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Abstract: Although the X chromosome accounts for about 5% of the human genes, it is routinely
excluded from genome-wide association studies probably due to its unique structure and complex
biological patterns. While some statistical methods have been proposed for testing the association
between X chromosomal markers and diseases, very a few of them can adjust for covariates. Un-
fortunately, those methods that can incorporate covariates either need to specify an X chromosome
inactivation model or require the permutation procedure to compute the p value. In this article, we
proposed a novel analytic approach based on logistic regression that allows for covariates and does
not need to specify the underlying X chromosome inactivation pattern. Simulation studies showed
that our proposed method controls the size well and has robust performance in power across various
practical scenarios. We applied the proposed method to analyze Graves’ disease data to show its
usefulness in practice.

Keywords: X chromosome; logistic regression; covariates; robust; Graves’ disease

1. Introduction

Many diseases exhibit a gender preference, such as autoimmune diseases, cardiovas-
cular diseases, psychiatric diseases, and cancer, implying that genetic variants on the X
chromosome play an important role in sex differences [1–5]. However, most genome-wide
association studies (GWAS) routinely exclude the analysis of X-chromosomal variants
probably because the X chromosome has a unique structure and complex biological pat-
terns [6–8]. Females have one more X chromosome than males, and to balance gene
expression on the X chromosome with that of males, one of the female X chromosomes
is inactivated in the early embryo [9]. Usually, the process of X chromosome inactivation
(XCI) is considered random (XCI-R) [10], i.e., for an X-linked gene, nearly 50% of the cells
have the paternal allele active while the rest cells have the maternal allele active. However,
studies have shown that skewed XCI (XCI-S) is more biologically plausible [11]. XCI-S is
a non-random process, which has been defined as a significant deviation from XCI-R, for
instance, the inactivation of one of the alleles in more than 75% of cells [12]. In addition, up
to 25% of X-linked genes can escape from XCI (XCI-E) [9]. Both alleles in the genes under
XCI-E will be active, which are similar to autosomal genes.

To account for the unique characteristics of the X chromosome, several statistical
methods have been developed for testing the association between X chromosomal markers
and diseases [13–18]. However, very a few of them can adjust for covariates. In large-scale
GWAS, spurious associations may occur due to the influence of additional covariates, such
as sex, age, and population structure [19,20]. Particularly on the X chromosome, if the sex
ratios differ between cases and controls, then sex will be a confounder when the allele
frequency of females is unequal to that of males. In practice, a natural way to adjust for
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covariates is to build a regression model, and logistic regression is generally adopted for
binary traits. Based on the logistic regression framework, Gao et al. [15] integrated four
tests (FM01, FM02, FMF, and FMS) in the software toolset XWAS. In FM01 and FM02, three
genotypes of females are both coded by 0, 1, and 2, while two genotypes of males are
coded by 0 and 1 for FM01 and by 0 and 2 for FM02. In the latter, males are treated as
homozygous females to reflect the dosage compensation relationship between the two sexes.
Hence, FM01 and FM02 assume that the underlying XCI patterns are XCI-E and XCI-R,
respectively. On the other hand, FMF and FMS build logistic regressions for females and
males separately and then combine the two p values using Fisher’s and Stouffer’s methods,
respectively. However, these two methods do not take any XCI patterns into consideration
and thus may suffer from substantial power loss if the test marker is undergoing XCI.
Wang et al. [14] proposed another approach (denoted by maxLR) that can consider four
special XCI patterns simultaneously: XCI-R, XCI-E, XCI-S fully toward the normal allele
(XCI-SN), and XCI-S fully toward the risk allele (XCI-SR). In their method, three genotypes
of females are coded as 0, γ, and 2 under XCI, where γ ∈ (0, 2) measures the degree of
skewness of XCI. For instance, γ = 0 (2) represents that all the risk (normal) alleles are
inactivated in heterozygous females, which corresponds to the XCI-SN (XCI-SR) pattern.
While maxLR has robust performance in power, its p value is evaluated based on the
permutation procedure, which is very computationally intensive, especially in GWAS.
Hence, it is still desirable to develop a robust method that can both adjust for covariates
and analytically calculate the p value.

