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Abstract: Many living organisms have DNA in their cells that is responsible for their biological
features. DNA is an organic molecule of two complementary strands of four different nucleotides
wound up in a double helix. These nucleotides are adenine (A), thymine (T), guanine (G), and
cytosine (C). Genes are DNA sequences containing the information to synthesize proteins. The genes
of higher eukaryotic organisms contain coding sequences, known as exons and non-coding sequences,
known as introns, which are removed on splice sites after the DNA is transcribed into RNA. Genome
annotation is the process of identifying the location of coding regions and determining their function.
This process is fundamental for understanding gene structure; however, it is time-consuming and
expensive when done by biochemical methods. With technological advances, splice site detection can
be done computationally. Although various software tools have been developed to predict splice
sites, they need to improve accuracy and reduce false-positive rates. The main goal of this research
was to generate Deep Splicer, a deep learning model to identify splice sites in the genomes of humans
and other species. This model has good performance metrics and a lower false-positive rate than
the currently existing tools. Deep Splicer achieved an accuracy between 93.55% and 99.66% on the
genetic sequences of different organisms, while Splice2Deep, another splice site detection tool, had an
accuracy between 90.52% and 98.08%. Splice2Deep surpassed Deep Splicer on the accuracy obtained
after evaluating C. elegans genomic sequences (97.88% vs. 93.62%) and A. thaliana (95.40% vs. 94.93%);
however, Deep Splicer’s accuracy was better for H. sapiens (98.94% vs. 97.15%) and D. melanogaster
(97.14% vs. 92.30%). The rate of false positives was 0.11% for human genetic sequences and 0.25% for
other species’ genetic sequences. Another splice prediction tool, Splice Finder, had between 1% and
3% of false positives for human sequences, while other species’ sequences had around 4% and 10%.

Keywords: CNN; genetic sequences; splice sites; deep learning models

1. Introduction

The genome is the entire set of genetic sequences contained in all the DNA of an
organism that has all the information it requires to produce proteins [1]. Proteins are
considered the building blocks of life since they perform a vast array of functions within
organisms, such as catalyzing metabolic reactions, providing structure to cells and tissues,
and transporting molecules inside cells [2,3]. A gene is defined as a segment of DNA
ranging in size from a few hundred base pairs to two million base pairs and contains the
instructions to synthesize a specific protein [4]. A particular characteristic of eukaryotic
genes is the presence of non-coding sequences, called introns, and coding sequences called
exons, which contain all the necessary information for protein synthesis [5]. In the case
of higher eukaryotic organisms, most of the DNA contains introns (in humans, 2.8% of
the DNA corresponds to exons, and the rest corresponds to introns). After the DNA is
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transcribed into RNA, the introns are removed or spliced from the gene to form mature
RNA, which will be further converted into a protein [6].

The nucleotides in which the splicing mechanism occurs are known as splice sites.
There are two types of splice sites: donor and acceptor sites. Donor sites are located at
the exon-intron junction, and acceptor sites are located on the intron-exon junctions [7,8].
Identifying splice sites, which are the nucleotides that define the boundaries between
introns and exons, is an essential step in understanding the structures of genes [9,10].

In recent years, high-throughput sequencing technologies have generated many ge-
nomic sequences from different species. This poses both opportunities and challenges for
genome annotation [11]. Although various models have been proposed in the last three
decades for the in-silico prediction of splice sites, improving the accuracy is required for
reliable annotation. Moreover, models are commonly derived and tested on the same
genome, providing no evidence of a broad application to other poorly studied or newly
sequenced genomes [12].

In the 1990s, the first gene prediction models were developed, and most were based
on dynamic programming, Hidden Markov Models, and neural networks. These early
models had specificities of around 0.72–0.93 and sensitivities between 0.65–0.94 [12–20].
After the boom of artificial intelligence in the 2010s, new models based on machine and
deep learning algorithms were created with specificities between 0.93–0.98 and sensitivities
between 0.9 and 0.98 [21–25].

Two dinucleotides, GT and AG are highly frequent on splice sites; however, it is
important to differentiate when these two dinucleotides are part of splice sites, since
they also often occur in other parts of the sequence. The existence of these dinucleotides
in different regions of the genome makes the prediction of splice sites prone to false
positives [23]. Current tools present a high rate of false positives, which can generate
serious errors that significantly affect subsequent analyses. For example, it has been
estimated that splice site prediction errors on primate genomes affect up to 50% of the
known genes [26].

