unified Medical Language System (UMLS): Integrating Biomedical Terminology. Nucleic Acids Res. 2004,
32, D267-D270. [CrossRef] [PubMed]

Wang, X.; Gulbahce, N.; Yu, H. Network-Based Methods for Human Disease Gene Prediction. Brief Funct. Genom. 2011,
10, 280-293. [CrossRef]

Navlakha, S.; Kingsford, C. The Power of Protein Interaction Networks for Associating Genes with Diseases. Bioinformatics 2010,
26,1057-1063. [CrossRef]

Huang, ] K,; Carlin, D.E.; Yu, M.K,; Zhang, W.; Kreisberg, ].E; Tamayo, P; Ideker, T. Systematic Evaluation of Molecular Networks
for Discovery of Disease Genes. Cell Syst. 2018, 6, 484-495. [CrossRef]

Kohler, S.; Bauer, S.; Horn, D.; Robinson, P.N. Walking the Interactome for Prioritization of Candidate Disease Genes. Am. J. Hum.
Genet. 2008, 82, 949-958. [CrossRef]

Wu, X; Jiang, R.; Zhang, M.Q.; Li, S. Network-Based Global Inference of Human Disease Genes. Mol. Syst. Biol. 2008, 4, 189.
[CrossRef]

Céceres, ].J.; Paccanaro, A. Disease Gene Prediction for Molecularly Uncharacterized Diseases. PLoS Comput. Biol. 2019,
15, €1007078. [CrossRef]

Smedley, D.; Jacobsen, J.O.; Jager, M.; Kohler, S.; Holtgrewe, M.; Schubach, M.; Siragusa, E.; Zemojtel, T.; Buske, O.];
Washington, N.L.; et al. Next-Generation Diagnostics and Disease-Gene Discovery with the Exomiser. Nat. Protoc. 2015, 10,
2004-2015. [CrossRef]

Javed, A.; Agrawal, S.; Ng, P.C. Phen-Gen: Combining Phenotype and Genotype to Analyze Rare Disorders. Nat. Methods 2014,
11, 935-937. [CrossRef]

Cheng, L.; Zhao, H.; Wang, P; Zhou, W.; Luo, M.; Li, T,; Han, J.; Liu, S.; Jiang, Q. Computational Methods for Identifying Similar
Diseases. Mol. Ther. Nucleic Acids 2019, 18, 590-604. [CrossRef]

Li, Y.; Patra, J.C. Genome-Wide Inferring Gene-Phenotype Relationship by Walking on the Heterogeneous Network. Bioinformatics
2010, 26, 1219-1224. [CrossRef]

Chen, Y.; Xu, R. Context-Sensitive Network-Based Disease Genetics Prediction and Its Implications in Drug Discovery. Bioinfor-
matics 2017, 33, 1031-1039. [CrossRef]

Zhou, N.; Jiang, Y.; Bergquist, T.R.; Lee, A.].; Kacsoh, B.Z.; Crocker, A.W.; Lewis, K.A.; Georghiou, G.; Nguyen, H.N;
Hamid, M.N; et al. The CAFA Challenge Reports Improved Protein Function Prediction and New Functional Annotations
for Hundreds of Genes through Experimental Screens. Genome Biol. 2019, 20, 244. [CrossRef]

Li, X.; Zhou, X,; Peng, Y,; Liu, B.; Zhang, R.; Hu, J.; Yu, J.; Jia, C.; Sun, C. Network Based Integrated Analysis of Phenotype-
Genotype Data for Prioritization of Candidate Symptom Genes. BioMed Res. Int. 2014, 2014, 10. [CrossRef]

Kahanda, I.; Funk, C.; Verspoor, K.; Ben-Hur, A. PHENOstruct: Prediction of Human Phenotype Ontology Terms Using
Heterogeneous Data Sources. F1000Research 2015, 4, 259. [CrossRef]

Petegrosso, R.; Park, S.; Hwang, T.H.; Kuang, R. Transfer Learning across Ontologies for Phenome-Genome Association Prediction.
Bioinformatics 2017, 33, 529-536. [CrossRef]

Gonzalez-Perez, S.; Pazos, F.; Chagoyen, M. Factors Affecting Interactome-Based Prediction of Human Genes Associated with
Clinical Signs. BMC Bioinform. 2017, 18, 340. [CrossRef]

Yang, K.; Wang, N.; Liu, G.; Wang, R.; Yu, J.; Zhang, R.; Chen, ]J.; Zhou, X. Heterogeneous Network Embedding for Identifying
Symptom Candidate Genes. J. Am. Med. Inform. Assoc. 2018, 25, 1452-1459. [CrossRef] [PubMed]

