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Abstract: 5-methylcytosine (m5C) is a common post-transcriptional modification observed in a
variety of RNAs. m5C has been demonstrated to be important in a variety of biological processes,
including RNA structural stability and metabolism. Driven by the importance of m5C modification,
many projects focused on the m5C sites prediction were reported before. To better understand the
upstream and downstream regulation of m5C, we present a bioinformatics framework, m5CRegpred,
to predict the substrate of m5C writer NSUN2 and m5C readers YBX1 and ALYREF for the first
time. After features comparison, window lengths selection and algorism comparison on the mature
mRNA model, our model achieved AUROC scores 0.869, 0.724 and 0.889 for NSUN2, YBX1 and
ALYREF, respectively in an independent test. Our work suggests the substrate of m5C regulators
can be distinguished and may help the research of m5C regulators in a special condition, such as
substrates prediction of hyper- or hypo-expressed m5C regulators in human disease.

Keywords: 5-methylcytosine; machine learning; readers

1. Introduction

Epitranscriptome is an emerging field in the past 10 years, and there are more than
170 types of RNA modifications identified [1]. 5-methylcytosine (m5C) is one of the
prevalent RNA modifications, which has been found in most eukaryotes, prokaryotes,
and archaea [2]. Biochemical research has revealed that m5C is abundant in tRNA and
rRNA and serves a variety of molecular roles [3]. For example, m5C affects translation
fidelity by altering the shape of rRNA to govern ribosome synthesis and processing [4].
The evolutionarily conserved m5C is responsible for maintaining the tertiary structures of
tRNA [5]. Furthermore, new high-throughput investigations using bisulfite treatment or
immunoprecipitation techniques have shown the presence of m5C on mRNA as well [6,7],
which is associated with stability, export from nucleus [8], turnover [9], and translation [10]
of mRNA.

Based on the developed LC–MS/MS technique, the estimated m5C/C ratio in hu-
man mRNA is about 0.02–0.09% [11]. With recent advances in genomics, at least 5 types
of sequencing methods have been developed to reveal the epitranscriptome profile of
m5C, including RNA-BisSeq [6], TAWO-seq [12], AZA-IP-seq [13], m5C-RIP-seq, and
miCLIP-seq. These methods can be divided into two groups according to their princi-
ples: (a) chemical-dependent methods using bisulfite, peroxotungstate and 5-azacytidine
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in the first three methods, respectively; (b) the antibody-based methods using m5C-specific
antibody and m5C-regulator antibody in the last two methods. Although the above
methods provide capacity to detect m5C in transcriptome, comparing with the consensus
DRACH [14] motif for m6A in most species, the exact m5C motif is still unknown. Using
m5C-RIP-seq, multiple motifs for m5C were observed in Arabidopsis thaliana, including
HACCR, CWUCUUC and CCDCCR [15], whereas m5C only showed an enrichment around
CG-rich region in different species based on RNA-BisSeq [12,16–18].

Similar to methylation on DNA and protein, m5C is a reversible mark, which is
deposited by methyltransferases and is removed by demethylases [10]. The members
of NOP2/Sun RNA methyltransferase family are primary methyltransferases for m5C,
including NSUN1, NSUN2, NSUN3, NSUN4, NSUN5, NSUN6, NSUN7. Some members
from DNMT and TRDMT families are responsible for m5C deposition also. TET families
and ALKBH1 regulated the demethylation of m5C on mRNA and tRNA which led to RNA
degradation and mitochondrial activity, respectively [19]. Recent studies have reported
that ALYREF and YBX1 are m5C binding proteins that can facilitate mRNA export [18] and
stabilization [8] by recognizing m5C.

Although numerous effective bioinformatics studies for RNA modification sites pre-
diction have been published in the epitranscriptomics field [20–26], none has focused on
the substrate specificity of different m5C-related enzymes, such as methyltransferases
(writers) and binding proteins (readers). In this work, we presented a bioinformat-
ics framework “m5CRegpred” (which stands for m5C regulators substrate prediction,
see Figure 1) based on machine learning and sequence-derived features to predict the
substrate of m5C writers NSUN2 and readers YBX1 and ALFREF. The associations be-
tween diseases and m5C regulators have been reported before [27,28], especially that
the hyper- or hypo-expression of NSUN2/YBX1/ALFREF were observed in multiple
types of cancer [27,29–32]. This bioinformatics framework may help identify the sub-
strate of each m5C regulators, which may provide another opportunity to understand
their pathway in human diseases. The project code and training sequences are available
at https://github.com/SXWuFJMU/m5CRegpred/ (accessed on 1 March 2022) and the
supplement tables are available at https://github.com/SXWuFJMU/m5CRegpred/blob/
main/Supplement%20Tables.zip (accessed on 1 March 2022).
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Figure 1. The workflow for m5CRegpred. The methylation sites and RNA Binding proteins (RBP)
sites were obtained from four and two types of sequencing techniques, respectively. Eight kinds of
encoding methods were considered in the project.