The main goal of this research was to generate Deep Splicer, a deep learning model
based on convolutional neural networks (CNN) to identify splice sites in the genomes of
humans and other species. One of the intentions was that this model had better performance
metrics and a lower rate of false positives than the currently existing tools. Once Deep
Splicer was constructed and evaluated using the human genome (Homo sapiens), it was
further assessed using other species’ genomes to identify how well a model trained on the
human genome can generalize to other species since the objective is to use this model as
a first-line annotation tool for newly sequenced genomes. The genomes of other species
that were used to evaluate Deep Splicer were from Mus musculus, Danio rerio, Drosophila
melanogaster, Arabidopsis thaliana and Caenorhabditis elegans.

To develop Deep Splicer, datasets with genomic sequences from the human genome
and other species were created and preprocessed. Since neighboring nucleotides of a splice
site are important in the splicing mechanism, input genetic sequences with different lengths
were tested to evaluate which rendered better prediction results. Once the convolutional
model was created, it was used to assess the performance metrics on human and other
species genome datasets. Deep Splicer was tested in a real-life scenario: genomic sequences
that the model had never encountered before were given as input, and the model processed
each of the nucleotides to determine if any of them were splice sites. These predictions
were also evaluated.

The paper is organized as follows: Section 2 describes the construction of the datasets,
the Deep Splicer architecture, the prediction process, and the performance metrics used
to evaluate the model. Section 3 presents the results of the different experiments, and
Section 4 offers the discussions. Finally, Section 5 summarizes the conclusions drawn from
this work.
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2. Experiments

This section describes the data gathering process, the technical solution’s architecture,
and the analysis performed on the gathered data.

The deep learning models were developed with Python 3.6.9, using Pandas (1.3.5),
Numpy (1.21.6), Keras (2.8.0), Scikit-learn (1.0.2), Matplotlib (3.2.2), and Seaborn (0.11.2).
Concerning hardware, some of the training that did not require much RAM capacity was
done on Google Colaboratory Pro. The most computationally expensive experiments were
performed using an Nvidia DGX-1.

2.1. Datasets

All the genetic sequences for H. sapiens, M. musculus, D. rerio, D. melanogaster, A. thaliana,
and C. elegans were obtained from Ensembl (https://www.ensembl.org, accessed on
1 August 2021). For the human genetic sequences, 19,305 gene sequences, with their annota-
tion information (description, strands, starting and ending points, IDs, donor and acceptor
sites’ positions) were downloaded using the gene names obtained from the GENCODE
V24lift37 gene annotation table from the UCSC table browser [27]. For the other species’
genetic sequences, between 15 and 40 genes were downloaded. The gene names were
randomly selected from the same annotation table used for the human genome. To gather
more information located upstream and downstream from each splice site, a fixed length of
neighboring nucleotides from each nucleotide of interest was considered. For this research,
130, 200, 500, and 1000 base pairs situated left and right from a specific nucleotide were
studied; therefore, the length of the sequences that were introduced into the neural net-
works were 261, 401, 1001, and 2001, respectively, as shown in Figure 1. Based on the neural
network architecture described in the following section, 130 neighboring nucleotides on
each side were the minimum input needed to construct a viable neural network considering
the max-pooling layers, the number of filters, and their widths.

GGT…ACTGTAT…AAG

130, 200, 500, 1000 130, 200, 500, 1000

261, 401, 1001, 2001

Figure 1. Input genomic sequences for the models. Different flanking lengths of neighboring
nucleotides located left and right from each nucleotide of interest were tested: 130, 200, 500, 1000;
therefore, the lengths of the sequences that were introduced into the deep learning models were 261,
401, 1001, and 2001 nucleotides long.

The donor and acceptor positions were obtained from the annotation information
downloaded with each gene to generate the training, validation, and testing datasets.
Once the donor and acceptor nucleotides were located on the downloaded sequences, the
flanking nucleotides left and right from the splice site were selected to form the input
sequence strings. Random nucleotides that were not donor or acceptor sequences were
chosen to create the other generic sequences. These generic sequences also contained the
flanking nucleotides on each side.