To fill this gap, this article proposed a novel statistical method to test the association
between X chromosomal markers and a specific disease. Our method, which is also based
on logistic regression, is robust because it does not require assigning a specific XCI pattern.
Further, our method can compute the p value without the resample procedure by directly
using the rhombus formula. We implemented an extensive simulation study to compare
the performance of our approach with the existing ones. Simulation results showed that
our method controls the size well and can maintain relatively high power across a variety
of scenarios. Finally, we applied our proposed approach to the Graves’s disease data to
demonstrate its practical use.

2. Method

Consider an X-linked SNP with deleterious allele A and normal allele a. Then, there
are three possible genotypes for females: aa, Aa, and AA, and two for males: a and A.
We assume a binary variable D for the disease of interest with D = 1 (0) representing
individuals with (without) the disease. X =

[
x1, · · · , xp

]′ denotes the p covariates that
need to be adjusted in the model, where x1 ≡ 1 is the model intercept and x2 represents
the binary variable with 1 being female and 0 being male. We further assume that the
relationship between the phenotype and genotype for individual i can be constructed by
the following logistic regression model:

log
(

Pr(Di = 1|Gi, Xi)

Pr(Di = 0|Gi, Xi)

)
= Xi

′
α + βGi (1)

where the subscript i denotes the ith individual, G is the genotypic score, α =
(
α1, α2, · · · , αp

)′,
and β represents the regression coefficients for the covariates and the genotypic score. Note
that the genotypic score depends on the underlying XCI pattern. According to the coding
strategy by Wang et al. [14], Gi can be written in the following uniform form

Gi(Z1, Z2) = 2Ii(AA) + Z1 Ii(Aa) + Z2 Ii(A),

where I(.) is the indicator function, and Z1 and Z2 are unknown parameters depending on
the underlying XCI pattern. For instance, when the SNP is undergoing XCI, Z1 and Z2 can
be assigned by γ and 2, respectively. In this coding strategy, γ is a measure of the skewness
of XCI, and males are treated as homozygous females to reflect the dosage compensation.
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Table 1 lists the genotypic scores for all five genotypes and the corresponding values of Z1
and Z2 under the four special XCI patterns.

Table 1. The genotypic scores for five genotypes and their corresponding values of Z1 and Z2 under
the four special XCI patterns.

XCI Pattern aa Aa AA a A Z1 Z2

XCI-SN 0 0 2 0 2 0 2
XCI-R 0 1 2 0 2 1 2

XCI-SR 0 2 2 0 2 2 2
XCI-E 0 1 2 0 1 1 1

We chose the score statistic to test the null hypothesis: β = 0 because the association
tests for all the SNPs share the same null model. For a total sample size of n, the score
function can be derived as

U(Z1,Z2) =
n

∑
i=1
{Gi(Z1, Z2)[Di − Pr(Di = 1|Xi)]},

where Pr(Di = 1|Xi) =
expXi

′ α̂

1+expXi
′ α̂ is the disease probability estimated for individual i with-

out considering the genotype (details of the derivation are given in Appendix A). The
information matrix of (1) can be written as follows:

I(Z1,Z2) =

(
Iβ(Z1,Z2) Iβα(Z1,Z2)

Iβα(Z1,Z2)
′ Iα

)
,

where

Iβ(Z1,Z2) =
n

∑
i=1

Gi(Z1, Z2)
2[1− Pr(Di = 1|Xi)]Pr(Di = 1|Xi),

Iβα(Z1,Z2) =

(
n

∑
i=1

Xi1Gi(Z1, Z2)[1− Pr(Di = 1|Xi)]Pr(Di = 1|Xi), · · · ,
n

∑
i=1

XipGi(Z1, Z2)[1− Pr(Di = 1|Xi)]Pr(Di = 1|Xi)

)
,

and

Iα =

 ∑n
i=1 Xi1

2[1− Pr(Di = 1|Xi)]Pr(Di = 1|Xi) · · · ∑n
i=1 Xi1Xip[1− Pr(Di = 1|Xi)]Pr(Di = 1|Xi)

...
. . .

...
∑n

i=1 XipXi1[1− Pr(Di = 1|Xi)]Pr(Di = 1|Xi) · · · ∑n
i=1 Xip

2[1− Pr(Di = 1|Xi)]Pr(Di = 1|Xi)

.