2. Methods and Materials
2.1. The m5C Sites and Target Sites of the Enzymes

The transcriptome-wide m5C sites were extracted from the m6A-Atlas database [33],
which were detected by four types of sequencing methods (Table 1). The sequences with
41 nt length and an m5C modification site at the center were generated to map with Par-
CLIP [34] or eCLIP [35] data to identify the substrate of m5C regulators (Table 2). The
substrates of m5C regulators were considered as the positive sites in the prediction. The
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unmethylated sites or unregulated sites from the same transcript with the positive sites
were randomly selected as the negative sites, which keep the positive-to-negative ratio
with 1:1. For each m5C regulator, the predictor was trained with 80% of the sites and
the remaining 20% of sites were used for independent testing. To reduce the bias in the
experiment, especially when selecting the polyA RNAs during library preparation, we built
separate prediction models using full transcript data and mature mRNA data, respectively.
In the mature mRNA predictor, only m5C sites located in exon regions are considered.

Table 1. Base-resolution datasets of m5C sites.

ID Technique Source Cell Line Ref.

1 RNA-BisSeq GSE93751 HeLa [18]

2 RNA-BisSeq GSE133671 T24 [8]

3 BS-seq with improved protocol GSE122260 HEK293T [16]

4 BS-seq with improved protocol GSE122260 HeLa [16]

5 RBS-Seq GSE90963 HeLa [36]

6 Aza-IP GSE38957 HeLa [37]

Table 2. Target sites of m5C regulators identified by Par-CLIP or eCLIP.

Protein Cell Line Technique Source Ref.

Writer NSUN2 K562 eCLIP GENCODE [38]

Reader
YBX1 T24 PAR-CLIP GSE133620 [8]

ALYREF T24 PAR-CLIP GSE133620 [8]

Considering the sequencing bias and non-specific binding of RNA modification an-
tibody, the m5C sites identified from the IVT transcript [39] (in vitro transcribed RNA
product consisted of only commercial NTPs, which should be free of modification) were
used to filter false-positive sites and further improve the data quality. Additionally, the
CD-HIT [40] software was used to remove redundant sequences with default parameters.
As a result, sequence similarity is less than 85% in the dataset.

2.2. Sequence-Derived Features

Based on different physical and chemical properties, nucleotides can be decoded
into different numeric vector or matrix. These encoding methods have been summa-
rized in recent studies [41–46]. In this project, we selected eight popular methods in
the RNA modification prediction field to identify the optimal features for substrate pre-
diction: nucleic acid composition (CONPOSI), binary encoding method (ONE_HOT),
position-specific nucleotide propensity (PSNP), electron-ion interaction pseudopotentials
(EIIP), auto-correlation (autoCor), cross-correlation (crossCor), pseudo k-tupler composi-
tion (PseKNC) and chemical property (ChemProper).

2.3. Feature Description

Nucleic acid composition: Nucleic acid composition (CONPOSI) has been widely
used in previous research [47]. In our study, dinucleotide frequencies were applied for
sequence encoding, which can be presented as a 16-demensional feature vector (AA, AC,
. . . , UU):

Fi = ( fAA, fAc, fAG, . . . . . . fUU ,)

where the f represents frequency of dinucleotide in the i-th sequence.
Binary encoding method: The nucleotide at each point in the flanking window is rep-

resented by four numeric values. The A, C, G, and U characters that fill the sequence termini
were translated into binary vectors of (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1), respectively.
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Position-specific nucleotide propensity: The ‘position-specific nucleotide propensity
based on single strand’ (PSTNPss) is a statistical method to encode the RNA sequences.
In our study, the position-specific dinucleotide propensity was used, which contains 16
(i.e., 42) types of dinucleotides (e.g., ‘AA’, ‘AC’, ‘AG’, . . . , ‘UU’). Therefore, for an RNA
sequence with L-bp length, the dinucleotide position specificity can be formulated as a
matrix, where: zi,j = F+(diNi|j)− F−(diNi|j)

Z =

 Z1,1 · · · Z1,L−1
...