Jabato, EM.; Seoane, P; Perkins, J.R.; Rojano, E.; Garcia Moreno, A.; Chagoyen, M.; Pazos, F.; Ranea, J.A.G. Systematic
Identification of Genetic Systems Associated with Phenotypes in Patients with Rare Genomic Copy Number Variations. Humi.
Genet. 2021, 140, 457-475. [CrossRef] [PubMed]


http://doi.org/10.1073/pnas.0701361104
http://doi.org/10.1038/sj.ejhg.5201585
http://doi.org/10.1038/ncomms5212
http://doi.org/10.1093/bioinformatics/btw054
http://doi.org/10.1038/ng895
http://doi.org/10.1093/bioinformatics/18.suppl_2.S110
http://doi.org/10.1136/jmg.2006.041376
http://www.ncbi.nlm.nih.gov/pubmed/16611749
http://doi.org/10.1038/nbt1295
http://www.ncbi.nlm.nih.gov/pubmed/17344885
http://doi.org/10.1093/nar/gki033
http://www.ncbi.nlm.nih.gov/pubmed/15608251
http://doi.org/10.1093/nar/gkh061
http://www.ncbi.nlm.nih.gov/pubmed/14681409
http://doi.org/10.1093/bfgp/elr024
http://doi.org/10.1093/bioinformatics/btq076
http://doi.org/10.1016/j.cels.2018.03.001
http://doi.org/10.1016/j.ajhg.2008.02.013
http://doi.org/10.1038/msb.2008.27
http://doi.org/10.1371/journal.pcbi.1007078
http://doi.org/10.1038/nprot.2015.124
http://doi.org/10.1038/nmeth.3046
http://doi.org/10.1016/j.omtn.2019.09.019
http://doi.org/10.1093/bioinformatics/btq108
http://doi.org/10.1093/bioinformatics/btw737
http://doi.org/10.1186/s13059-019-1835-8
http://doi.org/10.1155/2014/435853
http://doi.org/10.12688/f1000research.6670.1
http://doi.org/10.1093/bioinformatics/btw649
http://doi.org/10.1186/s12859-017-1754-1
http://doi.org/10.1093/jamia/ocy117
http://www.ncbi.nlm.nih.gov/pubmed/30357378
http://doi.org/10.1007/s00439-020-02214-7
http://www.ncbi.nlm.nih.gov/pubmed/32778951

Genes 2022, 13, 1081 14 of 15

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

Lotvall, J.; Akdis, C.A.; Bacharier, L.B.; Bjermer, L.; Casale, T.B.; Custovic, A.; Lemanske, R.F,, Jr.; Wardlaw, A.].; Wenzel, S.E,;
Greenberger, P.A. Asthma Endotypes: A New Approach to Classification of Disease Entities within the Asthma Syndrome. .
Allergy Clin. Immunol. 2011, 127, 355-360. [CrossRef] [PubMed]

Chen, P; Fan, Y,; Man, T.-K.; Hung, Y.S.; Lau, C.C.; Wong, S.T.C. A Gene Signature Based Method for Identifying Subtypes and
Subtype-Specific Drivers in Cancer with an Application to Medulloblastoma. BMC Bioinform. 2013, 14 (Suppl. S18), S1. [CrossRef]
[PubMed]

Lundberg, A.; Lindstrom, L.S.; Harrell, ]J.C.; Falato, C.; Carlson, J.W.; Wright, PK.; Foukakis, T.; Perou, C.M.; Czene, K,;
Bergh, J.; et al. Gene Expression Signatures and Immunohistochemical Subtypes Add Prognostic Value to Each Other in Breast
Cancer Cohorts. Clin. Cancer Res. 2017, 23, 7512-7520. [CrossRef]

Mueller, YM.; Schrama, TJ.; Ruijten, R.; Schreurs, M.W].; Grashof, D.G.B.; van de Werken, H.].G.; Lasinio, G.J.; Alvarez-Sierra, D.;
Kiernan, C.H.; Castro Eiro, M.D.; et al. Stratification of Hospitalized COVID-19 Patients into Clinical Severity Progression Groups
by Immuno-Phenotyping and Machine Learning. Nat. Commun. 2022, 13, 915. [CrossRef]

Vollert, J.; Maier, C.; Attal, N.; Bennett, D.L.H.; Bouhassira, D.; Enax-Krumova, E.K.; Finnerup, N.B.; Freynhagen, R,;
Gierthmiihlen, J.; Haanpaa, M.; et al. Stratifying Patients with Peripheral Neuropathic Pain Based on Sensory Profiles: Algorithm
and Sample Size Recommendations. Pain 2017, 158, 1446-1455. [CrossRef]