Under the null hypothesis: β = 0, we have

WS = U(Z1,Z2)V(Z1,Z2)
−1U(Z1,Z2) ∼ χ2

1,

where V(Z1,Z2) = Iβ(Z1,Z2)− Iβα(Z1,Z2)Iα
−1 Iβα(Z1,Z2)

′ is estimated as the variance of
U(Z1,Z2). Therefore, the statistic

S(Z1,Z2) =
U(Z1,Z2)√

V(Z1,Z2)

asymptotically follows a standard normal distribution under the null hypothesis.
Note that the calculation of the test statistic relies on the underlying XCI pattern.

Unfortunately, this is generally unknown for a specific SNP. We thereby proposed a robust
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test referred to as XCMAX4 to account for the four special XCI models. The XCMAX4
statistic is defined as follows:

XCMAX4 = max(|S(0, 2)|, |S(1, 2)|, |S(2, 2)|, |S(1, 1)|)

Due to the correlation between the four score tests, XCMAX4 does not follow any
classical distributions. We assume that S(0, 2), S(1, 2), S(2, 2), and S(1, 1) jointly asymp-
totically follow a multivariate normal distribution N(0, Σ), where 0 is a four-dimensional
vector with all elements being 0, and Σ is the correlation matrix with

Σ =


1 ρ(0,2),(1,2)

ρ(1,2),(0,2) 1
ρ(0,2),(2, 2) ρ(0,2),(1,1)
ρ(1,2),(2, 2) ρ(1,2),(1,1)

ρ(2, 2),(0,2) ρ(2, 2),(1,2)
ρ(1,1),(0,2) ρ(1,1),(1,2)

1 ρ(2, 2),(1,1)
ρ(1,1),(2, 2) 1

.

In the above correlation matrix, ρ(z11,z21),(z12,z22)
is the correlation coefficient between

S(Z11, Z21) and S(Z12, Z22). Given Σ, we can analytically derive the p value of XCMAX4.
Particularly, let f (y, 0, Σ) be the density function of the multivariate normal distribution
N(0, Σ); then, for a given z > 0, the p value of XCMAX4 is calculated by

Pr(XCMAX4 > z) = 1−
∫ ∫ ∫ ∫ z

−z
f (y, 0, Σ)dy.

Next, we need to accurately estimate the correlation matrix Σ. To this end, we first
build a new model that contains two parameters representing genetic effects as follows:

log
(

Pr(Di = 1|Gi, Xi)

Pr(Di = 0|Gi, Xi)

)
= Xi

′α + β1Gi(Z11,Z21) + β2Gi(Z12,Z22). (2)

The information matrix of (2) can be expressed as follows:

I(Z11,Z21, Z12,Z22) =

(
Iβ1β2(Z11,Z21, Z12,Z22) Iβ1β2α(Z11,Z21, Z12,Z22)

Iβ1β2α(Z11,Z21, Z12,Z22)
′ Iα

)
,

where

Iβ1 β2 (Z11,Z21, Z12,Z22)

=


n
∑

i=1
Gi(Z11, Z21)

2[1− Pr(Di = 1|Xi)]Pr(Di = 1|Xi)
n
∑

i=1
Gi(Z11, Z21)Gi(Z12, Z22)[1− Pr(Di = 1|Xi)]Pr(Di = 1|Xi)

n
∑

i=1
Gi(Z11, Z21)Gi(Z12, Z22)[1− Pr(Di = 1|Xi)]Pr(Di = 1|Xi)

n
∑

i=1
Gi(Z12, Z22)

2[1− Pr(Di = 1|Xi)]Pr(Di = 1|Xi)

,

and

Iβα(Z11,Z21, Z12,Z22) =


n
∑

i=1
Xi1Gi(Z11,Z21)[1− Pr(Di = 1|Xi)]Pr(Di = 1|Xi) · · ·

n
∑

i=1
XipGi(Z11,Z21)[1− Pr(Di = 1|Xi)]Pr(Di = 1|Xi)

n
∑

i=1
Xi1Gi(Z12,Z22)[1− Pr(Di = 1|Xi)]Pr(Di = 1|Xi) · · ·

n
∑

i=1
XipGi(Z12,Z22)[1− Pr(Di = 1|Xi)]Pr(Di = 1|Xi)


