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Abstract: Skewed X chromosome inactivation (XCI-S) has been reported to be associated with some
X-linked diseases, and currently several methods have been proposed to estimate the degree of the
XCI-S (denoted as γ) for a single locus. However, no method has been available to estimate γ for
genes. Therefore, in this paper, we first propose the point estimate and the penalized point estimate
of γ for genes, and then derive its confidence intervals based on the Fieller’s and penalized Fieller’s
methods, respectively. Further, we consider the constraint condition of γ ∈ [0, 2] and propose the
Bayesian methods to obtain the point estimates and the credible intervals of γ, where a truncated
normal prior and a uniform prior are respectively used (denoted as GBN and GBU). The simulation
results show that the Bayesian methods can avoid the extreme point estimates (0 or 2), the empty sets,
the noninformative intervals ([0, 2]) and the discontinuous intervals to occur. GBN performs best in
both the point estimation and the interval estimation. Finally, we apply the proposed methods to the
Minnesota Center for Twin and Family Research data for their practical use. In summary, in practical
applications, we recommend using GBN to estimate γ of genes.

Keywords: skewed X chromosome inactivation; Fieller’s method; penalized Fieller’s method;
Bayesian method; Minnesota Center for Twin and Family Research data

1. Introduction

X chromosome inactivation (XCI) is an important epigenetic phenomenon. Under
the XCI, one of two X chromosomes in females is silenced in the early stage of embryonic
development to ensure that the transcriptional dosage of X chromosomes in females and
that in males are balanced [1]. Generally, there are three patterns of the XCI [2], random X
chromosome inactivation (XCI-R), skewed X chromosome inactivation (XCI-S) [3–6], and
escape from X chromosome inactivation (XCI-E) [7,8]. The XCI-R means that the paternal
and maternal X chromosomes in females have the same probabilities to be inactive, i.e., for
a locus on the X chromosome, approximately 50% of the cells inactivate one of the alleles,
while the remaining 50% of the cells keep the other allele inactive. Under the XCI-E, the
alleles on both the X chromosomes in females are expressed, which are similar to those at
an autosomal locus. For humans, about 15-30% of the X-linked genes have been reported
to undergo the XCI-E [7]. Finally, the XCI-S is defined as more than 75% of the cells in
females inactivating the same allele [9]. For some extreme skewed cases, it is possible that
more than 90% of the cells keep the same allele silenced [9,10]. As such, the difference

Genes 2022, 13, 827. https://doi.org/10.3390/genes13050827 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13050827
https://doi.org/10.3390/genes13050827
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0001-7845-8212
https://orcid.org/0000-0002-5497-7787
https://orcid.org/0000-0001-9712-4023
https://orcid.org/0000-0002-6127-2697
https://orcid.org/0000-0002-2508-4015
https://orcid.org/0000-0003-0866-4402
https://doi.org/10.3390/genes13050827
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13050827?type=check_update&version=1


Genes 2022, 13, 827 2 of 26

in the number of the X chromosomes in females and males and the complexity of the
XCI make the association tests for the X chromosomes more complicated than those for
the autosomes.

The skewness of the XCI can reflect, or cause, biological consequences for females [9].
The clonal expansion of a somatic cell in females may lead to a cell population with
extremely skewed XCI [9]. For some X-linked disorders, there is strong selection of the cells
which keep the mutant allele inactive in the heterozygous carriers and, hence, assessing the
degree of the skewness of the XCI is helpful in terms of being indicative of the carrier’s
disease status [11]. Further, the degree of the skewness of the XCI can determine the
severity of certain X-linked diseases, such as haemophilia B [12,13]. On the other hand,
even for the same mutant allele, the XCI-S in different tissues or cells may result in different
clinical consequences. For example, in heterozygous females with a mutant FoxP3 allele,
the XCI-S against the mutant allele in specific tissues can prevent autoimmune disease,
while the XCI-S skewed towards the mutant allele in breast epithelial cells can cause
breast cancer [14]. Besides this, studies have shown that some diseases, such as ovarian
cancer, Rett syndrome, Duchenne muscular dystrophy and recurrent miscarriage, are also
related to the XCI-S [15–18]. Therefore, in recent years, researchers have proposed some
methods to test the association between the alleles at an X-chromosomal single nucleotide
polymorphism (SNP) locus and traits [19–26]. For example, Wang et al. [23] developed a
permutation-based test statistic which considers all the XCI patterns. For the XCI-R and
the XCI-S, this method respectively codes three female genotypes (dd, Dd and DD) as 0,
γ and 2 at an X-chromosomal SNP, with the major allele d and the minor allele D, where
γ ∈ [0, 2] is an unknown genotypic value for heterozygous females, and respectively codes
two male genotypes (d and D) as 0 and 2. Here, γ can be used to measure the degree of
the XCI skewing. For instance, γ ∈ [0, 1) is indicative of the XCI-S skewed towards the
minor allele D, γ = 1 means that the XCI pattern is the XCI-R, and γ ∈ (1, 2] indicates the
XCI-S skewed towards the major allele d. For the XCI-E, three female genotypes are coded
as 0, 1 and 2, and two male genotypes are coded as 0 and 1, respectively. However, the
X-chromosomal association tests mentioned above are only applicable to a single SNP and
common variants, and are not suitable for genetic regions or genes with multiple SNPs and
rare variants. Rare variants refer to the variants with a minor allele frequency (MAF) less
than 1%, and those with MAF ≥ 1% are called common variants [27,28]. Over the past few
years, genome-wide association studies have identified many common variants associated
with complex traits, but these variants usually explain only a small part of the estimated
heritability for a given trait. On the other hand, it has been shown that rare variants play
a key role in influencing traits [29]. Single-variant tests often have low test power when
applied to the rare variants. Therefore, many statistical methods had been presented, which
focus on testing the cumulative effect of rare variants in genetic regions or SNP sets (such as
genes), including the burden test and the variance-component tests [27,30–33]. The burden
test collapses all the rare variants in a genetic region into a single burden variable, and then
regresses the trait on the burden variable to test the cumulative effect of the rare variants
in that region [27]. The variance-component tests, such as the sequence kernel association
test (SKAT), do not directly aggregate the variants in the modeling process, but aggregate
the association between the variants and the trait through a kernel matrix [33]. Another
method, SKAT-O, proposed by Lee et al. [34], has the advantages of both the burden and
SKAT tests, but the time cost is higher than the previous two methods. All these methods
have one thing in common, i.e., increasing the weights of rare variants’ contributions and
decreasing the weights of common variants’ contributions. However, for a trait-related
gene, the relative influence of rare and common variants is not known [35]. Therefore,
Iuliana et al. [35] put forward several multi-locus association tests, such as the adaptive sum
test, which consider the effects of both common and rare variants on the trait, and these
methods are more powerful when the genes simultaneously contain rare and common
variants. Note that these multi-locus association tests are all based on genetic regions or
genes on autosomes, and may not be directly applied to the X chromosomes. Therefore,
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Clement et al. [36] improved the traditional burden test, SKAT and SKAT-O methods and
suggested three gene-based X-chromosomal association tests. However, these methods
only take account of the XCI-R and XCI-E patterns. What is more, the FxSKAT method,
proposed by Asuman et al. [37], is not only applicable to pedigree data, but also takes the
XCI-E into account during the analysis process.

Except for testing the association between the genes on the X chromosome and the
traits under study, it is also important to develop methods to measure the corresponding
degree of the skewness of the XCI (denoted as γ). At present, researchers have put forward
several methods to estimate γ for a single SNP, which can simultaneously get the point
estimates and the confidence intervals (CIs) of γ. Specifically, Xu et al. [38] proposed a
statistical index for estimating γ based on family trios (both parents and their daughter),
which can be represented as the ratio of two relative risks in females, and derived the
corresponding CI with the likelihood ratio (LR) test. Wang et al. [39] used the ratio of
two regression coefficients of a logistic regression to estimate γ, and obtained the CIs
with the LR, Fieller’s and delta methods, respectively. Li et al. [40] further extended the
methods of Wang et al. so that they can accommodate quantitative traits. However, the
above-mentioned methods are all constructed for a single SNP, and are not suitable for
genetic regions or genes containing multiple SNPs. Furthermore, when applied to rare
variants, they perform poorly. In addition, it should be noted that the delta method cannot
control the coverage probability (CP) well, and the LR and Fieller’s methods have similar
performance in the interval estimation, while the Fieller’s method is computationally
efficient. Thus, the Fieller’s method is recommended in practice. However, both the LR
and Fieller’s methods may yield unbounded CIs when the denominators in the ratios used
to estimate γ are close to 0. Fortunately, the penalized Fieller’s (PF) method, which was
proposed by Wang et al. [41], can be used to conduct the ratio estimation and always get
the bounded CIs by choosing an appropriate penalty parameter. However, it has not been
applied to the estimation of the degree of the skewness of the XCI yet. On the other hand,
the above-mentioned methods do not consider the constraint condition of γ ∈ [0, 2], and
simply cut off the point estimates and the CIs within [0, 2], which may result in extreme
point estimates (0 or 2) and empty sets or noninformative CIs (i.e., [0, 2]). In contrast, the
Bayesian methods can effectively utilize the prior information of each unknown parameter
in the analysis, and have been widely used in statistical genetics [42].

Therefore, in this paper, we borrow the idea of the burden test, aggregate all the
variants in a gene under study into a burden variable by selecting the appropriate weights,
and then estimate the mean degree of the skewness of the XCI over all the SNPs in the
gene based on the burden variable. We first propose the point estimate and the penalized
point estimate of γ for the gene, and then derive its CIs based on the Fieller’s and PF
methods, respectively. Then, by considering the constraint condition of γ ∈ [0, 2], we
propose the Bayesian methods to obtain the point estimates and the credible intervals
of γ. Specifically, after getting enough samples drawn from the posterior distribution
of γ, we calculate the mode of the samples as the point estimate of γ and the highest
posterior density interval (HPDI) as the credible interval of γ [43]. We conduct extensive
simulation studies to compare the performances of the proposed point estimation methods
and the interval estimation methods for γ. Finally, we demonstrate the practical utility of
the proposed methods by applying them to the Minnesota Center for Twin and Family
Research (MCTFR) data.