Rojano, E.; Cérdoba-Caballero, J.; Jabato, EM.; Gallego, D.; Serrano, M.; Pérez, B.; Parés-Aguilar, A; Perkins, J.R.; Ranea, J.A.G.;
Seoane-Zonyjic, P. Evaluating, Filtering and Clustering Genetic Disease Cohorts Based on Human Phenotype Ontology Data with
Cohort Analyzer. J. Pers. Med. 2021, 11, 730. [CrossRef]

Arendt-Nielsen, L.; Yarnitsky, D. Experimental and Clinical Applications of Quantitative Sensory Testing Applied to Skin, Muscles
and Viscera. J. Pain 2009, 10, 556-572. [CrossRef]

Krumova, E.K.; Geber, C.; Westermann, A.; Maier, C. Neuropathic Pain: Is Quantitative Sensory Testing Helpful? Curr. Diabetes
Rep. 2012, 12, 393-402. [CrossRef]

Westbury, S.K,; Turro, E.; Greene, D.; Lentaigne, C.; Kelly, A.M.; Bariana, TK.; Simeoni, L; Pillois, X.; Attwood, A.; Austin, S.; et al.
Human Phenotype Ontology Annotation and Cluster Analysis to Unravel Genetic Defects in 707 Cases with Unexplained
Bleeding and Platelet Disorders. Genome Med. 2015, 7, 36. [CrossRef] [PubMed]

Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.;
Bork, P; et al. STRING V11: Protein-Protein Association Networks with Increased Coverage, Supporting Functional Discovery in
Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019, 47, D607-D613. [CrossRef] [PubMed]

Liu, X.,; Wang, Y.; Ji, H.; Aihara, K.; Chen, L. Personalized Characterization of Diseases Using Sample-Specific Networks. Nucleic
Acids Res. 2016, 44, e164. [CrossRef] [PubMed]

Kuijjer, M.L.; Tung, M.G.; Yuan, G.; Quackenbush, J.; Glass, K. Estimating Sample-Specific Regulatory Networks. iScience 2019,
14, 226-240. [CrossRef]

Dai, H.; Li, L.; Zeng, T.; Chen, L. Cell-Specific Network Constructed by Single-Cell RNA Sequencing Data. Nucleic Acids Res. 2019,
47, 62. [CrossRef]

Harrison, J.E.; Weber, S.; Jakob, R.; Chute, C.G. ICD-11: An International Classification of Diseases for the Twenty-First Century.
BMC Med. Inform. Decis. Mak. 2021, 21, 206. [CrossRef]

Hidalgo, C.A.; Blumm, N.; Barabdsi, A.-L.; Christakis, N.A. A Dynamic Network Approach for the Study of Human Phenotypes.
PLoS Comput. Biol. 2009, 5, e1000353. [CrossRef]

Zhou, D.; Wang, L.; Ding, S.; Shen, M.; Qiu, H. Phenotypic Disease Network Analysis to Identify Comorbidity Patterns in
Hospitalized Patients with Ischemic Heart Disease Using Large-Scale Administrative Data. Healthcare 2022, 10, 80. [CrossRef]
Qiu, H.; Wang, L.; Zeng, X.; Pan, J. Comorbidity Patterns in Depression: A Disease Network Analysis Using Regional Hospital
Discharge Records. |. Affect. Disord. 2022, 296, 418-427. [CrossRef]

Khan, A.; Uddin, S; Srinivasan, U. Comorbidity Network for Chronic Disease: A Novel Approach to Understand Type 2 Diabetes
Progression. Int. ]. Med. Inform. 2018, 115, 1-9. [CrossRef]

Jeong, E.; Ko, K.; Oh, S.; Han, H.-W. Network-Based Analysis of Diagnosis Progression Patterns Using Claims Data. Sci. Rep. 2017,
7,15561. [CrossRef]

Liebovitz, D.M.; Fahrenbach, ]. COUNTERPOINT: Is ICD-10 Diagnosis Coding Important in the Era of Big Data? No. Chest 2018,
153, 1095-1098. [CrossRef] [PubMed]

Diaz-Santiago, E.; Jabato, EM.; Rojano, E.; Seoane, P.; Pazos, F,; Perkins, J.R.; Ranea, ].A.G. Phenotype-Genotype Comorbidity
Analysis of Patients with Rare Disorders Provides Insight into Their Pathological and Molecular Bases. PLoS Genet. 2020,
16, €1009054. [CrossRef] [PubMed]

Pavan, S.; Rommel, K.; Mateo Marquina, M.E.; Hohn, S.; Lanneau, V.; Rath, A. Clinical Practice Guidelines for Rare Diseases: The
Orphanet Database. PLoS ONE 2017, 12, e0170365. [CrossRef] [PubMed]