Under the null hypothesis β1 = β2 = 0, the statistic

WS = [U(Z11,Z21), U(Z12,Z22)]C(Z11,Z21, Z12,Z22)
−1[U(Z11,Z21), U(Z12,Z22)]

′

asymptotically follows a chi-square distribution with two degrees of freedom, where

C(Z11,Z12, Z21,Z22) = Iβ1β2(Z11,Z21, Z12,Z22)− Iβ1β2α(Z11,Z21, Z12,Z22)Iα
−1 Iβ1β2α(Z11,Z21, Z12,Z22)

′
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is the covariance matrix of U(Z11,Z12) and U(Z21,Z22). Therefore, the correlation coefficient
between S(Z11,Z12) and S(Z21,Z22) can be estimated as

(1, 0)C(Z11,Z21, Z12,Z22)(0, 1)′√
(1, 0)C(Z11,Z21, Z12,Z22)(1, 0)′ × (0, 1)C(Z11,Z21, Z12,Z22)(0, 1)′

Once Σ is estimated, we can calculate the p value of XCMAX4. Although the four-
dimensional integral can be calculated in the commonly used software (e.g., the mvtnorm
package in R, https://cran.r-project.org/web/packages/mvtnorm/index.html, (accessed
on 10 April 2022)), the algorithm based on the Quasi-Monte-Carlo procedure needs a lot of
computing resources to achieve relatively high accuracy. Hence, it would be still desirable
to obtain its analytic form if possible. Fortunately, we can use the rhombus formula [13,21]
to obtain the upper bound of the p-value of XCMAX4 as follows:

P(XCMAX4 > z) ≤ 2[Φ(z)−Φ(−z)− 1] +
4φ(z)

z

3

∑
i=1

Φ
( Li(i+1)z

2

)
+ Φ


(

π − Li(i+1)

)
z

2

− 1

,

where Φ(x) and φ(x) denote the cumulative distribution function and probability density
function of the standard normal distribution, respectively, and Li(i+1) = arccos

(
ρi(i+1)

)
,

where ρi(i+1) is the correlation efficient between ith and (i + 1)th score statistics. Note
the order of four test statistics S(0, 2), S(1, 2), S(2, 2), and S(1, 1) is not specified in the
above formula, so 12 kinds of upper bounds can be obtained. Therefore, only the smallest
bound among them is adopted as an approximation of the p value. As shown in Wang
et al. [13], such approximation is very accurate for small p values, which would be quite
useful in GWAS because the significance level is generally very stringent (e.g., 5× 10−8) in
such studies.

3. Simulation Study
3.1. Simulation Settings

We conducted comprehensive simulation studies to compare the performance of
XCMAX4 with FM01, FM02, FMF, and FMS, all of which can adjust covariates. Note that we
did not include the maxLR in our simulations because this method is a permutation-based
approach, which would be too time-consuming for GWAS. The data are simulated from
the following model:

log
(

Pr(Di = 1|Gi, xi2, xi3)

Pr(Di = 0|Gi, xi2, xi3)

)
= α1 + α2xi2 + α3xi3 + βGi, (3)

where x2 is the binary covariate sex, x3 is a continuous covariate, which is sampled from
the uniform distribution U(0, 1), and G is the genotype score. The ratio of males to females
is assumed to be 1 : 1 in the general population, so x2 follows a binomial distribution
B(0.5). Further, we assume that the genotype of females (aa, Aa, AA) follows a trinomial
distribution with probabilities

(
q f 0, q f 1, q f 2

)
, while the genotype of males (a, A) follows

a binomial distribution (1− qm, qm). Let q f and F be the respective risk allele frequency

and the inbreeding coefficient for females. Then, we have q f 0 =
(

1− q f

)2
+ Fq f

(
1− q f

)
,

q f 1 = 2(1 − F)q f

(
1− q f

)
, and q f 2 = q2

f + Fq f

(
1− q f

)
. The values of q f and qm are

both set to be 0.1, 0.2, and 0.3, so there are nine combinations in total. F is assigned to
be 0 and 0.05, where the former implies Hardy–Weinberg equilibrium (HWE) and the
latter represents a scenario of Hardy–Weinberg disequilibrium (HWD). The intercept α1
is fixed at −5. For the coefficients x2 and x3, we consider two cases for each of them:
α2 = (0.4005,−0.4005) and α3 = (0.5, 1.5). The genetic effect β is set to be 0, 0.1116, 0.15,
and 0.1858, where β = 0 means no association between the SNP and the disease status, and

https://cran.r-project.org/web/packages/mvtnorm/index.html
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the other three values of β indicate that the odds ratios of females with genotype AA are
about 1.25, 1.35, and 1.45. Obviously, the case of β = 0 is used to study the size, while the
empirical power is investigated in the non-zero β cases.