The dataset formed from human genes contained 157,949 donor, 157,949 acceptor, and
496,290 generic sequences. From the 812,188 sequences, 80%, 10%, and 10% were used for
training, validation, and testing purposes, respectively. The other species’ sequences were
used as an additional test of the model and its generalization ability.

All the input sequences were one-hot-encoded following this convention: A, C, G,
and T were transformed to [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1], respectively.
Whenever missing nucleotides were found after selecting the flanking-neighbors of a
genomic sequence, these were encoded with an array of four zeros. The output variables
were also one-hot-encoded as follows: donor, acceptor, and other nucleotides mapped to
[1, 0, 0], [0, 1, 0], and [0, 0, 1], respectively.

https://www.ensembl.org
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2.2. Deep Splicer Learning Model

The Deep Splicer model used a Convolutional Block (CB) as the building block. The
CB contains batch normalization layers, rectified linear units (ReLU), one-dimensional con-
volutional units, and one-dimensional max-pooling layers organized as shown in Figure 2.
The hyperparameters N and W on Conv layers denote the number of convolutional filters
and their sizes.

Batch Normalization

ReLU

Conv(N,W)

Batch Normalization

ReLU

Conv(N,W)

CB(N,W)

Max Pooling

Max Pooling

Figure 2. The Convolutional Block (CB) structure contains Batch Normalization, ReLu, Convolutional
(Conv), and Max Pooling layers.

A random search technique was applied to select the best combination of hyperparam-
eters to define the deep learning architecture. Table 1 shows the search space for the CNN
models, and the best performing hyperparameters are highlighted in bold. Deep Splicer
was constructed using the best hyperparameters, and it consists of an input layer that
receives the one-hot encoded genetic sequence of a specific size, followed by four CBs with
16, 32, 64, and 64 filters with a width of 11, 11, 21, and 41. Two dense layers with 32 and
16 layers come next, followed by a flattening layer and a dense output layer with three units
corresponding to the three output classes (donor, acceptor, and other generic nucleotides)
activated by Softmax function, as shown in Figure 3. On each of the convolutional layers of
the CB, L1 regularization with a value of 7 × 10−5 was applied to reduce over-fitting. The
max-pooling layers used a window of size 2 with no stride.

Table 1. Hyperparameter tuning search space.

Model Hyperparameters Search Space

Optimizers Adam, Nadam, SGD
Initial learning rate 0.01, 0.001

Number of CB 3, 4, 5, 6
Number of filters (N) 8, 16, 32, 48, 64, 80, 96

Filter size (W) 5–65 in ranges of 2
Batch size 16, 32, 64

Epochs 8, 10, 12, 14

Regularization
Dropout (0.1, 0.2)

L1 (4 × 10−5, 7 × 10−5, 1 × 10−4)
L2 (4 × 10−5, 7 × 10−5, 1 × 10−4)
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Four models were trained, each receiving one of the input genetic sequences with
different sizes. Each model was trained three times for 10 epochs using a batch size of 32.
The loss function was categorical cross-entropy, and Adam was used as an optimizer, with
a learning rate of 0.001 for the first six epochs, and then reduced by a factor of 2 in the
following epochs. The performance metrics results shown in the following sections are the
average results of the three executions of each model.

Input

CB(16,11)

CB(32,11)

CB(64,21)

CB(64,41)

Dense(32)

Dense(16)

Flatten

Dense(3)

Output

Figure 3. Deep Splicer architecture. The input layer receives the one-hot-encoded input genomic
sequence, followed by four CBs, two dense layers, a flattening layer, and a final dense layer activated
by the Softmax function.

2.3. Prediction Process

The research aims to differentiate between donor, acceptor, and other generic nu-
cleotides in a genomic sequence. As shown in Figure 4, given a genomic sequence, the
prediction process iterates through each of the nucleotides of the sequence, taking neigh-
boring nucleotides located upstream and downstream from the nucleotide of interest into
consideration. The complete sequence is one-hot-encoded and processed using Deep
Splicer, which predicts the class that the nucleotide belongs to.