2. Materials and Methods
2.1. Notations

Suppose that we only collect n female subjects, because male subjects provide no
information on the XCI skewing. Consider an X-linked trait (quantitative or qualitative) and
let yi represent the trait value of the ith female (i = 1, 2, . . . , n), then Y = (y1, y2, . . . , yn)

T

is the vector of the trait values for all the females. Assume that a gene which contains J
SNPs is associated with this trait, and let dj and Dj denote the major allele and the minor
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allele at the jth SNP (j = 1, 2, . . . , J), respectively. Let Gij be the genotype at the jth SNP
of the ith female (i.e., Gij = djdj, Djdj or DjDj). If we use γ ∈ [0, 2] to measure the mean
degree of the skewness of the XCI for all the SNPs in the gene, then gij = 0, γ and 2 can be
used to denote the genotypic values for genotypes djdj, Djdj and DjDj, respectively. As

such, Gi =
(

gi1, gi2, . . . , gi J
)T is the vector of the genotypic values at the J SNPs of the ith

female. Therefore, we consider the association between the gene and the trait based on the
following generalized linear model

h(µi) = β0 + βTGi + bTZi, (1)

where h(·) is a link function; Zi = (Zi1, Zi2, . . . , Zim)
T is the vector of m covariates of the ith

female, which are needed to be adjusted, and Z = (Z1, Z2, . . . , Zn)
T is an n×m covariate

matrix; µi = E(yi|Gi, Zi) is the conditional mean of the ith female’s trait value given Gi and
Zi; β0 is the intercept, β =

(
β1, β2, . . . , β J

)T is the vector of the regression coefficients of Gi,
and b = (b1, b2, . . . , bm)

T is an m× 1 vector of the regression coefficients of Zi.
Based on the idea of the burden test [27], we aggregate all the SNPs in the gene into

a burden variable and let Xi =
J

∑
j=1

ωjgij, where ωj is a weight for the jth SNP. Here we

assume that ωj is a function with respect to the MAF at the jth SNP (denoted as MAFj), i.e.,
ωj = Beta

(
MAFj, 0.5, 0.5

)
[35]. So, model (1) can be rewritten as

h(µi) = β0 + βcXi + bTZi, (2)

where βc is the regression coefficient of Xi. Next, we consider two variables g(1)ij = I{Gij=Djdj or DjDj}

and g(2)ij = I{Gij=DjDj}, where I{·} is the indicator function. Thus, g(1)ij = 1 means that the

ith female contains at least one minor allele at the jth SNP, and g(2)ij = 1 denotes that the
female is a homozygote DjDj at the jth SNP. Through simple transformations, we can get

gij = γg(1)ij + (2− γ)g(2)ij , and Xi can be expressed as Xi =
J

∑
j=1

ωj

[
γg(1)ij + (2− γ)g(2)ij

]
=

γX(1)
i + (2− γ)X(2)

i , where X(1)
i =

J
∑

j=1
ωjg

(1)
ij and X(2)

i =
J

∑
j=1

ωjg
(2)
ij . Further, let X(1) =(

X(1)
1 , X(1)

2 , . . . , X(1)
n

)T
and X(2) =

(
X(2)

1 , X(2)
2 , . . . , X(2)

n

)T
. To estimate the mean degree

of the XCI skewing for the gene (i.e., γ), we substitute Xi = γX(1)
i + (2− γ)X(2)

i into model
(2) and get

h(µi) = β0 + βc

[
γX(1)

i + (2− γ)X(2)
i

]
+ bTZi. (3)

For quantitative traits, h(·) is the identity function, and model (3) can be written as
yi = β0 + βc

[
γX(1)

i + (2− γ)X(2)
i

]
+ bTZi + εi, where εi is the random error and follows

N
(
0, σ2). In this case, the unknown parameters are θ1 =

(
β0, βc, γ, bT , σ

)T
, and the

corresponding likelihood function of the sample is

L1(θ1) =
(

2πσ2
)∑ n

2 exp

−
∑n

i=1

[
yi − β0 − γβcX(1)

i − (2− γ)βcX(2)
i − bTZi

]2

2σ2

.
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As for qualitative traits, h(·) is the logit function, and model (3) is written as
Logit

(
Pr
(

yi = 1
∣∣∣X(1)

i , X(2)
i , Zi

))
=β0 + βc

[
γX(1)

i + (2− γ)X(2)
i

]
+ bTZi. The unknown pa-

rameters are θ2 =
(

β0, βc, γ, bT
)T

and the likelihood function is

L2(θ2) = ∏n
i=1πi

I{yi=1}(1− πi)
I{yi=0} ,

where yi = 1 and 0 respectively indicate that the ith female is a case and a control,
and πi = 1/

{
1 + exp

[
−β0 − γβcX(1)

i − (2− γ)βcX(2)
i − bTZi

]}
. Let β

(1)
c = γβc and

β
(2)
c = (2− γ)βc, and we have

h(µi) = β0 + β
(1)
c X(1)

i + β
(2)
c X(2)

i + bTZi. (4)

As such, we obtain βc =
(

β
(1)
c + β

(2)
c

)
/2 and γ can be expressed as

γ =
β
(1)
c
βc

=
2β

(1)
c

β
(1)
c + β

(2)
c

. (5)

By assuming that the degree of the skewness of the XCI at the jth SNP is γj, γ satisfies,
under a certain condition (the proof is given in Appendix A),

γ =
∑J

j=1 ωj

(
g(1).j − g(2).j

)
γj

∑J
j=1 ωj

(
g(1).j − g(2).j

) ,

where g(1).j =
n
∑

i=1
g(1)ij is the number of the females who contain at least one minor allele

at the jth SNP, and g(2).j =
n
∑

i=1
g(2)ij is the number of the females whose genotypes at the

jth SNP are DjDj. So, γ is the weighted mean of the γj’s for all the SNPs in the gene with

the weights being ωj

(
g(1).j − g(2).j

)
/

J
∑

j=1
ωj

(
g(1).j − g(2).j

)
. When there are rare variants at

some SNPs or when the variation of the γj’s in the gene is large, γ is still well defined
for the whole gene. On the other hand, from Equation (5), γ can be well defined if there
is an association between the gene and the trait (i.e., βc =

(
β
(1)
c + β

(2)
c

)
/2 6= 0). Further,

γ = 0 if and only if β
(1)
c = 0 and β

(2)
c 6= 0, which means that all the γj’s are 0 and the

XCI-S is completely skewed towards the minor allele for each SNP, and γ = 2 only when
β
(1)
c 6= 0 and β

(2)
c = 0, indicating that all the γj’s are 2 and the XCI-S is completely skewed

towards the major allele for each SNP. However, γ = 1 means that on the average, the
gene undergoes the XCI-R or the XCI-E. After obtaining the estimates of β

(1)
c and β

(2)
c ,

respectively denoted by β̂
(1)
c and β̂

(2)
c which can be derived by the maximum likelihood

method, the point estimate of γ can be expressed as γ̂ = 2β̂
(1)
c /

(
β̂
(1)
c + β̂

(2)
c

)
.

2.2. Point Estimate and CI of γ by Fieller’s Method

Note that γ should take the possible values from the interval [0, 2]. So, the orig-
inal estimate γ̂ = 2β̂

(1)
c /

(
β̂
(1)
c + β̂

(2)
c

)
needs to be cut off in [0, 2] and the resulting

estimate is denoted by γ̂GF. Further, we utilize the Fieller’s method to get the CI of
γ. Specifically, borrowing the idea of Wang et al. [39], we have β̂c =

(
β̂
(1)
c + β̂

(2)
c

)
/2,

V̂ar
(

β̂c
)
= 1

4

[
V̂ar
(

β̂
(1)
c

)
+ V̂ar

(
β̂
(2)
c

)
+ 2 ˆCov

(
β̂
(1)
c , β̂

(2)
c

)]
and ˆCov

(
β̂
(1)
c , β̂c

)
= 1

2 V̂ar
(

β̂
(1)
c

)
+

1
2

ˆCov
(

β̂
(1)
c , β̂

(2)
c

)
. To construct the CI of γ, we first establish a Wald test under the null
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hypothesis H0 : γ = γ0, where γ0 is a pre-specified value (e.g., 1, which means that on the
average, the gene undergoes the XCI-R or the XCI-E). As such, we have β

(1)
c − γ0βc = 0,

and the Wald test statistic is

β̂
(1)
c − γ0 β̂c√

V̂ar
(

β̂
(1)
c

)
+ γ2

0V̂ar
(

β̂c
)
− 2γ0 ˆCov

(
β̂
(1)
c , β̂c

) ∼ N(0, 1).

Therefore, the 100(1− α)% CI of γ can be derived by solving the following equation β̂
(1)
c − γ0 β̂c√

V̂ar
(

β̂
(1)
c

)
+ γ2

0V̂ar
(

β̂c
)
− 2γ0 ˆCov

(
β̂
(1)
c , β̂c

)


2

= Z2
1−α/2,

where Z1−α/2 is the (1− α/2) upper quantile of the standard normal distribution. Rear-
range the above equation with respect to γ0 into a quadratic equation

Aγ2
0 + Bγ0 + C = 0, (6)

where A = β̂2
c−Z2

1−α/2V̂ar
(

β̂c
)
, B = 2

[
Z2

1−α/2
ˆCov
(

β̂
(1)
c , β̂c

)
− β̂

(1)
c β̂c

]
and C =

(
β̂
(1)
c

)2
−

Z2
1−α/2V̂ar

(
β̂
(1)
c

)
. When ∆ =

√
B2 − 4AC = 0 or A = 0, the CI of γ will degenerate to be a

point. The CI of γ for other cases is as follows

(
−B−

√
∆

2A , −B+
√

∆
2A

)
∩ [0, 2], if ∆ > 0 and A > 0((

−∞, −B+
√

∆
2A

)
∪
(
−B−

√
∆

2A ,+∞
))
∩ [0, 2], if ∆ > 0 and A < 0

[0, 2], if ∆ < 0 and A < 0
∅, if ∆ < 0 and A > 0

It should be noted that even in the case of ∆ > 0, the CI of γ obtained by the Fieller’s
method may still be an empty set. And in the case of ∆ > 0 and A < 0, the CI may be
composed of two parts, which is the discontinuous interval.

2.3. Penalized Point Estimate and CI of γ by PF Method

As mentioned above, we construct γ̂ = β̂
(1)
c /β̂c as the point estimate of γ, where

β̂c =
(

β̂
(1)
c + β̂

(2)
c

)
/2. However, if the denominator β̂c is very close to 0, γ̂ will tend to

the infinity. The CI of γ based on the Fieller’s method before the truncation is usually
unbounded. To deal with this issue in the ratio estimate and borrow the idea of Wang
et al. [41], we propose the following PF method to obtain the penalized point estimate of γ
and the corresponding CI. Consider the penalized log-likelihood function of βc as follows:
pl = −

(
β̂c − βc

)2
/
(
2V̂ar

(
β̂c
))

+ λ log|βc|, where λ > 0 is a penalty parameter and is taken
to be Z2

1−α/2/4 as suggested by Wang et al. [41] because the CI obtained by the PF method
is always bounded with λ = Z2

1−α/2/4. By maximizing the function pl, we have the penal-

ized denominator β̃c = β̂c/2 + sign
(

β̂c
)√

β̂2
c/4 + λV̂ar

(
β̂c
)
, where sign(·) is the signum

function. Further, we can get V̂ar
(

β̃c

)
= ξ2V̂ar

(
β̂c
)
+ O

(
n−3), where ξ = β̃c/

(
2β̃c − β̂c

)
.

