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Abstract: Colorectal cancer is the third most frequently encountered cancer worldwide. While current
chemotherapeutics help to manage the disease to some extent, they have eluded achieving complete
remission and are limited by their severe side effects. This warrants exploration of novel agents
that are efficacious with anticipation of minimal adverse effects. In the current study, casticin, a
tetramethoxyflavone, was tested for its ability to inhibit the viability of three human colorectal cancer
cells: adenocarcinoma (DLD-1, Caco-2 cell lines) and human colorectal carcinoma cells (HCT116
cell line). Casticin showed potent inhibition of viability of DLD-1 and HCT116 cells. Clonogenic
assay performed in DLD-1 cells revealed that casticin impeded the colony-forming efficiency of
the cells, suggesting its impact on the proliferation of these cells. Further, a sustained effect of the
inhibitory action upon withdrawal of the treatment was observed. Elucidation of the mechanism
of action revealed that casticin impacted the extrinsic programmed cell death pathway, leading to
an increase in apoptotic cells. Further, Bcl-2, the key moiety of cell survival, was affected. Notably,
a significant number of cells were arrested in the G2/M phase of the cell cycle in DLD-1 cells. Due
to the multifaceted action of casticin, we envision that treatment with casticin could provide an
efficacious treatment option for colorectal adenocarcinomas with minimal side effects.

Keywords: casticin; DLD-1; HCT116; Caco-2; colorectal cancer; Bcl-2; apoptosis; colony forming
efficiency; cell cycle

1. Introduction

Cancer is the second leading cause of death globally, affecting an estimated 2.6 million
people each year. Specifically, colorectal cancer accounts for nearly 1.8 million new cases
and is the third leading cause of cancer related death at 862,000 every year, which has
increased dramatically from 2012 when the incidence rate was over 1 million cases with
694,000 deaths worldwide [1]. Diagnosing colorectal cancer at an early stage is considered
beneficial, because neoadjuvant chemotherapy can be administered [2], but the relapse
of cancer observed in many patients is of great concern. Since 5-FU is one of the choices
of chemotherapeutic drugs administered to treat aggressive type of colorectal cancers [3],
resistance to it poses a major problem [4]. Therefore, to treat colorectal cancers efficaciously,
better treatment options are needed. Furthermore, discovering novel entities with potent
action to combat this malady are essential. Natural compounds are being researched for
potential cancer treatments and have shown promise as cancer therapeutics. In fact, 74% of
the most important lifesaving drugs consist of plant-derived active ingredients; moreover,
natural compounds are being used to treat 87% of all categorized human diseases [5].
Through many biological, medicinal, and pharmacological uses, it has become clear that
natural compounds have anticancer and antibacterial properties [6,7]. An example of
an anticancer property in natural compounds, such as flavonoids, is its ability to induce
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apoptosis and cell cycle arrest in cancer cells, while not causing cytotoxic effects in normal
healthy cells [8].

Casticin (a specific flavonoid-tetramethoxyflavone), and other flavonoids have been
reported to induce either apoptosis or cell cycle arrest in ovarian, breast, gallbladder, liver
and other colorectal cancer cells [9–15]; however, no research has been done on the effect of
casticin on DLD-1 cells. The present study is motivated by this lack of information. This
study was undertaken to determine the efficacy of casticin on colorectal cancer cell lines
and elucidate its mechanism of action with the aim of achieving an efficacious treatment
option for colorectal cancers with potentially fewer side effects.

2. Materials and Methods
2.1. Cell Lines and Materials

The colorectal adenocarcinoma (DLD-1), colorectal carcinoma (HCT116), and colorec-
tal adenocarcinoma (Caco-2) cell lines were obtained from the American Type Culture
Collection (ATCC). For DLD-1 cells, the growth medium was prepared by supplementing
RPMI with 10% FBS, 1% Penicillin/Streptomycin, and 2 mM L-Glutamine. The HCT116
cell line was maintained in McCoy’s 5A medium supplemented with 10% FBS, 1% Peni-
cillin/Streptomycin, and 2 mM L-Glutamine. Caco-2 cells were grown in EMEM with 20%
FBS and 1% Penicillin/Streptomycin antibiotic solution. Cell cultures were maintained at
37 ◦C in an atmosphere of 5% CO2 and 95% air. Casticin was purchased from MedChem
Express and dissolved in DMSO to prepare a stock solution of 20 mM.