GCTGCGGGCCTTCTCGCCCAAGTTCGGGGAGCTGGTGGCAGAGGAGGCGCGGCGGAAGGGGGAGC

TGCGCTACATGCACTCGCGTGTGGTGGCCAACTCGGAGGAGATCGCCTTCTATGGGGGCCATGAGGT
GGGGCAGGTTGGGGTGCCGGGCACGGAGGGAAGCGTGTGGCAGGGAGGCCCGGGGGCAGGCAGC

CGTGAGCGGTGGGGACAGTCTGGGGCGGGCCGGGGCTGATGCCAAAGGTGTGGGCAGGCCATGGG

Deep Splicer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Prediction Probabilities

Donor

Acceptor

Other

130, 200, 500, 1000 130, 200, 500, 1000

Figure 4. Deep Splicer prediction process. All nucleotides in a sequence are processed using a sliding
window. The nucleotide in the middle of the sliding window is predicted to be a donor, acceptor, or
other nucleotide.
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2.4. Performance Metrics

To evaluate the performance of Deep Splicer metrics such as accuracy, specificity,
recall, precision, F1-score, percentage of false positives, areas under the curve of the
Receiver Operating Characteristic (ROC-AUC), and Precision-Recall (PR-AUC) curves
were computed. Since most of the positions in a genetic sequence are not splice sites, the
top-k accuracy was also evaluated. The top-k accuracy for a particular class is defined
as follows: suppose that in a genomic sequence, there are k positions that are donor or
acceptor sites. After predicting the class of each nucleotide in a gene using the model, the
nucleotides and their prediction probabilities are ordered in descending order. The first k
nucleotide positions from this ordered list of prediction probabilities are chosen, and the
proportion of correctly classified nucleotides from these k nucleotides is known as the top-k
accuracy. Other variations of top-k accuracy were also obtained for the best model. In these
variations, the proportion of correctly classified nucleotides inside the first 10%, 25%, 50%,
65%, 75%, 85%, and 95% nucleotides on the list of nucleotides and prediction probabilities
ordered in descending order were calculated.

3. Results

This section presents the results of the experiments for selecting the input sequence
length, the performance of Deep Splicer, and testing Deep Splicer in a real-life scenario
using genomic sequences from humans and other species.

3.1. Selecting Input Sequence Length

The accuracy and percentage of false positives were assessed to choose the most
suitable model among the four models generated with the different input sequence lengths
(261, 401, 1001, and 2001 nucelotides long). Table 2 shows the accuracy of the four models
when tested with genetic sequences from different species. The accuracy achieved with the
human genetic sequences ranges between 98.94% and 99.27%, and for other species, the
accuracy ranges between 93.55% and 99.66%. The models trained with sequences with a
flanking length of 130 and 200, had better performances on other species’ sequences.

One aspect to highlight is that the accuracy of the model when predicting other species’
genetic sequences, such as M. musculus, is sometimes higher than the accuracy obtained
with the human genome, even though the model was only trained with sequences from
H. sapiens. This shows that the model has a good generalization ability for predicting
genetic sequences belonging to different species.

Table 2. Accuracy of Deep Splicer with input genetic sequences of different flanking-lengths. The
highest accuracy of each organism is shown in bold.

Input Flanking-Length H. sapiens M. musculus D. rerio D. melanogaster A. thaliana C. elegans

130 99.27% 99.27% 99.34% 96.65% 97.39% 96.60%
200 98.94% 99.66% 99.00% 97.14% 94.93% 93.62%
500 98.99% 99.56% 99.09% 95.10% 95.60% 93.55%
1000 99.06% 99.61% 98.44% 94.40% 96.93% 94.83%

To further differentiate among the four models, the percentage of false positives was
calculated for each model, and the results are shown in Table 3. The models that received
the genetic sequences with 200 and 500 flanking length nucleotides as input had fewer false
positives than the other models. Since the 200-flanking-length model had better accuracy
and was computationally less expensive than the 500-flanking length model, the rest of the
experiments were performed with this model.
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Table 3. Percentage of false positives with input genomic sequences with different flanking lengths.

Input Flanking-Length Human Genes Other Species’ Genes

Average Std. dev. Average Std. dev.
130 0.41% 0.003 0.49% 0.0002
200 0.11% 0.0001 0.26% 0.0003
500 0.09% 0.0001 0.24% 0.0002
1000 0.24% 0.0000 0.49% 0.0001

3.2. Performance of Deep Splicer

The performance metrics of Deep Splicer are shown in Tables 4 and 5. The accuracy
of the testing dataset is 98.94%, and the ROC-AUC and PR-AUC are 99.92% and 99.84%,
respectively. Metrics such as specificity, recall, precision, and F1 score, range between 0.98
and 1 for human genetic sequences and 0.87 and 1 for other species’ genetic sequences.
These metrics show that Deep Splicer has excellent performance on human and other
species’ sequences.