Diaz-Santiago, E.; Claros, M.G.; Yahyaoui, R.; de Diego-Otero, Y.; Calvo, R.; Hoenicka, ]J.; Palau, F; Ranea, ].A.G.; Perkins, J.R.
Decoding Neuromuscular Disorders Using Phenotypic Clusters Obtained from Co-Occurrence Networks. Front. Mol. Biosci. 2021,
8, 635074. [CrossRef] [PubMed]

Peng, J.; Hui, W.; Shang, X. Measuring Phenotype-Phenotype Similarity through the Interactome. BMC Bioinform. 2018, 19, 114.
[CrossRef]


http://doi.org/10.1016/j.jaci.2010.11.037
http://www.ncbi.nlm.nih.gov/pubmed/21281866
http://doi.org/10.1186/1471-2105-14-S18-S1
http://www.ncbi.nlm.nih.gov/pubmed/24564171
http://doi.org/10.1158/1078-0432.CCR-17-1535
http://doi.org/10.1038/s41467-022-28621-0
http://doi.org/10.1097/j.pain.0000000000000935
http://doi.org/10.3390/jpm11080730
http://doi.org/10.1016/j.jpain.2009.02.002
http://doi.org/10.1007/s11892-012-0282-7
http://doi.org/10.1186/s13073-015-0151-5
http://www.ncbi.nlm.nih.gov/pubmed/25949529
http://doi.org/10.1093/nar/gky1131
http://www.ncbi.nlm.nih.gov/pubmed/30476243
http://doi.org/10.1093/nar/gkw772
http://www.ncbi.nlm.nih.gov/pubmed/27596597
http://doi.org/10.1016/j.isci.2019.03.021
http://doi.org/10.1093/nar/gkz172
http://doi.org/10.1186/s12911-021-01534-6
http://doi.org/10.1371/journal.pcbi.1000353
http://doi.org/10.3390/healthcare10010080
http://doi.org/10.1016/j.jad.2021.09.100
http://doi.org/10.1016/j.ijmedinf.2018.04.001
http://doi.org/10.1038/s41598-017-15647-4
http://doi.org/10.1016/j.chest.2018.01.034
http://www.ncbi.nlm.nih.gov/pubmed/29476710
http://doi.org/10.1371/journal.pgen.1009054
http://www.ncbi.nlm.nih.gov/pubmed/33001999
http://doi.org/10.1371/journal.pone.0170365
http://www.ncbi.nlm.nih.gov/pubmed/28099516
http://doi.org/10.3389/fmolb.2021.635074
http://www.ncbi.nlm.nih.gov/pubmed/34046427
http://doi.org/10.1186/s12859-018-2102-9

Genes 2022, 13, 1081 15 of 15

87.

88.

89.

90.

91.

Lowe, H.J.; Barnett, G.O. Understanding and Using the Medical Subject Headings (MeSH) Vocabulary to Perform Literature
Searches. JAMA 1994, 271, 1103-1108. [CrossRef]

Pazos, F; Chagoyen, M.; Seoane, P; Ranea, J.A.G. CoMent: Relationships Between Biomedical Concepts Inferred From the
Scientific Literature. ]. Mol. Biol. 2022, 434, 167568. [CrossRef]

Smoot, MLE.; Ono, K.; Ruscheinski, J.; Wang, P.-L.; Ideker, T. Cytoscape 2.8: New Features for Data Integration and Network
Visualization. Bioinformatics 2011, 27, 431-432. [CrossRef]

Guggino, W.B.; Stanton, B.A. New Insights into Cystic Fibrosis: Molecular Switches That Regulate CFTR. Nat. Rev. Mol. Cell Biol.
2006, 7, 426. [CrossRef]

Wright, J.T.; Herzberg, M.C. Science for the next Century: Deep Phenotyping. J. Dent. Res. 2021, 100, 785-789. [CrossRef]
[PubMed]


http://doi.org/10.1001/jama.1994.03510380059038
http://doi.org/10.1016/j.jmb.2022.167568
http://doi.org/10.1093/bioinformatics/btq675
http://doi.org/10.1038/nrm1949
http://doi.org/10.1177/00220345211001850
http://www.ncbi.nlm.nih.gov/pubmed/33749358

	Introduction 
	Overview of Network Approaches for Studying Human Pathologies 
	Phenotypes and Molecular Networks 
	Disease–Gene Predictions Using Phenotypic Descriptions and Molecular Networks 
	Phenotype–Gene Predictions 
	Phenotypes and Patient Stratification 
	Phenotypes and Co-Morbidity 
	Resources 
	Discussion 
	References