If we replace β̂c by β̃c to obtain the point estimate γ̃ = β̂
(1)
c /β̃c, then γ̃ is a biased estimate of

γ. To reduce this bias, we need to correct the numerator β̂
(1)
c by β̃

(1)
c = β̂

(1)
c + γ̃

(
β̃c − β̂c

)
.

Correspondingly, we can get V̂ar
(

β̃
(1)
c

)
= ξ−2V̂ar

(
β̂
(1)
c

)
− 4
(
ξ−1 − 1

)
γ̃ ˆCov

(
β̂
(1)
c , β̂c

)
+

4(1− ξ)2γ̃2V̂ar
(

β̂c
)

and ˆCov
(

β̃
(1)
c , β̃c

)
= ˆCov

(
β̂
(1)
c , β̂c

)
− 2ξ(1− ξ)γ̃V̂ar

(
β̂c
)
. After ob-
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taining the corrected denominator β̃c and the corrected numerator β̃
(1)
c , γ̂∗ = β̃

(1)
c /β̃c

truncated by [0, 2] is the penalized point estimate of γ, which is denoted by γ̂GPF. The
construction process of the corresponding CI of γ̂GPF is the same as the Fieller’s method,
except for respectively replacing β̂c, β̂

(1)
c , V̂ar

(
β̂c
)
, V̂ar

(
β̂
(1)
c

)
and ˆCov

(
β̂
(1)
c , β̂c

)
by β̃c, β̃

(1)
c ,

V̂ar
(

β̃c

)
, V̂ar

(
β̃
(1)
c

)
and ˆCov

(
β̃
(1)
c , β̃c

)
in Equation (6). However, it should be noted that

although the CI of γ based on the PF method is always bounded when λ = Z2
1−α/2/4, it

may be out of [0, 2] and we need to truncate it by [0, 2].

2.4. Point Estimate and Credible Interval of γ by Bayesian Method

Note that the point estimates (γ̂GF and γ̂GPF), and the corresponding CIs mentioned
above, are cut off in the interval [0, 2] and cannot directly incorporate the information
on γ ∈ [0, 2]. Therefore, in this subsection, we introduce the Bayesian method to give
the point estimate and the credible interval of γ by considering the prior information of
γ ∈ [0, 2]. Specifically, we have the posterior distribution of the unknown parameter θ.
as follows

f
(

θ.

∣∣∣Y, X(1), X(2), Z
)
=

f (θ.)L.(θ.)∫
f (θ.)L.(θ.)dθ.

,

where f (θ.) is the joint prior distribution of θ.; when the traits are quantitative, θ. = θ1 and
L.(θ.) = L1(θ1); when the traits are qualitative, θ. = θ2 and L.(θ.) = L2(θ2). However, in
general, we cannot get the analytical solutions of f

(
θ.

∣∣∣Y, X(1), X(2), Z
)

. Therefore, it is not
feasible to directly sample from the posterior distribution. Fortunately, there are several
algorithms for sampling from an approximate distribution of the posterior distribution, such
as the Hamiltonian Monte Carlo (HMC) algorithm which can be implemented by the “rstan”
package in R [43]. On the other hand, according to Annis et al. [43], the correlation between
the parameters has little influence on the HMC algorithm. To simplify the operations,
and improve the sampling efficiency, we assume that the unknown parameters in θ. are
independent of each other, and use the HMC algorithm to sample from the approximate
posterior distribution of θ.. In other words, we choose the prior distribution for each
unknown parameter separately.

The prior distributions of the parameters in θ. are selected as follows. To reduce the
influence of the selection of the prior distributions on the results, for nuisance parameters
β0, βc and b (there is an additional nuisance parameter σ when the trait is quantitative), we
choose the weak prior distributions [44]. Specifically, we assume that the prior distributions
of β0 and βc are both N

(
0, 102), and that of b is MVN

(
0, diag

(
102, 102, . . . , 102)). For

quantitative traits, we also specify the prior distribution of σ to be an exponential distribu-
tion, i.e., σ ∼ exp(1). As for the parameter γ of interest, which is used to measure the mean
degree of the skewness of the XCI over all the SNPs in the gene and satisfies the constraint
condition of γ ∈ [0, 2], we consider two possible prior distributions. The first one is the
truncated normal distribution, with both parameters being 1 and the values ranging from 0
to 2, and the probability density function of the prior distribution is

f (γ) =


φ(γ−1)

1√
2π

∫ 2
0 exp[− 1

2 (x−1)2]dx
, 0 ≤ γ ≤ 2

0, otherwise
,

where φ(·) is the probability density function of the standard normal distribution. In this
way, γ not only satisfies the constraint condition of γ ∈ [0, 2], but also the probability of γ
being close to 1 is the highest, which is consistent with the literature [2], i.e., most of the
SNPs on the X chromosome undergo the XCI-R. Meanwhile, the selected truncated normal
distribution of γ also avoids that the probability of γ taking the extreme value (0 or 2) is too
low, which may be more suitable for practical applications. The second prior distribution
of γ is a uniform distribution, i.e., γ ∼ U(0, 2).
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After specifying the prior distributions of all the unknown parameters, we can get
enough samples of γ through the HMC algorithm, and then calculate the mode of the
samples as the point estimate of γ, and the highest posterior density interval (HPDI) as the
credible interval of γ. Here, we denote the Bayesian methods with the truncated normal
prior and the uniform prior as GBN and GBU, and the point estimates obtained by these
two methods are denoted as γ̂GBN and γ̂GBU , respectively.

3. Results
3.1. Simulation Settings

We conducted extensive simulation studies to evaluate the performances of the pro-
posed point estimation and interval estimation methods. The number of female subjects
(i.e., the sample size n) is set to be 500 and 2000. Consider a gene associated with the trait
under study and the number of the SNPs in the gene (i.e., J) is fixed at 100, i.e., we assume
that all the 100 SNPs are associated with the trait. Meanwhile, we define η as the proportion
of rare variants among the 100 SNPs. To explore the effect of η on the proposed methods,
we set η = 0, 0.4 and 1, which correspond to the cases of all the 100 SNPs only including
common variants, the 100 SNPs simultaneously containing common and rare variants, and
all the 100 SNPs only consisting of rare variants, respectively. Among them, the MAFs
for common variants are sampled from U(0.01, 0.5), while the MAFs for rare variants are
randomly simulated from U(0.005, 0.01) [45–47]. We generate the genotypes of n female
subjects by referring to the ideas of Wang et al. [45], Basu et al. [46], and Turkmen et al. [47].
We first generate a latent vector V = (V1, V2, . . . , V100)

T from the multivariate normal distri-
bution with the mean vector being 0 and the elements of the variance-covariance matrix
satisfying Var(Vj) = 1 and Corr

(
Vj, Vk

)
= ρ|j−k| (j, k = 1, 2, . . . , 100) [45,47], where the

linkage disequilibrium among the SNPs is taken into consideration. For simplicity, we set
ρ = 0.5 in our simulation studies. Once V is generated, it is then transformed to 0 (major
allele) or 1 (minor allele) determined by the corresponding MAFs. This process is repeated
twice, and two simulated vectors of length 100 are put together to form the genotypes at
the 100 SNPs for a female subject. After simulating the genotypes of n female subjects, we
have an n× 100 genotypic value matrix G = (G1, G2, . . . , Gn)

T with the elements being 0,
1 or 2, and then we replace the elements of G equal to 1 with γ to simulate the information
on the XCI-S. Note that to simplify the simulation and better evaluate the performances of
our proposed methods (e.g., the calculation of the mean squared errors (MSEs) of the point
estimates requires a single true value of γ for each replicate; the details are given later), we
set the degrees of the XCI skewing γj’s at all the 100 SNPs to be the same in the simulation
study (i.e., γj = γ, j = 1, 2, . . . , 100).

We only consider a covariate Q, which is generated from the standard normal distri-
bution. For the quantitative trait, we simulate the trait value yi of the ith female according
to the following model

yi = β0 + β1gi1 + β2gi2 + . . . + β100gi100 + δQi + εi,

where εi is the random error, which is generated from the standard normal distribution; β0
is the intercept and δ is the regression coefficient of the covariate Q, and both the parameters
are set to be 0.5 [36];

∣∣β j
∣∣ = e

∣∣log10 MAFj
∣∣/2 is the regression coefficient of the genotypic

value gij at the jth SNP [33,34,36], where e is the tuning parameter and is used to avoid the
effect of a SNP being too large or too small [36]. To highlight the effects of rare variants
on the trait, we set e = 1.5 when the jth SNP has a rare variant, otherwise e = 1.1. Further,
notice that the directions of the effects of different SNPs on the trait may be different.
Therefore, we consider the proportion of the SNPs with positive effects among the 100
SNPs (denoted by τ) and set τ to be 0.6 and 1, indicating that the effect directions of some
SNPs are positive and some are negative, and all the SNP effects are positive, respectively.
We do not simulate the case of τ = 0 (i.e., all the SNP effects are negative) because the
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results with τ = 0 are similar to those with τ = 1. As for the qualitative trait, the model for
generating the affection status yi of the ith female is as follows

Logit(Pr(yi = 1|Gi, Qi)) = β0 + β1gi1 + β2gi2 + . . . + β100gi100 + δQi.

All of the parameters are the same as when simulating the quantitative trait, except
that we need to set the case-control ratio to be 1:1.

After simulating the genotypes and the trait values, we use model (4) to obtain the estimates
of β

(1)
c and β

(2)
c , where X(1)

i = ∑100
j=1 ωjg

(1)
ij , X(2)

i = ∑100
j=1 ωjg

(2)
ij , ωj = Beta

( ˆMAFj, 0.5, 0.5
)
,

and ˆMAFj is the estimate of the MAF at the jth SNP. Then, we get the point estimate γ̂GF,
the penalized point estimate γ̂GPF, and the CIs of γ derived by the Fieller’s and the PF
methods. As for the Bayesian methods, the HMC algorithm is implemented through the
“sampling” function in the R package “rstan”. We set 8 chains for the parallel sampling
in the simulation. For each chain, we extract 10,000 samples, and the first 5000 are used
for warm-up. So, we finally get 40,000 samples. To ensure the convergence, the target
acceptance rate is set to be 0.99.