Table 4. Performance metrics of Deep Splicer.

Metrics Average Std. dev

Accuracy 98.94% 0.0003
ROC-AUC 99.92% 0.0001
PR-AUC 99.84% 0.0001

Top-k acc. (human genes) 71.94% 0.0143
Top-k acc. (other species’ genes) 57.07% 0.0462

Table 5. Performance metrics of Deep Splicer evaluated on different species’ genetic sequences.

Specie Nucleotide Specificity Recall Precision F1

H. sapiens

Donor 1.00 0.99 0.98 0.99

Acceptor 1.00 0.99 0.99 0.99

Other 0.99 0.99 0.99 0.99

M. musculus

Donor 1.00 1.00 1.00 1.00

Acceptor 1.00 1.00 0.99 1.00

Other 1.00 1.00 1.00 1.00

D. rerio

Donor 1.00 0.99 0.99 0.99

Acceptor 1.00 0.99 0.99 0.99

Other 0.99 0.99 0.99 0.99

D. melanogaster

Donor 1.00 0.91 1.00 0.95

Acceptor 1.00 0.97 1.00 0.95

Other 0.94 1.00 0.95 0.97

A. thaliana

Donor 1.00 0.91 0.99 0.95

Acceptor 1.00 0.90 0.99 0.94

Other 0.91 0.99 0.92 0.95

C. elegans

Donor 1.00 0.87 1.00 0.93

Acceptor 1.00 0.88 0.99 0.93

Other 0.87 1.00 0.89 0.94

The analysis of the top-% accuracy is shown in Table 6. It suggests that, from the
list of predictions ordered in descending order of their prediction probability, the first
50% of predictions will contain 98% of all the donor and acceptor sites present on a



Genes 2022, 13, 907 8 of 13

genomic sequence when a human gene is provided as the input. At the same time, ordered
predictions from other species will contain 87.35% of the actual donor and acceptor sites on
the first 50% of predictions.

Table 6. Top-k accuracies of Deep Splicer.

Input Flanking-Length Human Genes Other Species’ Genes

Average Std. dev. Average Std. dev.
Top-10% 69.75% 0.16 59.13% 0.05
Top-25% 92.17% 0.05 79.10% 0.02
Top-50% 98.00% 0.02 87.35% 0.03
Top-65% 98.56% 0.01 91.08% 0.04
Top-75% 98.67% 0.01 93.50% 0.03
Top-85% 98.67% 0.01 94.38% 0.02
Top-95% 98.78% 0.00 94.65% 0.03

The graphs of accuracy and loss in the function of the number of epochs are shown in
Figure 5. As it can be seen, Deep Splicer has almost no over-fitting.
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Figure 5. Accuracy and loss graphs for training and validation datasets.

The confusion matrix in Figure 6 shows that the percentage of misclassified samples
ranges between 0.52% and 1.21%. The model has no problem differentiating between donor
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and acceptor sites. Most incorrect predictions occur when real donor and acceptor sites are
misclassified as belonging to the other generic nucleotides’ class.

Figure 6. Confusion Matrix of Deep Splicer.

To gain more insight into the performance of Deep Splicer, a comparison with other
splice predictor tools was done. Table 7 shows the accuracy of SpliceRover [21], DeepSS [22],
SpliceFinder [23], and Splice2Deep [25], as reported in literature. As it can be seen, Splice2Deep
surpassed Deep Splicer on the accuracy obtained after evaluating C. elegans genomic
sequences (97.88% vs. 93.62%) and A. thaliana (95.40% vs. 94.93%). However, Deep Splicer’s
accuracy was better for H. sapiens (98.94% vs. 97.15%) and D. melanogaster (97.14% vs.
92.30%). Deep Splicer surpassed the accuracy of SpliceRover, DeepSS, and SpliceFinder.

Table 7. Accuracy comparison of different splice predictor tools.