Note that, when studying the power, we only choose three combinations of q f and qm:
(0.3, 0.3), (0.3, 0.2), and (0.2, 0.3) for convenience. The scenarios that the SNP undergoes
XCI or escapes from XCI are both considered. For the former, we let γ range from 0 to 2 in
increments of 0.5. As such, we have considered various XCI patterns, including XCI-SN,
XCI-R, and XCI-SR. Once the XCI pattern is assumed, we can assign the corresponding
value for the genotypic score G.

Given the covariates, the genotypic score, and the regression coefficients, we can
generate the disease status from the binomial distribution for a large population. Then, we
randomly sample 2500 cases and 2500 controls from this population. We find that when
α2 = ±0.4005, the proportions of females in cases varied from 40% to 60% in the simulated
data. The size is estimated at three nominal levels: α = 1× 10−3, 1× 10−4, and 1× 10−5

based on 1,000,000 replicates, while the power is only estimated at the nominal level
α = 1× 10−4 based on 10,000 replicates. The p value of XCMAX4 is evaluated by using the
rhombus formula.

3.2. Results
3.2.1. Size

Table 2 shows the estimated type I error rate at the nominal significance level α = 1× 10−4

when HWE holds in the female population. As expected, all the methods controlled the
size well in all the scenarios. Although XCMAX4 appears slightly conservative in some
scenarios, its p values are similar to the nominal level. We also simulated the scenarios
of HWD (F = 0.05). However, we observed that the performances of all the tests were
similar to those of Table 2, and HWD in females had little impact on the size. Therefore, the
simulation results with non-zero F are presented in the Supplementary Material (Table S1).
The results of type I error rates estimated at the nominal level α = 1× 10−3 and α = 1× 10−5

are also given in Supplementary Material (Tables S2–S5). As can be seen, XCMAX4 still
had the correct size in general, except being slightly conservative at α = 1× 10−3.

Table 2. Estimated type I error rate
(
×10−4) at the nominal significance level 1× 10−4 for XCMAX4,

FM01, FM02, FMF, and FMS against q f , qm, α2, and α3 based on 1,000,000 replicates under HWE.

qf qm α3
α2 = 0.4005 α2 = −0.4005

XCMAX4 FM01 FM02 FMF FMS XCMAX4 FM01 FM02 FMF FMS

0.1
0.1

0.5

1.03 0.74 0.86 0.95 0.82 0.87 0.93 0.93 0.66 0.98
0.2 0.88 0.96 0.84 0.86 0.96 1.07 1.02 1.10 0.99 1.02
0.3 0.91 0.87 0.84 1.10 0.84 0.86 1.02 0.88 0.95 1.00

0.2
0.1 0.94 0.96 0.98 0.93 0.95 0.86 0.85 0.74 0.78 0.79
0.2 1.02 1.02 0.93 1.12 1.00 1.12 1.43 1.24 1.22 1.39
0.3 0.90 1.09 0.99 0.76 1.02 1.10 0.99 1.03 0.98 1.01

0.3
0.1 0.87 0.88 0.87 0.88 0.87 0.79 1.01 0.93 0.96 0.91
0.2 0.93 1.01 1.04 0.77 0.99 0.83 0.94 0.89 0.91 0.93
0.3 0.83 1.13 0.92 0.95 0.91 0.96 1.15 1.05 1.14 1.06

0.1
0.1

1.5

0.88 1.06 0.93 0.79 1.01 0.88 1.00 0.83 0.77 0.92
0.2 0.84 0.77 0.82 0.79 0.75 0.92 0.87 0.96 0.98 0.86
0.3 0.88 1.22 1.08 0.96 1.16 0.99 1.17 1.14 1.07 1.09