The above simulation steps are all implemented in the R software (version 4.1.1,
http://r-project.org, accessed on 5 January 2022). For each simulation setting, the number
of the replicates is fixed to be 500, and for each replicate, the true value of γ is sam-
pled from the uniform distribution U(0, 2). To evaluate the accuracy and the robustness
of γ̂GBN , γ̂GBU , γ̂GPF and γ̂GF, we calculate the MSEs of these point estimates. Here,

MSE =
500
∑

s=1
(γ̂s − γs)

2/500, where γs represents the true value of γ and γ̂s is the point esti-

mate in the sth replicate (s = 1, 2, . . . , 500). Note that γ̂GBN and γ̂GBU are always between
0 and 2, so we only compute the proportions of γ̂GPF and γ̂GF taking the extreme values
(0 or 2), respectively. Meanwhile, scatter plots are used to show the relationship between
the four point estimates and the true values of γ. To compare the performances of the GBN,
GBU, PF and Fieller’s methods in the interval estimation, we calculate the CP as well as
the mean, the median, the standard deviation and the interquartile range of the widths
of the 95% HPDIs or CIs (denoted by Wmean, Wmedian, Wsd and Wiqr), respectively. For the
PF and Fieller’s methods, we also compute the proportions of the empty sets (EP), the
noninformative intervals (NP), and the discontinuous intervals (DP) to further compare
the effectiveness of these two methods, where the noninformative interval means the CI
being [0, 2]. However, it should be noted that the GBN and GBU methods avoid the cases
of empty sets, noninformative intervals, and discontinuous intervals occurring. In addition,
we draw the scatter plots between the interval widths of the four proposed methods and
the true values of γ.

3.2. Simulation Results

The proportions of the extreme values (0 or 2) for γ̂GPF and γ̂GF are shown in Table 1.
It can be seen from the table that the proportions of the point estimates equal to 0 are the
same for both γ̂GPF and γ̂GF, while the proportion of the point estimates equal to 2 for
γ̂GPF is reduced. This is because before the truncation, both γ̂∗ = β̃

(1)
c /β̃c and γ̂ = β̂

(1)
c /β̂c

always have the same sign, and γ̂∗ is bounded. Specifically, when γ̂∗ and γ̂ are negative,
γ̂GPF and γ̂GF are both 0. On the other hand, when γ̂∗ and γ̂ are positive, compared with γ̂,
the proportion of γ̂∗ being greater than 2 decreases. Further, from Table 1, with the increase
of the sample size or the trait changing from qualitative to quantitative, the proportions of
the extreme values for γ̂GPF and γ̂GF both become less. Next, let us take a look at the effects
of the proportion of the rare variants (η) and the proportion of the SNPs with the positive
effects (τ) among all the SNPs on the proportions of the extreme values for γ̂GPF and γ̂GF.
Under the situation that the trait is quantitative and τ = 0.6 (i.e., the effect directions of
some SNPs are positive and some are negative), the proportions of the extreme values (0
and 2) for γ̂GPF and γ̂GF with η = 0 (all the SNPs only include common variants) are less
than those with η = 1 (all the SNPs only consist of rare variants), irrespective of the sample

http://r-project.org
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size (n). As for the qualitative trait, when n = 2000 and τ = 0.6, the proportion of the
extreme values equal to 0 for γ̂GPF and the proportions of the extreme values (0 and 2) for
γ̂GF with η = 0 are smaller than those with η = 1, while the proportion of the extreme
values equal to 2 for γ̂GPF with η = 0 (12.8%) is larger than that with η = 1 (10.4%). When
the trait is qualitative, n = 500 and τ = 0.6, the results are similar to those with n = 2000,
except that the proportion of the extreme values equal to 2 for γ̂GF with η = 0 (20.0%)
and that with η = 1 (19.2%) are very close to each other. In addition, the proportions of
the extreme values (0 or 2) for γ̂GPF and γ̂GF. have no obvious trends for other cases of
different values of η and τ.

Table 1. Proportions (%) of extreme values of γ̂GPF and γ̂GF among 500 replications.

Trait n η a
τ b

^
γGPF

^
γGF

0 2 Total 0 2 Total

Quantitative

500 0 0.6 8.6 10.6 19.2 8.6 11.8 20.4
500 0 1 7.6 19.2 26.8 7.6 21.4 29.0
500 0.4 0.6 9.6 8.2 17.8 9.6 10.6 20.2
500 0.4 1 11.2 16.0 27.2 11.2 21.2 32.4
500 1 0.6 13.4 11.8 25.2 13.4 15.0 28.4
500 1 1 9.0 9.0 18.0 9.0 15.8 24.8

2000 0 0.6 5.2 6.0 11.2 5.2 6.2 11.4
2000 0 1 5.0 9.4 14.4 5.0 9.6 14.6
2000 0.4 0.6 5.6 4.6 10.2 5.6 5.0 10.6
2000 0.4 1 6.4 10.8 17.2 6.4 11.2 17.6
2000 1 0.6 9.8 7.0 16.8 9.8 7.2 17.0
2000 1 1 1.4 12.2 13.6 1.4 13.8 15.2

Qualitative

500 0 0.6 19.6 12.8 32.4 19.6 20.0 39.6
500 0 1 23.8 17.0 40.8 23.8 20.4 44.2
500 0.4 0.6 18.8 12.8 31.6 18.8 22.0 40.8
500 0.4 1 29.2 10.0 39.2 29.2 19.2 48.4
500 1 0.6 22.0 9.0 31.0 22.0 19.2 41.2
500 1 1 27.8 0.6 28.4 27.8 7.8 35.6

2000 0 0.6 9.4 12.8 22.2 9.4 14.6 24.0
2000 0 1 8.0 19.4 27.4 8.0 21.4 29.4
2000 0.4 0.6 14.6 10.8 25.4 14.6 13.2 27.8
2000 0.4 1 13.4 16.4 29.8 13.4 20.0 33.4
2000 1 0.6 11.8 10.4 22.2 11.8 15.4 27.2
2000 1 1 16.2 5.0 21.2 16.2 13.0 29.2

a Proportion of rare variants among all the SNPs; b proportion of the SNPs with positive effects among all
the SNPs.

The MSEs of the four point estimates (γ̂GBN , γ̂GBU , γ̂GPF and γ̂GF) are listed in Table 2.
From Table 2, we can see that the MSEs of γ̂GBN and γ̂GBU are smaller than those of γ̂GPF
and γ̂GF, and the MSE of γ̂GBN is the smallest. When the sample size increases or the trait
turns from qualitative to quantitative, the MSEs of these four point estimates decrease
significantly. In general, the MSEs of the four point estimates gradually become larger when
η changes from 0, 0.4 to 1 (i.e., higher proportion of rare variants) and other parameters are
kept unchanged, except for the case when the trait is quantitative, n = 500 and τ = 1. On
the other hand, the MSEs of the four point estimates with τ = 0.6 (i.e., the effect directions
of some SNPs are positive and some are negative) are smaller than those with τ = 1 (i.e.,
all the SNP effects are positive), when other parameters are fixed.
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Table 2. Mean squared errors of γ̂GBN , γ̂GBU , γ̂GPF and γ̂GF among 500 replications.

Trait n η a τ b ^
γGBN

^
γGBU

^
γGPF

^
γGF

Quantitative

500 0 0.6 0.0976 0.1022 0.1236 0.1287
500 0 1 0.1409 0.1601 0.2344 0.2549
500 0.4 0.6 0.1335 0.1395 0.1579 0.1633
500 0.4 1 0.1953 0.2248 0.3008 0.3601
500 1 0.6 0.1414 0.1592 0.2079 0.2363
500 1 1 0.1623 0.1703 0.2690 0.3475

2000 0 0.6 0.0359 0.0379 0.0403 0.0405
2000 0 1 0.0541 0.0642 0.0793 0.0805
2000 0.4 0.6 0.0480 0.0512 0.0555 0.0558
2000 0.4 1 0.0755 0.0773 0.0922 0.0959
2000 1 0.6 0.0481 0.0509 0.0578 0.0591
2000 1 1 0.0687 0.0727 0.0962 0.1160

Qualitative

500 0 0.6 0.2765 0.3382 0.4849 0.5503
500 0 1 0.3100 0.4038 0.5286 0.5788
500 0.4 0.6 0.3320 0.4087 0.5785 0.6344
500 0.4 1 0.3826 0.4700 0.6416 0.7254
500 1 0.6 0.3405 0.4329 0.5915 0.6369
500 1 1 0.7519 0.7673 1.0190 1.0193

2000 0 0.6 0.1207 0.1367 0.1595 0.1668
2000 0 1 0.1362 0.1503 0.2133 0.2306
2000 0.4 0.6 0.1320 0.1492 0.1937 0.2090
2000 0.4 1 0.2168 0.2460 0.3347 0.3647
2000 1 0.6 0.1431 0.1615 0.2144 0.2364
2000 1 1 0.3163 0.3263 0.4684 0.5145

a Proportion of rare variants among all the SNPs; b proportion of the SNPs with positive effects among all
the SNPs.