Species SpliceRover 1 DeepSS 1 SpliceFinder Splice2Deep 1 Deep Splicer

H. sapiens 95.74% 97.50% 90.25% 97.15% 98.94%
D. melanogaster - - - 92.30% 97.14%

A. thaliana 94.30%, - - 95.40% 94.93%
C. elegans - 93.67% - 97.88% 93.62%

1 The accuracy has been calculated by taking the averages of the metrics of both donor and acceptor sites. The “-“
symbol means that the metric is not available in the literature.

3.3. Testing on Genomic Sequences from Humans and Other Species

Since the consensus sequences of splice sites are the same in all eukaryotes, and these
sites are generally conserved in genes [28], Deep Splicer was used to predict splice sites on
both human and other species’ sequences. These sequences were genes that weren’t part of
the datasets to ensure that the model had never encountered them before. Each nucleotide
in these sequences was iterated, and during the iteration, 200 nucleotides on each side
of them were selected to generate an input genomic sequence string for the model. This
sequence was one-hot-encoded, as described in previous sections, and given as input to the
model on every iteration. The model predicted whether the nucleotide located in the center
of the predicting sliding window was a donor, acceptor, or other generic nucleotide. Once
the predictions of each sequence were made, the predicted sites for donors and acceptors
were ordered in descending order using the prediction probability. The accuracy, the top-k,
and top-50% accuracy were evaluated, together with the percentage of false positives
predicted by the model.
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The results of testing Deep Splicer on human genetic sequences are shown in Table 8,
and for the other species’ sequences in Table 9. On average, the accuracy on human genes
is 99.04%, the top-k accuracy 81.25%, and the top-50% 97%, which are very similar values
to those presented in Tables 4 and 6. On average, the percentage of false positives is
0.11%. In general, it can be observed that acceptor sites present a slightly higher number of
false positives.

For other species’ genes, on average, the accuracy is 95.45%, the top-k accuracy of
57.80%, and the top-50% accuracy of 89.70%. These values are similar to those presented
in Table 6. On average, the percentage of false positives is 0.25%, which is higher than
that observed in human genes. This is expected, since the models were only trained with
human genes. It was also observed that acceptor sites had a more significant proportion of
false positives than donor sites.

Table 8. Prediction results of human genes evaluated using Deep Splicer.

Gene Length
(Nucleotide)

Num. of
Splice Sites Site Accuracy Top-k acc. Top-50% acc.

Num. of
Predicted

Splice Sites

False
Positives

LRRC42 31,816 7
Donor 100% 86% 100% 43 0.11%

Acceptor 100% 86% 100% 52 0.14%

CFTR 198,641 26
Donor 100% 73% 96% 180 0.08%

Acceptor 96.15% 77% 96% 259 0.12%

BRCA2 94,761 26
Donor 96.15% 73% 88% 86 0.06%

Acceptor 100% 81% 96% 145 0.13%

MTOR 166,017 57
Donor 100% 88% 100% 210 0.09%

Acceptor 100% 86% 100% 310 0.15%

Table 9. Prediction results of other species’ genes evaluated using Deep Splicer.

Specie Gene Length
(Nucleotide)

Num. of
Splice
Sites

Site Accuracy Top-k acc. Top-50% acc.