2.2. Cytotoxicity Assessment of Casticin on Colorectal Cancer Cell Lines DLD-1, HCT116
and Caco-2

Cytotoxicity assays were performed as described earlier [16,17]. Cells were plated in
triplicate for control and casticin treatments in 96-well plates at 5000 cells per well. After
the cells adhered during the 24 h of incubation, the medium was replaced with fresh media
for the control group or media with varying concentrations of casticin for the treatment
groups. The cells were incubated for 48 h, after which cell viability was assessed using Cell
Counting Kit-8 (CCK-8) assay per Bimake CCK-8 protocol B34305.

2.3. Clonogenic Assay

DLD-1 cells were plated at 100,000 per well and were treated in triplicate for 48 h
with 5 µM of casticin. After the treatment period, cells were trypsinized and counted.
To determine the efficiency of the treated cells to form colonies when compared to the
control cells, cells were then plated in 6-well plates at a density of 500 cells per well and
incubated for 10 days in media without any compounds. After this period, media was
removed and cultures were washed with PBS, fixed with ice-cold methanol, and stained
with crystal violet solution for visualization of colony formation. Detailed procedure for
the determination of colony-forming efficiency has been described earlier [18].

2.4. Muse® Flow Cytometric Analysis

The flow cytometric analyses used in this study are Annexin V & Dead Cell as-
say, Multicaspase assay, Bcl-2 Activation Dual Detection assay, and Cell Cycle Analysis
(MCH100105, MCH100109, MCH200105, and MCH100106) from EMD Millipore. Assays
were performed as per protocols published earlier [19]. Cells were plated at 2 × 105 cells
per well in triplicate in 12-well culture plates. Control groups received the growth media,
and for the treatment group, 5 µM of casticin in growth media was added. After 48 h of
incubation, the cytometric analyses were performed with a Muse cell analyzer as per the
manufacturer’s instructions.
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2.5. Statistical Analysis

To determine the statistical significance of the data, GraphPad Prism was used to
perform statistical analysis. Mean values ± standard deviations were calculated, and the
p-values are mentioned in the legend section of each figure.

3. Results
3.1. Impact of Casticin on the Viability of DLD-1, HCT116, and Caco-2 Cells

The potential for inhibition of viability of human colorectal cancers cells DLD-1,
HCT116, and Caco-2 by casticin was tested by treating the cells at varying concentrations
of the compound. Cell viability was measured by CCK-8 assay. DLD-1 cells were sensitive
to casticin with IC50 concentration of 5 µM as shown in Figure 1A, whereas HCT116 cells
exhibited an IC50 concentration of 1.5 µM (Figure 1B). Casticin induced negligible amounts
of toxicity to Caco-2 cells (Figure 1C). Further, confocal images of the DLD-1 control sample
and treated samples were taken at 40 X magnification. Image of DLD-1 control cells are
shown in (Figure 1D), and an image of the casticin-treated sample in (Figure 1E). As seen
in the images, the treated cells are less in number.
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phase contrast images of each group followed by DAPI stain, Phalloidin stain, and a merged image 
of the two stains. The scale bar is 100 μm. When compared to the control sample, as seen in the 
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Figure 1. Cytotoxicity profile of casticin on various colorectal cancer cell lines. Cytotoxicity of casticin
on DLD-1 (colorectal adenocarcinoma) cells was tested. Mean values ± standard deviations from
7 trials with p values of 0.0003 (***) and <0.0001 (****) when compared to control are shown in (A),
cytotoxicity of casticin on HCT116 (colorectal carcinoma) cell line; mean values of 11 trials with a
p value < 0.0001 (****) for concentrations beginning 1 µM onwards when compared to control (B),
cytotoxicity of casticin on Caco-2 cell line with p values of 0.0007 (***) and <0.0001 (****) is shown
in (C). Cytotoxicity was determined using the CCK-8 assay. Further, confocal images of the control
DLD-1 sample and treated samples were taken at 40X magnification. Image of DLD-1 control cells
are shown in (D), image of the casticin-treated sample (E). View from the horizontal panel depicts
phase contrast images of each group followed by DAPI stain, Phalloidin stain, and a merged image
of the two stains. The scale bar is 100 µm. When compared to the control sample, as seen in the
images of the treated sample, the cells are less in number. One-way ANOVA with Dunnett’s multiple
comparisons test with alpha set to 0.05 was employed for the analysis of (A–C) datasets.