Figures 1, 2 and S1–S6 are the scatter plots of the four point estimates against the true
values of γ under different simulation settings. These figures can more intuitively compare
the performances of the four point estimates. For example, Figures 1 and 2 are the scatter
plots of the four point estimates against the true values of γ for the quantitative trait with
n = 500, and τ = 0.6 and 1, respectively. In each figure, subplots (a)–(d) (four subplots in
the first row) are respectively the scatter plots of γ̂GBN , γ̂GBU , γ̂GPF and γ̂GF with η = 0;
subplots (e)–(h) (four subplots in the second row) and subplots (i)–(l) (four subplots in
the third row) are the corresponding scatter plots with η = 0.4 and 1, respectively. By
comparing the four subplots in the same row of each figure, we find that the two point
estimates (γ̂GBN and γ̂GBU) obtained by the Bayesian methods are closer to the true values of
γ, and both perform better than γ̂GPF and γ̂GF. On the other hand, note that the distribution
of the true value of γ is U(0, 2), and it can be seen from the figures that the distributions
of γ̂GBN and γ̂GBU are more uniform, while the distributions of γ̂GPF and γ̂GF are skewed
towards the extreme values (0 and 2). Meanwhile, by respectively comparing subplots (a),
(e) and (i) for γ̂GBN with subplots (b), (f) and (j) for γ̂GBU , there is a little greater dispersion
for γ̂GBU than γ̂GBN . In addition, from subplots (c), (g) and (k) for γ̂GPF and subplots (d),
(h) and (l) for γ̂GF, we observe that there exist many extreme point estimates for γ̂GPF and
γ̂GF (represented by the blue points). Moreover, the scatter plots for γ̂GPF and γ̂GF provide
the additional information that most of the extreme point estimates generally occur when
the true values of γ are less than 0.5 or greater than 1.5. Further, by comparing the subplots
in different rows of each figure when τ = 0.6 (Figures 1, S1, S3 and S5), i.e., η changing
from 0, 0.4 to 1, the dispersions of the four point estimates generally increase, indicating
that, in general, the MSEs of the four point estimates become larger, which are consistent
with the results in Table 2. The numbers of the blue points in subplots (c) and (d) with
η = 0 are much less than those in subplots (k) and (l) with η = 1, respectively. However, for
those figures with τ = 1 (Figures 2, S2, S4 and S6), there is no obvious trend for the number
of the blue points. Compared to Figure 1 (τ = 0.6), the agreements between the four point
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estimates and the true values of γ in Figure 2 (τ = 1) are worse, which can also be seen
in other figures (Figures S1, S3 and S5 vs. Figures S2, S4 and S6, respectively). Observing
Figure 2, we find that the four point estimation methods may underestimate γ when τ = 1.
Finally, these four point estimation methods perform better for the quantitative trait than
for the qualitative trait (Figures 1, 2, S1 and S2 vs. Figures S3–S6, respectively), and when
the sample size increases (Figures S1, S2, S5 and S6 vs. Figures 1, 2, S3 and S4, respectively).
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Figure 1. Scatter plots of point estimates of γ against true values of γ for quantitative trait with
n = 500 and τ = 0.6. The blue points represent the extreme values (0 or 2). (a) γ̂GBN with η = 0;
(b) γ̂GBU with η = 0; (c) γ̂GPF with η = 0; (d) γ̂GF with η = 0; (e) γ̂GBN with η = 0.4; (f) γ̂GBU with
η = 0.4; (g) γ̂GPF with η = 0.4; (h) γ̂GF with η = 0.4; (i) γ̂GBN with η = 1; (j) γ̂GBU with η = 1;
(k) γ̂GPF with η = 1; (l) γ̂GF with η = 1.
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Figure 2. Scatter plots of point estimates of γ against true values of γ for quantitative trait with
n = 500 and τ = 1. The blue points represent the extreme values (0 or 2). (a) γ̂GBN with η = 0;
(b) γ̂GBU with η = 0; (c) γ̂GPF with η = 0; (d) γ̂GF with η = 0; (e) γ̂GBN with η = 0.4; (f) γ̂GBU with
η = 0.4; (g) γ̂GPF with η = 0.4; (h) γ̂GF with η = 0.4; (i) γ̂GBN with η = 1; (j) γ̂GBU with η = 1;
(k) γ̂GPF with η = 1; (l) γ̂GF with η = 1.

Table 3 displays the EPs, NPs and DPs of the PF and Fieller’s methods. From Table 3,
we observe that the EPs of the PF method are generally smaller than, or equal to, those of
the Fieller’s method, except for the quantitative trait with n = 500, η = 0.4 or 1, and τ = 1,
and the qualitative trait with n = 500 or 2000, η = 0.4 or 1, and τ = 1. However, the NPs of
the PF method are always smaller than, or equal to, those of the Fieller’s method. Note that
when we use the PF and Fieller’s methods to calculate the CIs of γ, we need to truncate the
CIs by the interval [0, 2]. As such, compared to the Fieller’s method, the PF method can
get shorter CIs, which means that the PF method reduces the possibility of the truncated
CIs being the noninformative intervals. On the other hand, if the CIs before the truncation
are disjoint from the interval [0, 2], the PF method will increase the possibility that the
truncated CIs are empty sets, which is the reason why the PF method may have bigger EPs
than the Fieller’s method in some scenarios. In addition, all the DPs of the PF method are
equal to 0. This is because we consider the penalty parameter λ = Z2

1−α/2/4, and the CIs
derived by the PF method are always continuous. With increase of the sample size, the
NPs of the PF and Fieller’s methods and the DPs of the Fieller’s method become smaller.
Moreover, under the same simulation settings, the NPs of both methods, and the DPs of
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the Fieller’s method, for the quantitative trait are less than those for the qualitative trait.
Under the situation that τ = 0.6, when η changes from 0, 0.4 to 1 and other parameters are
kept unchanged, the EPs of both methods have no obvious trends, while the NPs of both
methods and the DPs of the Fieller’s method generally become larger. As for τ = 1, when
η changing from 0, 0.4 to 1 and other parameters being fixed, the EPs of the PF method
appear larger except for the quantitative trait and n = 2000, while the DPs of the Fieller’s
method are relatively stable, and the NPs of the PF and Fieller’s methods show a trend
of first increasing and then decreasing on most occasions. On the other hand, when other
parameters are fixed, the EPs and NPs of the PF and Fieller’s methods with τ = 0.6 are
smaller than those with τ = 1 in most cases, and the DPs of the Fieller’s method with
τ = 0.6 are larger than or equal to those with τ = 1.

Table 3. Proportions (%) of empty sets (EPs), noninformative intervals (NPs), and discontinuous
intervals (DPs) of PF and Fieller’s methods among 500 replications.

Trait n η a
τ b PF Fieller

EP NP DP EP NP DP

Quantitative

500 0 0.6 0.0 7.2 0.0 0.8 16.6 1.0
500 0 1 0.0 19.0 0.0 0.2 21.8 0.0
500 0.4 0.6 0.2 10.2 0.0 0.2 22.2 0.4
500 0.4 1 1.4 27.2 0.0 0.4 33.8 0.0
500 1 0.6 0.0 14.8 0.0 0.8 31.2 2.8
500 1 1 6.8 3.6 0.0 1.0 3.6 0.0
2000 0 0.6 0.0 0.0 0.0 0.0 0.0 0.0
2000 0 1 0.6 0.0 0.0 0.6 0.2 0.0
2000 0.4 0.6 0.0 0.0 0.0 0.2 0.0 0.0
2000 0.4 1 0.0 2.4 0.0 0.4 4.2 0.0
2000 1 0.6 0.0 0.2 0.0 0.0 2.2 0.0
2000 1 1 0.2 0.2 0.0 0.2 0.6 0.0

Qualitative

500 0 0.6 0.0 43.4 0.0 0.6 65.0 2.8
500 0 1 1.4 58.2 0.0 1.4 64.4 0.0
500 0.4 0.6 0.0 45.4 0.0 0.0 68.2 4.0
500 0.4 1 1.8 55.2 0.0 1.2 64.0 1.0
500 1 0.6 0.0 44.0 0.0 0.4 75.0 3.6
500 1 1 10.4 53.4 0.0 0.0 54.2 0.0
2000 0 0.6 0.0 10.8 0.0 0.4 19.8 0.6
2000 0 1 0.4 20.8 0.0 0.6 25.2 0.0
2000 0.4 0.6 0.0 14.4 0.0 0.2 27.0 1.4
2000 0.4 1 1.2 26.2 0.0 0.6 31.0 0.2
2000 1 0.6 0.0 19.0 0.0 0.2 36.6 2.2
2000 1 1 12.4 4.8 0.0 0.2 16.0 0.0

a Proportion of rare variants among all the SNPs; b proportion of the SNPs with positive effects among all
the SNPs.

The CPs, Wmean and Wmedian of the GBN, GBU, PF and Fieller’s methods are displayed
in Table 4, and the corresponding Wsd and Wiqr are given in Table 5. Table 4 demonstrates
that, for the quantitative trait, the CPs of the GBN, GBU and Fieller’s methods are controlled
around 95%. However, when n = 500, η = 1 and τ = 1, the CP of the PF method is
underestimated (87.8%). As the sample size increases to 2000 and other parameters remain
unchanged, the CP of the PF method is 96.6%. For the qualitative trait, when n = 500, the
CPs of the GBN, GBU and PF methods are underestimated in most situations. With the
increase of the sample size to 2000, the CPs of these three methods generally increase to
be around 95%, but the CPs when η = 1 and τ = 1 are still underestimated. Thus, for
this simulation setting, we conduct an additional simulation study with larger sample
sizes (3000 and 4000), and the corresponding results are presented in Table S1. It is shown
in Table S1 that the CPs of these three methods are closer to 95% when the sample size
continues to increase. This is explainable by the fact that qualitative traits generally require
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larger samples to achieve the same CPs than quantitative traits. In addition, we can see
from Table 4 that the Fieller’s method has higher CPs under various simulation settings
for the qualitative trait. However, according to Table 3, when the trait is qualitative, the
NPs of the Fieller’s method are relatively high, which means that many CIs obtained by
the Fieller’s method are the noninformative intervals (i.e., [0, 2]). This may explain why
the CPs of the Fieller’s method are on the high side. Further, from Tables 4 and 5, the
Wmean, Wmedian, Wsd and Wiqr of the GBN and GBU methods are smaller than those of the
PF and Fieller’s methods in most situations. The GBN method has the smallest Wmean,
Wmedian and Wiqr in most cases, and it also has the smallest Wsd under all the simulated
settings. As can be seen from Table 4, when the trait is qualitative and n = 500, the Wmedian’s
of the Fieller’s method are all 2, which indicates that in this case, more than half of the
CIs based on the Fieller’s method are the noninformative intervals. This is consistent
with the results of the NPs in Table 3. When the sample size increases, or the trait turns
from qualitative into quantitative, the Wmean’s and Wmedian’s of the four interval estimation
methods greatly decrease. However, for the Wsd and Wiqr, there are different trends in
some situations. For example, when the trait is qualitative, the Wsd’s and Wiqr’s of the four
methods become larger in most cases as the sample size increases. Note that the widths of
the intervals obtained by the four methods are closer to 2 and the corresponding variation
will be smaller when n = 500. With the sample size increasing, the widths of the intervals
gradually decrease and the corresponding variation appears larger, which may cause the
bigger Wsd and Wiqr.

Table 4. Coverage probability (CP, in %), Wmean and Wmedian of GBN, GBU, PF and Fieller’s methods
among 500 replications.