Num. of
Predicted

Splice
Sites

False
Positives

M. musculus MTOR 16,349 4
Donor 100% 50% 100% 25 0.13%

Acceptor 100% 50% 100% 48 0.27%

D. rerio MTOR 254,208 57
Donor 100% 79% 98% 443 0.15%

Acceptor 100% 79% 100% 655 0.24%

D. melanogaster MTOR 18,586 4
Donor 100% 50% 100% 71 0.36%

Acceptor 100% 50% 100% 91 0.47%

A. thaliana MTOR 18,341 22
Donor 81.82% 55% 55% 48 0.16%

Acceptor 72.73% 45% 64% 78 0.34%

C. elegans SMS-2 14,058 5
Donor 100% 60% 100% 34 0.21%

Acceptor 100% 60% 80% 37 0.23%

4. Discussion

The main goal of this research was to construct a CNN model that can detect splicing
sites on genomic sequences. This model, known as Deep Splicer, was trained on sequences
from the human genome and assessed on both human and other species’ genes to determine
how well a model trained on the human genome could generalize and predict splice sites
on other species’ genetic sequences. Assessing the generalization power of Deep Splicer for
other species’ genomes aims to identify how good the model is to use as a first-line tool
to help annotate recently sequenced genomes, from which annotation processes have not
been done before.
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To predict the splice sites of a given genomic sequence, Deep Splicer iterates through
each of the nucleotides of a given genetic sequence considering neighboring nucleotides.
After testing input genomic sequences with different lengths, it was observed that the
best performance occurred with 200 adjacent base pairs on each side of the nucleotide
of interest, which means that the input genomic sequence had a total size of 401 nu-
cleotides. For Splice2Deep architecture [25], the authors used a flanking sequence length of
300 nucleotides (601 nucleotides). For the SpliceFinder tool [23], the authors tested the to-
tal length of the input sequence, varying from 40 to 400 nucleotides, and they found
that 400 nucleotides rendered the best accuracies. Jaganathan et al. (2019) [29] also
experimented with the size of the input genomic sequence for their SpliceAI model. They
found that the longer the sequence they used (in their case, 5000 nucleotides as flanking
length, 10,001 nucleotides in total), the better their results, since there might be important
nucleotide splicing signals on the nucleotides upstream and downstream from an acceptor
and donor site. In the case of Deep Splicer, when increasing the size of the input sequence,
the performance metrics did not improve drastically and some were even reduced. Because
of this, smaller sequences were preferred, since they have better performance metrics and
require less computational power.

Regarding Deep Splicer’s performance on other species’ genomes, it was observed
that the model had excellent performance, with accuracies between 93.62% to 99.66%,
a top-k accuracy of 57.07%, and a top-50% accuracy of 87.35%. This is a good result
considering that Deep Splicer was only trained with human genome sequences, indicating
that the model has a good generalization and could be used as a first approach to detect
splice sites in newly sequenced genomes. Splice2Deep was trained with a dataset that
contained samples from different species, and it obtained accuracies between 92% and 98%.
Splice2Deep surpassed Deep Splicer on the accuracy obtained after evaluating C. elegans
genomic sequences (97.88% vs. 93.62%) and A. thaliana (95.40% vs. 94.93%). However, Deep
Splicer’s accuracy was better for H. sapiens (98.94% vs. 97.15%) and D. melanogaster (97.14%
vs. 92.30%). Deep Splicer’s higher complexity and deeper architecture might influence the
good performance of the model. The model uses more convolutional layers (eight), while
DeepSS, Splice Finder, SpliceRover, and Splice2Deep use between one and three.

Considering Deep Splicer’s rate of false positives, for human sequences, the rate was
0.11%, and for the other species, 0.25% on average. These are tiny numbers and even better
than the results reported for Splice Finder, which had around 1% and 3% of false positives
for human sequences, while other species’ sequences had around 4% and 10%.

Deep Splicer presented slightly better predictions of donor sites compared to acceptor
sites. This has also been observed by other splice predicting tools, such as Spliceator and
DeepSS. The difficulty in predicting acceptor sites might be related to the complex genetic
context around these sites, while donor sites seem to be more conserved [10,22].

5. Conclusions

After comparing the results of Deep Splicer with existing tools, we can conclude
that this model has an excellent performance, surpassing the performance of the tools
cited in this research for some species. The accuracy of Deep Splicer is 98.94%, and the
ROC-AUC and PR-AUC are 99.92% and 99.84%, respectively. Metrics such as specificity,
recall, precision, and F1 score range between 0.98 and 1 for human genetic sequences and
0.87 and 1 for other species’ genetic sequences. As indicated before, Deep Splicer has been
tested on real genomic sequences, and its application in a production environment is very
plausible given the good generalization capability demonstrated by the model on different
genetic sequences from various species.

Regarding future work, other architectures could be tested to reduce the rate of
false positives, thus increasing the model’s utility as a first-line annotation tool for newly
sequenced genomes. RNNs, in particular, have been popular in sequence classification
problems, making them potentially suitable architectures for processing genetic sequences
for splice site detection. Another possible approach is to generate an ensemble of machine
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and deep learning models, in which potential predicted splice sites are further classified,
using not just one but different models.

Detecting splice sites is just a tiny step in the genome annotation process. A complete
annotation system needs to predict the splice sites and identify regulatory regions and
other specific binding sites within the genome. Generating different high-performing tools
to detect these regions in genetic sequences could greatly benefit the bioinformatics field.
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