3.2. Casticin Treatment Impacts Colony-Forming Efficiency of DLD-1 Cells

On observing the potent inhibition of cell viability by casticin, we proceeded to study
its impact on the proliferation potential of DLD-1 cells by performing colony forming effi-
ciency assay. For this assay, the cells were treated at the IC50 concentration of casticin (5 µM)
and incubated for 48 h and then were replated in fresh media in the absence of casticin
and incubated for 10 days (as described in Section 2). In Figure 2, representative images
of all treatments for DLD-1 are shown. Control sample and treatment with casticin 5 µM
(Figure 2A). The data indicates that casticin continued to impact the cellular proliferation
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of DLD-1 cells after the initial 48 h treatment period even on withdrawal of the treatment.
The colony-forming efficiency when compared to the control sample is represented in
(Figure 2B). Colonies in the casticin-treated sample decreased significantly as compared to
the control. A sustained response was observed even upon the withdrawal of casticin.
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Figure 2. Casticin treatment impacts colorectal cancer cell proliferation. To study the effect on colony-
forming ability and sustained effect of casticin on DLD-1 cells, clonogenic assays were performed. The
cells were treated for 48 h in each treatment, subcultured, and allowed to proliferate for 10 days after
the replacement of the treated media with normal media. (A) Representative image of the control
cultures and cultures from casticin (5 µM) treatment for 48 h. (B) The colony-forming efficiency
when compared to the control sample. Colonies were counted and the mean values ± the standard
deviation of 6 trials are shown. Two-tailed unpaired t-test was performed. Colonies in casticin-treated
sample decreased significantly from the control: p-value = 0.0001 (****).

3.3. Casticin Invokes Extrinsic Programmed Cell Death Pathway

To investigate the mode of action of casticin, Annexin V Muse flow cytometric assay
was performed on DLD-1 cells at the IC50 concentration of 5 µM and on incubation for
48 h. Representative scatter plot of the control sample is shown in Figure 3A and treatment
with casticin (Figure 3B). An increase in total apoptotic cells in casticin-treated samples
when compared to the control samples was observed from the data in the scatter plots.



Genes 2022, 13, 815 6 of 10

Total apoptotic cells as percent of control is represented in (Figure 3C). Further analysis
of programmed cell death revealed that multicaspaes were induced by casticin treatment
(Supplementary Materials, Figure S1).
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3.4. Casticin Impacts Bcl-2 Levels in DLD-1 Cells

Bcl-2 plays a pivotal role in cell survival/cell death signaling pathway in cancers. We
opted to investigate the effect of casticin on this key moiety in DLD-1 cells. Representative
scatter plot of the Bcl-2 levels of the control group is shown in Figure 4A, casticin (IC50
concentration of 5 µM)-treated group (Figure 4B). On normalizing to the control sample as
shown in the bar graph (Figure 4C), there was increase in the inactivated and non-expressing
cells in the DLD-1 cells treated with casticin. The increase was statistically significant with
p-values of 0.0088 for the inactivated population and 0.0035 for the non-expressing cells.
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Figure 4. Expression profile of Bcl-2 levels on treatment with casticin in DLD-1 cells. (A) Represen-
tative Bcl-2 scatter plot of DLD-1 control cells. (B) Casticin-treated sample. (C) On normalizing to
the control group, the activated population, inactivated population, and non-expressing cells in the
treatment group are represented. Two-way ANOVA with Sidak’s multiple comparison, alpha set to
0.05, and p value for inactivated and non-expressing cells is 0.008(**)8 and 0.0035 (**), respectively.
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3.5. Casticin Induces Cell Cycle Arrest in DLD-1 Cells