Trait n η a
τ b CP Wmean Wmedian

GBN GBU PF Fieller GBN GBU PF Fieller GBN GBU PF Fieller

Quantitative

500 0 0.6 96.2 95.8 95.8 95.2 1.2357 1.2524 1.2338 1.2674 1.2439 1.2571 1.2072 1.2328
500 0 1 96.2 97.0 97.8 95.8 1.3536 1.3695 1.4593 1.4375 1.3959 1.4152 1.4749 1.5010
500 0.4 0.6 95.0 95.6 95.6 96.2 1.2663 1.2862 1.2815 1.3305 1.2662 1.2973 1.2449 1.2682
500 0.4 1 95.6 96.6 94.2 95.6 1.4718 1.4977 1.5555 1.5887 1.5158 1.5571 1.6734 1.6888
500 1 0.6 96.2 96.6 95.4 94.2 1.3457 1.3689 1.3363 1.3767 1.4001 1.4490 1.2991 1.3461
500 1 1 94.6 95.4 87.8 93.8 1.2841 1.2983 1.2918 1.3827 1.3135 1.3316 1.4814 1.4465

2000 0 0.6 94.6 94.2 94.8 94.6 0.7216 0.7258 0.7377 0.7413 0.7149 0.7230 0.7406 0.7425
2000 0 1 95.8 96.0 95.8 94.2 0.8934 0.8946 0.9184 0.9249 0.9068 0.9035 0.9396 0.9469
2000 0.4 0.6 94.0 95.4 94.4 94.6 0.7895 0.7958 0.8067 0.8152 0.7770 0.7850 0.8087 0.8124
2000 0.4 1 95.6 96.2 97.4 96.2 1.0439 1.0505 1.0800 1.0950 1.0415 1.0420 1.0857 1.0828
2000 1 0.6 95.8 96.6 96.2 96.2 0.8284 0.8325 0.8406 0.8539 0.7933 0.7974 0.8211 0.8190
2000 1 1 95.4 95.6 96.6 95.0 0.9483 0.9560 0.9750 1.0066 0.9988 0.9982 1.0294 1.0527

Qualitative

500 0 0.6 92.6 94.2 95.4 95.0 1.6289 1.6667 1.6720 1.7236 1.7202 1.7749 1.8354 2.0000
500 0 1 94.0 96.0 90.0 94.8 1.6575 1.6934 1.7053 1.7578 1.7387 1.7848 2.0000 2.0000
500 0.4 0.6 93.0 94.6 93.6 96.0 1.6782 1.7193 1.6986 1.7668 1.7516 1.8033 1.8721 2.0000
500 0.4 1 93.0 94.8 84.6 94.0 1.6775 1.7154 1.6108 1.7788 1.7360 1.7830 2.0000 2.0000
500 1 0.6 92.6 94.8 93.0 96.0 1.7318 1.7742 1.6981 1.7965 1.7837 1.8283 1.8659 2.0000
500 1 1 77.0 74.4 74.2 99.4 1.3896 1.3523 1.4088 1.8704 1.4854 1.4788 2.0000 2.0000

2000 0 0.6 94.6 95.8 96.6 95.0 1.2519 1.2686 1.2531 1.2774 1.2388 1.2710 1.1933 1.2177
2000 0 1 97.0 96.8 97.2 95.6 1.3832 1.4010 1.4869 1.4734 1.4162 1.4502 1.5404 1.5295
2000 0.4 0.6 96.2 96.6 96.8 95.2 1.3468 1.3682 1.3443 1.3908 1.4163 1.4514 1.3443 1.3965
2000 0.4 1 95.0 95.8 93.6 95.4 1.4765 1.5029 1.5565 1.5781 1.5153 1.5623 1.6985 1.6909
2000 1 0.6 96.4 96.8 94.2 95.0 1.4216 1.4488 1.3842 1.4516 1.5241 1.5772 1.3174 1.4640
2000 1 1 89.8 89.6 84.6 98.6 1.3833 1.3967 1.3764 1.6143 1.4576 1.4936 1.7096 1.6751

a Proportion of rare variants among all the SNPs; b proportion of the SNPs with positive effects among all
the SNPs.
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Table 5. Wsd and Wiqr of GBN, GBU, PF and Fieller’s methods among 500 replications.

Trait n η a
τ b Wsd Wiqr

GBN GBU PF Fieller GBN GBU PF Fieller

Quantitative

500 0 0.6 0.3309 0.3619 0.4066 0.4851 0.5036 0.5697 0.5403 0.6862
500 0 1 0.3020 0.3364 0.4429 0.4948 0.4613 0.5274 0.6959 0.7625
500 0.4 0.6 0.3312 0.3624 0.4198 0.4868 0.5334 0.5910 0.5862 0.8516
500 0.4 1 0.2631 0.2917 0.4881 0.4498 0.3741 0.4244 0.6279 0.6390
500 1 0.6 0.3585 0.3890 0.4492 0.5487 0.5765 0.6382 0.7346 1.0386
500 1 1 0.2563 0.2891 0.6080 0.4568 0.3086 0.3487 0.7633 0.5616

2000 0 0.6 0.1961 0.2118 0.2251 0.2350 0.2369 0.2684 0.2520 0.2564
2000 0 1 0.2623 0.2874 0.3381 0.3514 0.3609 0.4000 0.4281 0.4336
2000 0.4 0.6 0.2214 0.2419 0.2500 0.2723 0.2874 0.3203 0.2952 0.3094
2000 0.4 1 0.3084 0.3386 0.4154 0.4447 0.3816 0.4537 0.5550 0.5927
2000 1 0.6 0.2720 0.2941 0.3049 0.3455 0.3455 0.3840 0.3589 0.3830
2000 1 1 0.3184 0.3442 0.4515 0.4661 0.3969 0.4519 0.6674 0.6647

Qualitative

500 0 0.6 0.2535 0.2727 0.3893 0.4565 0.2800 0.2841 0.5975 0.4816
500 0 1 0.2005 0.2194 0.5012 0.4440 0.2140 0.2336 0.4291 0.3656
500 0.4 0.6 0.1998 0.2129 0.3599 0.4105 0.2059 0.1966 0.5632 0.3726
500 0.4 1 0.1611 0.1782 0.6086 0.4317 0.1748 0.1658 0.6470 0.2657
500 1 0.6 0.1553 0.1632 0.3705 0.4144 0.1162 0.1055 0.5430 0.0354
500 1 1 0.2933 0.3707 0.8749 0.2417 0.3847 0.5508 1.9212 0.1898

2000 0 0.6 0.3501 0.3824 0.4415 0.5142 0.5624 0.6511 0.6639 0.8792
2000 0 1 0.2936 0.3261 0.4417 0.4911 0.4447 0.5120 0.7372 0.8589
2000 0.4 0.6 0.3518 0.3824 0.4411 0.5098 0.5682 0.6366 0.6747 1.0159
2000 0.4 1 0.2487 0.2780 0.4936 0.4545 0.3529 0.3963 0.6457 0.6883
2000 1 0.6 0.3456 0.3758 0.4350 0.5209 0.5482 0.6068 0.7529 0.9691
2000 1 1 0.2762 0.3174 0.7095 0.3578 0.2032 0.2535 0.7992 0.3615

a Proportion of rare variants among all the SNPs; b proportion of the SNPs with positive effects among all
the SNPs.

In the case of τ = 0.6, the four methods have larger Wmean’s and Wmedian’s in most cases
when η changes from 0, 0.4 to 1, while for the scenario of τ = 1, the four methods show a
trend of first increasing and then decreasing on most occasions, except that the Wmean’s and
Wmedian’s of the Fieller’s method are gradually larger for the qualitative trait. When the trait
is quantitative and τ = 0.6, the Wsd’s and Wiqr’s of the four methods become larger with
η increasing from 0, 0.4 to 1, irrespective of the sample size. When the trait is qualitative,
n = 500 and τ = 0.6, as η is bigger, the Wsd’s and Wiqr’s of the four methods generally are
smaller, while when n = 2000, the Wsd’s of the four methods and the Wiqr’s of the GBN and
GBU methods are relatively stable, and the Wiqr’s of the PF and Fieller’s methods generally
become larger. For the quantitative trait with n = 500 and τ = 1, with the increase of η,
the Wsd’s and Wiqr’s of the GBN, GBU and Fieller’s methods appear smaller and those
of the PF method are larger in most situations, while in the case of n = 2000, the four
methods usually have larger Wsd’s and Wiqr’s. When the trait is qualitative and τ = 1, with
η increasing, the Wsd’s and Wiqr’s of the GBN and GBU methods present a tendency of first
decreasing and then increasing on most occasions, while those of the PF method are larger
in most cases, and those of the Fieller’s method become smaller, irrespective of the sample
size. On the other hand, when other parameters are fixed, the Wmean’s and Wmedian’s of the
four methods with τ = 0.6 are smaller than those with τ = 1, except for the Wmean’s of
the GBN, GBU and PF methods and the Wmedian’s of the GBN and GBU methods for the
quantitative trait with n = 500 and η = 1, and those for the qualitative trait with n = 500
or 2000, and η = 1. Under the scenarios where η is kept unchanged, the Wsd’s and Wiqr’s
of the GBN, GBU and Fieller’s methods with τ = 0.6 are generally larger than those with
τ = 1 for the quantitative trait with n = 500, and the qualitative trait with n = 500 or 2000,
while there are different trends for the quantitative trait with n = 2000. In addition, the
Wsd’s and Wiqr’s of the PF method with τ = 0.6 generally are smaller than those with τ = 1,
when other parameters are fixed.
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Figures 3, 4 and S7–S12 are the scatter plots of the widths of the 95% HPDIs or CIs
obtained by the four interval estimation methods (GBN, GBU, PF and Fieller) against the
true values of γ under different simulation settings. We can clearly observe the distributions
of the widths of the HPDIs or CIs through these figures. For example, Figures 3 and 4
are the scatter plots of the widths of the HPDIs or CIs against the true values of γ for the
quantitative trait with n = 500, and τ = 0.6 and 1, respectively. In each figure, subplots
(a)–(d) (four subplots in the first row) are respectively the scatter plots for the GBN, GBU,
PF and Fieller’s methods with η = 0; subplots (e)–(h) (four subplots in the second row)
and subplots (i)-(l) (four subplots in the third row) are the corresponding scatter plots
with η = 0.4 and 1, respectively. It can be seen from the four subplots in the same row
of each figure that the distributions of the widths of the HPDIs for the GBN and GBU
methods are similar, and both have smaller dispersions than those of the CIs for the PF
and Fieller’s methods. Furthermore, these figures display that the distributions of the
interval widths for the PF and Fieller’s methods are greatly more skewed towards 2 than
the GBN and GBU methods. We respectively compare subplots (a), (e) and (i) for the GBN
method with subplots (b), (f) and (j) for the GBU method and find that the dispersions of
the widths of the HPDIs for the GBN method are slightly smaller than the GBU method.
Additionally, subplots (c), (g) and (k) for the PF method, and subplots (d), (h) and (l) for
the Fieller’s method, show that the PF and Fieller’s methods may yield empty sets or
noninformative intervals (displayed by the blue points), and the Fieller’s method may also
get discontinuous intervals (shown by the orange points). By comparing the subplots in
different rows of each figure (Figures 3 and S7) when the trait is quantitative and τ = 0.6,
the dispersions of the widths of the HPDIs or CIs become slightly larger as η changing
from 0, 0.4 to 1, and it can also be seen from Figure 3 that the distributions of the interval
widths are a little more skewed towards 2. On the other hand, when the trait is qualitative
with τ = 0.6 (Figures S9 and S11), there are no obvious trends in the dispersions of the
interval widths, except that their distributions are more skewed towards 2. However,
under the situation that τ = 1 (Figures 4, S8, S10 and S12), the points in these figures
become less discrete in most cases when η increases, and the overall widths of the four
interval estimation methods also somewhat decrease, except for the scenarios where the
trait is quantitative and n = 2000, and the trait is qualitative and n = 500. Further, by
comparing the figures for different values of τ (Figures 3, S7, S9 and S11 vs. Figures 4, S8,
S10 and S12, respectively), it can be found that the overall widths of the HPDIs or the CIs
obtained by the four interval estimation methods with τ = 0.6 are generally smaller than
those with τ = 1, except for those with η = 1. Lastly, as the trait turns from qualitative
into quantitative (Figures S9–S12 vs. Figures 3, 4, S7 and S8, respectively) or the sample
size increases (Figures 3, 4, S9 and S10 vs. Figures S7, S8, S11 and S12, respectively), the
performances of the four interval estimation methods are greatly improved.
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Figure 3. Widths of highest posterior density intervals (HPDIs) or confidence intervals (CIs) of GBN,
GBU, PF and Fieller’s methods against true values of γ for quantitative trait with n = 500 and τ = 0.6.
The blue points represent the widths of the empty sets or the noninformative intervals, and the orange
points represent the widths of the discontinuous intervals. (a) GBN with η = 0; (b) GBU with η = 0;
(c) PF with η = 0; (d) Fieller with η = 0; (e) GBN with η = 0.4; (f) GBU with η = 0.4; (g) PF with
η = 0.4; (h) Fieller with η = 0.4; (i) GBN with η = 1; (j) GBU with η = 1; (k) PF with η = 1; (l) Fieller
with η = 1.
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Figure 4. Widths of HPDIs or CIs of GBN, GBU, PF and Fieller’s methods against true values of γ for
quantitative trait with n = 500 and τ = 1. The blue points represent the widths of the empty sets or
the noninformative intervals. (a) GBN with η = 0; (b) GBU with η = 0; (c) PF with η = 0; (d) Fieller
with η = 0; (e) GBN with η = 0.4; (f) GBU with η = 0.4; (g) PF with η = 0.4; (h) Fieller with η = 0.4;
(i) GBN with η = 1; (j) GBU with η = 1; (k) PF with η = 1; (l) Fieller with η = 1.