0.2
0.1 0.92 0.93 1.06 0.92 1.03 0.81 1.03 0.91 0.96 0.91
0.2 0.84 1.01 0.92 0.91 0.98 0.86 0.80 0.88 0.85 0.78
0.3 0.94 1.08 1.14 1.08 1.08 0.85 0.94 0.98 0.98 0.97

0.3
0.1 1.00 1.08 1.03 0.93 1.00 0.99 0.85 1.01 0.96 0.94
0.2 0.88 1.08 0.91 0.93 0.92 0.93 0.76 0.90 0.83 0.94
0.3 0.82 0.95 0.86 1.01 0.88 0.98 1.06 0.97 1.10 1.09
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3.2.2. Power

Figures 1–3 plot the powers of XCMAX4, FM01, FM02, FMF, and FMS under var-
ious XCI patterns when β = 0.15, F = 0 and

(
q f , qm

)
= (0.3, 0.3), (0.3, 0.2), and

(0.2, 0.3), respectively. These figures show that all four subfigures exhibited a similar
pattern in power, indicating that the covariates had a very limited impact on the perfor-
mance of all methods.
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The simulation was based on 10,000 replicates with β = 0.15, α1 = −5, F = 0, q f = 0.2, and qm = 0.3.

In Figure 1, we can see that FM01 and FMF were generally less powerful than other
methods in all situations. XCMAX4 performed best when γ = 0 (XCI-SN) and 2 (XCI-
SR). However, when γ = 1 (XCI-R), FM02 was the most powerful, followed by FMS and
XCMAX4. This was expected because FM02 is proposed exactly under XCI-R. We also
observed that XCMAX4 had a better power than FMS when γ = 0.5, while FMS performed
slightly better than XCMAX4 when γ = 1.5. In both scenarios, FM02 was still the most
powerful method, but the differences in power between these three methods were generally
very small. Notice that the results in Figures 2 and 3 are analogous to those in Figure 1, and
thereby the allele frequencies of females and males did not apparently change the power
profiles of all of the methods.

Figure 4 plots the powers of XCMAX4, FM01, FM02, FMF, and FMS under the XCI-E
pattern with β = 0.15. Based on this figure, FM01 was uniformly the most powerful in all
scenarios as expected, followed by FMS and XCMAX4. FM02 was generally less powerful
than FM01, FMS, and XCMAX4, but still performed better than FMF. The power results
with β = 0.15, and F = 0.05 are provided in Supplementary Material (Figures S1–S4),
which are similar to those in Figures 1–4, indicating that HWD in females had little effect on
the power results. The power results with β = 0.1116 and 0.1858 are generally consistent
with those in Figures 1–4, implying that the properties of XCMAX4 did not vary with
the magnitude of the genetic effect (see Figures S5–S20 in Supplementary Material). As
expected, when the value of β increased, the powers of all methods uniformly increased.

In conclusion, FM01 and FM02 can have high power if the underlying XCI pattern
is modelled correctly but may be less powerful in other scenarios. In contrast, XCMAX4
retained a relatively good power across a variety of scenarios. Compared to XCMAX4,
FMS may suffer from power loss if the SNP is undergoing XCI but will be more powerful
under XCI-E. FMF had the overall worst performance and thus is not recommend. It should
be noted that, FM01, FM02, FMF, and FMS adopted logistic regression, which is slightly
more computationally intensive than XCMAX4 in GWAS because the implementation of
the logistic regression requires additional iterations. Compared to the other four methods,
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testing 2000 SNPs, XCMAX4 saved half the time. The details of time comparisons are given
in Supplemental Material (Table S6).
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4. Application to Graves’ Disease Data

Graves’ disease (GD) is an autoimmune disease of hyperthyroidism that is four times
more common in women than in men [22,23]. Substantial studies have shown that the
genetic background explains about four-fifths of the susceptibility to GD.

Considering the distinct gender bias, it is highly reasonable to speculate that the
genes on the X chromosome play an important role in the development of GD. Recently,
two independent studies found that rs3827440, a non-synonymous SNP of the GRP174
gene on the X chromosome, was associated with GD. A two-stage GWAS, focused on the
Han population in China, first reported this finding, which was further validated in two
Caucasian cohorts. There are two alleles at rs3827400, with T being the risk allele and C
being the normal one. Table 3 displays the four datasets about rs3827400 mentioned in
these two studies. We applied XCMAX4, FM01, FM02, FMF, and FMS to each dataset; the
results are shown in Table 4. Note that sex was included as a covariate when calculating
the p values of XCMAX4, FM01, and FM02.