To further delineate the impact of casticin on DLD-1 cells, its effect on the cell cycle
was investigated by performing the cell cycle Muse assay. The different phases of the cell
cycle in the control sample are shown in Figure 5A, phases of the cell cycle in cells treated
with 5 µM of casticin (Figure 5B). Casticin treated DLD-1 cells showed a significant increase
in cells in the G2/M phase with a p value < 0.0001 when compared to the control cells, as
shown in (Figure 5C).
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Figure 5. Cell cycle profiles of control group and casticin-treated group in DLD-1 cells. Representative
cell cycle Muse scatter plots of DLD-1 control cells (A), casticin (5 µM)-treated sample (B). On
normalizing to the control sample, a statistically significant increase in cells in the G2/M phase of
the cell cycle was observed. Means with standard deviations are represented by bar graphs (C).
Two-way ANOVA with Sidak’s multiple comparison, Alpha set to 0.05, significant increase in G2/M
population, and a p value < 0.0001 (****) is represented.

4. Discussion

In the present study, casticin a specific flavonoid (tetramethoxyflavone) was tested for
its potential to inhibit the viability of the colorectal adenocarcinoma-DLD-1 and Caco-2
cells and the colorectal carcinoma HCT116 cells. Casticin has been reported to induce
either apoptosis or cell cycle arrest in breast, gallbladder, liver and other colorectal cancer
cells [9–15]. No studies have been reported on DLD-1 cells; thus, we opted to investigate
the effect of casticin on these cells. In the present study, casticin exhibited a dose dependent
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and potent inhibition of viability at a low concentration of 5 µM. Casticin also inhibited
proliferation of DLD-1 cells when assessed by clonogenic assay which revealed that the
proliferation potential of DLD-1 cells was affected. Elucidation of the mode of action of
casticin revealed its impact on the extrinsic programmed cell death pathway leading to an
increase in apoptotic cells. In the colorectal cancer cell line HCT116, induction of apoptosis
by casticin has been reported [20]. Notably, casticin showed an impact on the Bcl-2 levels,
a key component of cell survival leading to increase in inactivated and non-expressing
molecules. Furthermore, treatment with casticin resulted in a significant increase in cells in
the G2/M phase of the cell cycle. Moreover, other flavonoids have been reported to arrest
cancer cells in the G2/M phase of the cell cycle [21].

Importantly, casticin exhibited multifaceted action including reducing the colony
forming efficiency of DLD-1 cells with sustained response. Furthermore, heterogeneous
population of cells in the DLD-1 cell line have been reported and is known to cause
resistance to the drug camptothecin [22]; thus, for efficacious treatment, a combination of
compounds is essential. Natural compounds such as flavonoids have been reported to
cause apoptosis and cell cycle arrest in cancer cells, while they have no effect on healthy
normal cells [8]. Therefore, compounds such as casticin could be beneficial to combat
this aggressive malignancy. Importantly, in our studies with casticin, we observed a
significant impact on pivotal signaling pathways such as the inhibition of cell proliferation
with sustained response, invoking the apoptosis pathway, significant impact on the key
cell survival molecule-Bcl-2, and significant arrest of cells in the G2/M phase of the cell
cycle. Therefore, in vivo studies are warranted, which could result in better treatment for
colorectal cancers, with the possibility of less side effects with natural compounds such
as casticin or in combination with 5-FU-the first line therapy currently in the clinic for
colorectal adenocarcinomas to reduce resistance and increase efficacy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13050815/s1, Figure S1: Multicaspases elicited during
induction of apoptosis by casticin.
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