3.3. Application to MCTFR Data

The MCTFR Genome-Wide Association Study of Behavioral Disinhibition is a family-
based epidemiological study of substance abuse and related psychopathology. The dataset
can be made available from the database of Genotypes and Phenotypes with accession num-
bers 86747-6 and 95621-5 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000620.v1.p1, accessed on 5 January 2022). The dataset includes 2183 families
and 7377 participants (3831 female subjects and 3546 male subjects). Among them, only
5960 subjects have both the phenotypic and genotypic data, while others do not have pheno-
typic data or do not have genotypic data. There are five quantitative traits included in this
dataset: the nicotine composite score, the alcohol consumption composite score, the alcohol
dependence composite score, the illicit drug composite score and the non-substance use
related behavioral disinhibition composite score. To avoid the influence of family structure
on the results, we exclude offspring from the real data application. At the same time, we
only need the information of female subjects, so we also exclude male subjects from the
analysis. Meanwhile, 12,354 SNPs on the X chromosome are included in the dataset. We use

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000620.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000620.v1.p1
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the following quality control criteria to filter the SNPs [48,49]: (1) genotype call rate being
less than 99%, (2) MAF being smaller than 1× 10−5, (3) individual call rate being below
99%, and (4) the p value of the Hardy–Weinberg equilibrium test being less than 1× 10−6.
Finally, 1994 female subjects and 12,342 SNPs on the X chromosome are utilized to conduct
real data analysis. Since we estimate the degree of the skewness of the XCI based on genes,
we first need to find the genes which each SNP belongs to. Based on the GRCH38 (Genome
Reference Consortium Human Genome Build 38, https://uswest.ensembl.org/, accessed
on 25 February 2022) reference, we use the “getBM” function in the R package “biomaRt”
to match the SNPs to the genes on the X chromosome [45]. As such, we find 733 matched
genes, while there are some genes containing only a single SNP in the dataset. As there
have been several methods available to estimate the degree of the skewness of the XCI for
a single SNP, we exclude genes consisting of only one SNP. Therefore, only 493 genes are
included in the subsequent analysis.

Note that estimating γ requires the genes on the X chromosome to be associated with
the traits. So, we need to test if the associations between the genes and the traits exist before
using our proposed methods to estimate the degree of skewness of the XCI. Notice that
the five traits in the MCTFR dataset do not follow normal distributions; therefore, we use
the rank-based inverse normal transformation to transform the trait data [50]. Further, to
adjust the effects of other variables, we incorporate two covariates, age and year of birth,
into the application [48]. Due to the fact that we only use female subjects, we still apply the
adaptive sum test proposed by Iuliana et al. [35] to test for the association between each
gene and each trait. Unlike other multi-locus association analysis methods, when there are
both rare and common variants in a gene, the adaptive sum test still maintains high test
power. We set the significance level to be α = 0.05/(5× 493) = 2.03× 10−5 based on the
Bonferroni correction. After identifying the genes associated with the traits, we calculate
the four point estimates of γ (γ̂GBN , γ̂GBU , γ̂GPF and γ̂GF), and then use the GBN, GBU, PF
and Fieller’s methods to obtain the corresponding HPDIs or CIs.

We finally identify only one gene, TMEM47, statistically significantly associated with
the alcohol dependence composite score (p value = 2.32× 10−6). There are two SNPs
(rs10522027 and rs5928615) included in the gene. The estimated MAFs of these two SNPs
are 0.1407 and 0.0998, respectively, which means that both SNPs only contain common
variants. It has been confirmed that TMEM47 is located in the NC_000023.11 region and
includes three exons. Studies have shown that the gene is expressed in the bladder, adipose
and 23 other tissues and found that the overexpression of TMEM47 may induce resistance in
patients to certain chemotherapy drugs [51,52]. The four point estimates (γ̂GBN , γ̂GBU , γ̂GPF
and γ̂GF) of γ for the gene are 0.4703, 0.4547, 0.4816 and 0.4847, and the 95% HPDIs or CIs
derived by the GBN, GBU, PF and Fieller’s methods are (0.0023, 1.2380), (0.0337, 1.3083),
(0.0562, 1.2410) and (0.0557, 1.3896), respectively. That is to say, the point estimates are all
less than 0.5, while the 95% HPDIs or CIs all contain 1, which means that the XCI pattern
for TMEM47 on the alcohol dependence composite score may be the XCI-R or the XCI-E. By
comparing the interval widths of these four interval estimation methods, we find that the
width of the CI obtained by the PF method is the shortest, followed by the HPDI obtained
by the GBN method, and the longest is the CI yielded by the Fieller’s method.

4. Discussion

In this paper, we propose four point estimates (γ̂GBN , γ̂GBU , γ̂GPF and γ̂GF) and four
interval estimation methods (GBN, GBU, PF and Fieller) of the degree of the skewness of
the XCI for a gene (i.e., γ). Among the point estimates, γ̂GF is constructed by truncating
the ratio of the two regression coefficients by the interval [0, 2]. And, γ̂GPF is obtained by
choosing the penalty parameter λ = Z2

1−α/2/4, and respectively correcting the denomi-
nator and the numerator, which is also truncated by [0, 2]. Both the γ̂GBN and γ̂GBU are
developed, based on the Bayesian theory, by considering the prior information of γ ∈ [0, 2],
and the corresponding prior distributions of γ are respectively a truncated normal distri-
bution and a uniform distribution. Use of γ̂GBN and γ̂GBU can avoid the extreme point

https://uswest.ensembl.org/
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estimates of γ (0 or 2) occurring. Among the interval estimation methods, the Fieller’s
method has been widely used to construct the CIs of a ratio estimate. The PF method can
always get the bounded CIs by choosing an appropriate penalty parameter. The GBN
and GBU methods calculate the HPDIs of the samples randomly chosen from the approx-
imate posterior distributions of γ as the credible intervals, which can avoid empty sets,
noninformative intervals (i.e., [0, 2]) and discontinuous intervals to occur. We conducted
extensive simulation studies to compare their performances, by simulating different types
of traits (quantitative and qualitative), different sample sizes (n = 500 and 2000), different
proportions of rare variants among all the SNPs considered (η = 0, 0.4 and 1), and different
proportions of the SNPs with positive effects among all the SNPs considered (τ = 0.6 and 1).
The simulation results showed that there may exist some extreme point estimates for γ̂GPF
and γ̂GF, especially when the sample size is small or the proportion of rare variants is high.
The least MSE, in most situations, is derived from γ̂GBN , and the MSEs of γ̂GBN and γ̂GBU
are smaller than those of γ̂GPF and γ̂GF. As for the interval estimation, the CIs derived
by the Fieller’s method may be empty sets, noninformative intervals and discontinuous
intervals. Although the PF method can avoid discontinuous intervals, the resulting CIs
can be empty sets and noninformative intervals. In addition, most of the CPs of the GBN
and GBU methods can be controlled around 95%, and a larger sample size is required
only when the trait is qualitative and all the SNPs are rare variants. For qualitative traits,
the CPs of the PF method appear a little low when the sample size is relatively small.
However, the CPs of the Fieller’s method seem to be well controlled, which is due to the
large proportion of noninformative intervals. The GBN method has the smallest Wmean,
Wmedian and Wiqr in most situations, and the least Wsd under all the simulation settings.
Therefore, we recommend using γ̂GBN and the GBN method to estimate the degree of the
XCI skewing in practical applications.