Table 3. Data of rs3827400 related to Graves’ disease in two independent studies.

Dataset Race
Female Case Male Case Female Control Male Control

CC TC TT C T CC TC TT C T

Chu et al. (stage I) Han 163 508 444 109 232 219 541 367 172 186
Chu et al. (stage II) Han 471 1606 1298 284 606 584 1344 957 396 526
Szymanski et al. (Warsaw) Caucasian 146 205 85 53 51 188 229 81 146 104
Szymanski et al. (Gliwice) Caucasian 58 78 30 20 11 71 73 27 20 10
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Table 4. p values of the XCMAX4, FM01, FM02, FMF, and FMS tests from four datasets.

Dataset XCMAX4 FM01 FM02 FMF FMS

Chu et al. (stage I)
(
×10−8) 1.573 9.513 0.507 1.832 1.731

Chu et al. (stage II)
(
×10−15) 0.847 7.764 0.561 4.108 1.144

Szymanski et al. (Warsaw)
(
×10−1) 1.083 0.491 0.395 1.038 0.410

Szymanski et al. (Gliwice)
(
×10−1) 5.967 2.515 2.800 5.500 2.628

This table indicates that none of these methods uniformly performed the best across all
four datasets. For the two datasets from the Chinese population, all methods consistently
showed that rs3827400 was associated with GD at the 1× 10−4 significance level. Among
these tests, XCMAX4 consistently had the second smallest p values. However, the p values
of all the methods from both Caucasian datasets suggested no such an association at the
same significance level probably because of their relatively small sample size. We also
observed that XCMAX4 appeared slightly conservative in these scenarios, but this was
not surprising because the rhombus formula is less accurate when the p value is greater
than 0.01.

Because both the Han population and the Caucasian population contained two
datasets, we also tested such association at the population level by treating the data source
as an additional covariate. The corresponding results are given in Table 5, which are similar
to those in Table 4.

Table 5. p values of XCMAX4, FM01, FM02, FMF, and FMS tests from Han and Caucasian populations.

Population XCMAX4 FM01 FM02 FMF FMS

Han
(
×10−22) 1.275 55.347 0.285 1.792 1.444

Caucasian
(
×10−2) 6.932 2.571 2.553 5.795 1.993

5. Discussion

This paper proposed a novel robust method, XCMAX4, to test the association between
the marker on the X chromosome and a specific disease for case-control design. Our
method is an extension of the CMAX3 [24] test on the X chromosome, which can both
incorporate the information of XCI and allow for covariates. Unlike the maxLR proposed
by Wang et al., XCMAX4 is construted by using the score test, which is more efficient in
GWAS because we only need to fit the null model once. Moreover, the maxLR requires
permutation to calculate the p value, which makes it unappealing in GWAS. In contrast,
the p value of XCMAX4 can be computed analytically by using the rhombus formula. On
the other hand, although FM01, FM02, FMF, and FMS can also adjust for covariates, they
do not take various XCI models into consideration and thus may suffer from substantial
power loss in some scenarios. However, XCMAX4 can retain a relatively high power by
accounting for four special XCI patterns simultaneously. Simulation results showed that
XCMAX4 controlled the size well and had robust performance in power. Therefore, we
recommend using XCMAX4 for its effectiveness, robustness, and generality. Finally, to help
implement XCMAX4 in practice, we provide an R function XCMAX4, which is available at
https://github.com/YoupengSU/XCMAX4.git (accessed on 12 April 2022).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13050847/s1, Table S1: Estimated typeIerror rate at the
nominal significance level 1× 10−4 for XCMAX4, FM01, FM02, FMF, and FMS against q f , qm, α2, and
α3 based on 1,000,000 replicates when F = 0.05.; Tables S2–S5: Estimated typeIerror rates at the
nominal significance levels 1× 10−3 and 1× 10−5; Table S6: Time used to test 2000 SNPs with a
sample size of 5000; Figures S1–S4: Powers of XCMAX4, FM01, FM02, FMF, and FMS when F = 0.05;
Figures S5–S20: Powers of XCMAX4, FM01, FM02, FMF, and FMS when β = 0.1116 and 0.1858.
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Appendix A. Detailed Derivation of the Score Statistic