On the other hand, concerning the simulation settings and the simulation results, we
further discuss the following issues. Firstly, we consider the influence of the proportion of
rare variants (η) and the proportion of the SNPs with positive effects (τ) among all the SNPs
in the gene under study on the estimation results. When τ = 0.6 and other parameters
are fixed, the proportions of the extreme values (0 and 2) for γ̂GPF and γ̂GF with η = 0 are
generally less than those with η = 1, while they have no obvious trends for other cases
of different values of η and τ. In general, the MSEs of the four point estimates generally
become larger as η changes from 0, 0.4 to 1 and other parameters are kept unchanged. The
four point estimates with τ = 0.6 always have smaller MSEs than τ = 1. The changing
trends of the EPs, NPs and DPs of the PF and Fieller’s methods with the increase of η are
related to τ. Furthermore, the EPs and NPs of the PF and Fieller’s methods with τ = 0.6
generally are smaller than τ = 1, while the DPs of the Fieller’s method with τ = 0.6 are
larger than or equal to those with τ = 1. On the other hand, in the case of τ = 0.6, the
four interval estimation methods have larger Wmean’s and Wmedian’s in most cases with η
changing from 0, 0.4 to 1, while for the scenario of τ = 1, those of the four methods show a
trend of first increasing and then decreasing on most occasions. The changing tendencies
of the Wsd’s and Wiqr’s of the four methods, with η increasing, are affected by the trait type,
n and τ. When other parameters are kept unchanged, the Wmean’s and Wmedian’s of the four
methods with τ = 0.6 are smaller than those with τ = 1 in most cases. Besides this, the
findings, by comparing the Wsd’s and Wiqr’s of the GBN, GBU and Fieller’s methods for
τ = 0.6 with those for τ = 1, are related to the trait type and n, while the Wsd’s and Wiqr’s
of the PF method with τ = 0.6 are generally smaller than those with τ = 1. Secondly, to
better evaluate the performances of the proposed methods, we set the degrees of the XCI
skewing at all the SNPs in the gene to be the same in our simulation studies. For example,
when we calculate the MSEs of the point estimates and the CPs of the HPDIs or the CIs,
a single true value of γ for each replicate is required. However, note that there may be
different degrees of the XCI skewing at different SNPs, and, actually, we can also consider
this issue in our simulation studies, although we have no appropriate evaluation indexes
to assess the performances of the proposed methods for this situation. Finally, when we
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simulate quantitative traits, the random error εi is generated from the standard normal
distribution, where the standard deviation (σ) is equal to 1. To further illustrate the effect of
different values of σ on the estimation results, we conducted additional simulation studies
with n = 2000 and assume that εi follows N(0, 4), where σ = 2. The corresponding results
are presented in Tables S2–S4 and Figures S13–S16. As can be seen from these tables and
figures, the Bayesian methods still have obvious advantages in both the point estimation
and the interval estimation. Further, the four point estimation methods, and the four
interval estimation methods with σ = 2, perform worse than σ = 1.

We applied the proposed methods to the MCTFR data and identified a gene, TMEM47,
which is statistically significantly associated with the alcohol dependence composite score.
However, although the four point estimates of γ for the gene TMEM47 on the alcohol
dependence composite score are all smaller than 0.5, the corresponding 95% HPDIs or CIs
all contain 1, which means that the XCI pattern for this gene may not be the XCI-S. Further,
we observed that the width of the CI obtained by the PF method is the shortest, followed by
the HPDI obtained by the GBN method, and the longest was the CI yielded by the Fieller’s
method. However, it should be noted that the PF method may not control the CP well
(e.g., Table S3).

Last, but not least, there are still some issues in our proposed methods which need to
be discussed. Firstly, we would like to further discuss the effect of the truncation by the
interval [0, 2] on the point estimation and the interval estimation of γ. When we use the
γ̂GPF and γ̂GF to estimate γ, both of them are truncated by [0, 2]. If the point estimates
before the truncation (γ̂∗ and γ̂) lie outside [0, 2], γ̂GPF and γ̂GF become the extreme values
(0 or 2). Correspondingly, when using the PF and Fieller’s methods to construct the CIs
of γ, it is easy to obtain empty sets or noninformative intervals. On the contrary, the
Bayesian methods can avoid extreme point estimates, empty sets and noninformative
intervals by specifying the appropriate prior distributions of γ and making full use of the
constraint condition of γ ∈ [0, 2]. In addition, the extreme point estimate of 0 (2) means
that the XCI is completely skewed towards the minor alleles (major alleles) at all the SNPs
in a gene. However, these phenomena are not common in practice [2]. Meanwhile, it
should be noted that empty sets and noninformative intervals are not informative, and
the discontinuous CIs are also not useful, because the discontinuous CIs cannot be clearly
explained in practice. Secondly, since the XCI patterns at different SNPs may be different,
our estimated γ̂ is just the mean degree of the skewness of the XCI over all the SNPs in the
gene under study, and we cannot obtain the degree of the skewness of the XCI for each SNP
in this gene. Meanwhile, in the process of estimating γ, the target allele is the minor one at
each SNP, and it is not possible to distinguish the disease allele from the normal allele at
each SNP. Therefore, we can only identify whether or not the XCI of the gene is skewed
towards the minor alleles, but it is not possible to know whether the XCI is skewed towards
the disease alleles or the normal alleles. Thirdly, the proposed Bayesian methods need to
specify the prior distributions of all the unknown parameters in advance, and the selection
of the prior distributions may have a certain impact on the results. For simplicity, we only
considered two possible prior distributions for γ, and one prior distribution for each of
the other unknown parameters. However, the prior distributions of these parameters are
usually unknown, and we cannot guarantee that the weak prior distributions we used are
the most appropriate. We provide an R package named GEXCIS, which is publicly available
at https://github.com/Meng-KaiLi/GEXCIS (accessed on 30 April 2022), and can be used
to estimate the degree of the skewness of the XCI for genes through the proposed methods
in this paper. This R package also allows researchers to specify the prior distribution of each
unknown parameter from their own research backgrounds. Fourthly, the Bayesian methods
use the HMC algorithm for the sampling, which is not affected by the correlation between
unknown parameters. Therefore, to improve computational efficiency, we assumed that
all the unknown parameters are independent. However, the Bayesian methods, taking the
correlation between the parameters into account, should have better performance, which is
our future work. Fifthly, if the HPDIs or CIs we get contain 1, which means that the XCI
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pattern for the gene is the XCI-R or the XCI-E, our proposed methods cannot distinguish
them. Therefore, in our future study, we will consider including males’ information to
distinguish the XCI-R from the XCI-E. Finally, the proposed methods are only applicable
to independent female subjects, and we will extend them in future so that they could
accommodate the family data.

5. Conclusions

We propose four point estimates and four interval estimation methods to estimate
γ of genes. Among the four point estimates, γ̂GF may have the extreme point estimates,
and γ̂GPF can only reduce the occurrence of the extreme point estimates equal to 2, while
γ̂GBN and γ̂GBU can avoid the extreme point estimates occurring. As for the four interval
estimation methods, the Fieller’s method may derive empty sets, discontinuous intervals
and noninformative intervals, and the PF method can avoid the occurrence of discontinuous
intervals and get less noninformative intervals, while the GBN and GBU methods do not
yield these three types of the intervals. However, it should be noted that through these
proposed methods, we cannot obtain the degree of the skewness of the XCI for each SNP in
the gene, and cannot know whether the XCI is skewed towards the disease alleles or the
normal alleles. In summary, the point estimates obtained by the GBN method always have
the least MSE, and the HPDIs of the GBN method generally have the shortest width and
the lowest variation, so we recommend using the GBN method in practical applications.
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and 1, and σ = 2.

Author Contributions: Conceptualization, J.-Y.Z.; methodology, M.-K.L. and Y.-X.Y.; software,
M.-K.L., Y.-X.Y. and J.-Y.Z.; validation, M.-K.L., Y.-X.Y., B.Z. and K.-W.W.; writing—original draft
preparation, M.-K.L. and Y.-X.Y.; writing—review and editing, B.Z., K.-W.W., W.K.F. and J.-Y.Z.;
supervision, W.K.F. and J.-Y.Z.; project administration, J.-Y.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
numbers 82173619 and 81773544, the Science and Technology Planning Project of Guangdong
Province, grant number 2020B1212030008, and the Hong Kong Research Grants Council, grant
number 17302919.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs00062
0.v1.p1 (accessed on 5 January 2022).

Acknowledgments: A Minnesota Center for Twin and Family Research (MCTFR) was supported
by the National Institute on Drug Abuse, grant number U01 DA024417. The sample ascertainment
and data collection in MCTFR data were supported by the National Institute on Drug Abuse, grant

https://www.mdpi.com/article/10.3390/genes13050827/s1
https://www.mdpi.com/article/10.3390/genes13050827/s1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000620.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000620.v1.p1


Genes 2022, 13, 827 24 of 26

numbers R37 DA05147 and R01 DA13240, the National Institute on Alcohol Abuse and Alcoholism,
grant numbers R01 AA09367 and R01 AA11886, and the National Institute of Mental Health, grant
number R01 MH66140.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

We assume that γ is the mean degree of the skewness of the XCI for the gene under
study. For the ith female, we have Xi = ∑J

j=1 ωj

[
γg(1)ij + (2− γ)g(2)ij

]
. On the other

hand, when supposing that the degree of the skewness of the XCI at the jth SNP is
γj, the genotypic values of genotypes djdj, Djdj and DjDj at the jth SNP of the ith fe-
male are 0, γj and 2, respectively. Similar to the construction process of Xi, we can

get X∗i = ∑J
j=1 ωj

[
γjg

(1)
ij +

(
2− γj

)
g(2)ij

]
. Under the assumption of ∑n

i=1 Xi = ∑n
i=1 X∗i ,

we have

∑n
i=1∑J

j=1ωj

[
γg(1)ij + (2− γ)g(2)ij

]
= ∑n

i=1∑J
j=1ωj

[
γjg

(1)
ij +

(
2− γj

)
g(2)ij

]
,

and
γ∑n

i=1∑J
j=1ωj

(
g(1)ij − g(2)ij

)
= ∑n

i=1∑J
j=1ωj

(
g(1)ij − g(2)ij

)
γj.

Then,
γ∑J

j=1ωj

(
g(1).j − g(2).j

)
= ∑J

j=1ωj

(
g(1).j − g(2).j

)
γj,

where g(1).j = ∑n
i=1 g(1)ij and g(2).j = ∑n

i=1 g(2)ij . Finally, we have

γ =
∑J

j=1ωj

(
g(1).j − g(2).j

)
γj

∑J
j=1ωj

(
g(1).j − g(2).j

) .
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