The log-likelihood function of Model (1) can be written as

l(β, α′) = log
(

∏n
i=1 Di

µi (1− Di)
1−µi

)
=

n
∑

i=1
{Di log µi + (1− Di) log(1− µi)}

=
n
∑

i=1

{
Di log µi

1−µi
+ log(1− µi)

}
=

n
∑

i=1

{
Di(Xi

′α + βGi)− log
(

1 + eXi
′α+βGi

)}
,

where µi =
expXi

′α+βGi

1+expXi
′α+βGi

representing the probability of having disease for ith individual.

Assume that θ̂0 = (0, α̂′)′ is the restricted maximum likelihood estimate of θ = (β, α′)′

under the condition β = 0, then the score function and Fisher’s information matrix can be
given as

U
(
θ̂0
)
=

(
∂l(β,α′)

∂θ

∣∣∣
θ=θ̂0

)
=

(
∂l(α,β)

∂β , ∂l(α,β)
∂α

′
∣∣∣∣
θ=θ̂0

)′
=

(
∂l(α,β)

∂β , 0′
∣∣∣
θ=θ̂0

)′
,

=

(
n
∑

i=1

{
Gi

[
Di − eXi

′ α̂

1+eXi
′ α̂

]}
, 0′
)′

= (U(Z1,Z2), 0′)′,

and

I
(
θ̂
)
= −E

(
∂2 l(θ)
∂θ′∂θ

∣∣∣∣
θ=θ̂0

)
=



n
∑

i=1

(
eXi
′ α̂(

1+eXi
′ α̂
)2

)
GiGi · · ·

n
∑

i=1

(
eXi
′
α̂(

1+eXi
′ α̂
)2

)
XipGi

...
. . .

...
n
∑

i=1

(
eXi
′ α̂(

1+eXi
′ α̂
)2

)
GiXip · · ·

n
∑

i=1

(
eXi
′ α̂(

1+eXi
′ α̂
)2

)
XipXip

∣∣∣∣∣∣∣∣∣∣∣∣∣
θ=θ0


=

(
I11 I12
I21 I22

)
,

where

I11 =
n
∑

i=1

(
eXi
′ α̂(

1+eXi
′ α̂
)2

)
GiGi,

I12 =

(
n
∑

i=1
Xi1Gi

eXi
′ α̂(

1+eXi
′ α̂
)2 , · · · ,

n
∑

i=1
XipGi

eXi
′ α̂(

1+eXi
′ α̂
)2

)
,

I21 = I12
′,
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and

I22 =


∑n

i=1
eXi
′ α̂(

1+eXi
′ α̂
)2 Xi1Xi1 · · · ∑n

i=1
eXi
′ α̂(

1+eXi
′ α̂
)2 Xi1Xip

...
. . .

...

∑n
i=1

eXi
′ α̂(

1+eXi
′ α̂
)2 XipXi1 · · · ∑n

i=1
eXi
′ α̂(

1+eXi
′ α̂
)2 XipXip

.

By Cox et. al. [25], we can obtain the score test statistic as

WS = U
(
θ̂0
)′ I(θ̂)−1U

(
θ̂0
)
= U

(
θ̂0
)′ I(θ̂)−1U

(
θ̂0
)
= U

(
θ̂0
)′( I11 I12

I21 I22

)−1

U
(
θ̂0
)

= U
(
θ̂0
)′( (

I11 − I12 I22
−1 I21

)−1 −
(

I11 − I12 I22
−1 I21

)−1 I12 I22
−1

−I22
−1 I21

(
I11 − I12 I22

−1 I21
)−1 I22

−1 + I22
−1 I21

(
I11 − I12 I22

−1 I21
)−1 I12 I22

−1

)
U
(
θ̂0
)

= U(Z1,Z2)
′(I11 − I12 I22

−1 I21
)−1U(Z1,Z2),

which asymptotically follows a chi-square distribution with degrees of freedom being 1. In
Model (2), β becomes a two-dimensional vector, and the proofs are similar, so the details
are omitted.
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