. . .
...

Z16,1 · · · Z16,L−1


F+(diNi|j) and F−(diNi|j) represent the frequencies of the i-th dinucleotide (diN) at

the j-th position appearing in positive dataset and negative dataset, respectively.
Electron-ion interaction pseudopotential: The EIIP method was proposed by Nair

and Sreenadhan [48], which considers electron-ion interaction potential values between
nucleotide. The EIIP values for each nucleic acid were shown blow:

A = 0.1260
U = 0.1335
C = 0.1340
G = 0.0806

In an RNA sequence, each nucleic acid will be replaced with its correspond EIIP value.
For example, sequence ‘GCAU’ will be converted into a numeric vector (0.0806, 0.1340,
0.1260, 0.1335).

Auto-covariance and cross-covariance: the auto-covariance and cross-covariance
were invented based on the physicochemical (PC) properties between two nucleotides [49].
In this work, we used ten types of PC to denote RNA, which can be formulated as a matrix:

PC =


PC1,1 PC1,2
PC2,1 PC2,2

· · · PC1,10
PC2,10

...
. . .

...
PCL−1,1 PCL−1,2 · · · PC16−1,10


where PCi,j represents the i-th type of PC value of the j-th dinucleotide in the RNA sequence
with L-bp length. Based on the PC matrix, the auto-covariance and cross-covariance can be
calculated by following formulas, respectively:

ACi
λ =

1
L− 1− λ

L−1−λ

∑
j=1

(PCi,j − PCi)
(

PCi,j+λ − PCi
)

where PCi =
1

L−1 ∑ L−1−λ
j=1 PCi,j

CCi1,i2
λ =

1
L− 1− λ ∑ L−1−λ

j=1 (PCi1,j − PCi)
(

PCi2,j+λ − PCi
)
(i1 6= i2)

The AC focuses on the correlation coefficient of the same physicochemical property
between two subsequences, whereas CC considers the correlation coefficient between
two subsequences with each belonging to a different PC property. The λ in this study
equals to 39, which can capture more sequence information.

Pseudo k-tupler composition: PseKNC is the most widely used encoding method
in the bioinformatic field, including protein, DNA and RNA prediction [50–55]. Several
software/web servers/packages [41–43] have collected PseKNC methods in the suit. In
this study, we directly used the PseKNC encoding method from ilearnplus web server to
generate sequence-based features [43].
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Chemical property: The sequence feature uses three unique structural chemical fea-
tures to encode the nucleotide sequence: ring structures, functional groups, and hydrogen
bonds. Adenine and cytosine have the amino group, whereas guanine and uracil have the
keto group; adenine and guanine have two ring structures, whereas cytosine and uracil
only have one; adenine and uracil can form two hydrogen bonds during hybridization,
whereas guanine and cytosine can form three hydrogen bonds. Based on these chemical
properties, the i-th nucleotide from sequence Si can be encoded by a vector Si = (xi, yi, zi)

xi =

{
1 i f si ∈ {A, C}
0 i f si ∈ {G, U} yi =

{
1 i f si ∈ {A, G}
0 i f si ∈ {C, U} zi =

{
1 i f si ∈ {A, U}
0 i f si ∈ {G, C}

In other words, the A, C, G, U can be encoded as a vector (1,1,1), (0,1,0), (1,0,0) and
(0,0,1), respectively.

2.4. Machine Learning Algorisms and Performance Evaluation

Machine learning algorithms have been widely used in many fields of biological
research, such as miRNA target prediction, protein phosphorylation sites prediction, and
achieved great performance in predicting RNA methylation sites. In this project, we used
an R language interface of LIBSVM [56] to build Support Vector Machine (SVM) based
predictors to compare encoding schemes and influence of sequence length. In addition, we
compared multiple machine learning algorithms including SVM, Generalize Linear Model
(GLM), Random Forest (RF), and XGBoost from R package caret [57] to identify a better
algorithm for model construction. All default parameter in these functions were used to
build predictors.

To validate the predictor performances, the five-fold cross-validation and independent
test was employed for features selection purpose. The influences of sequence length and
algorithms were evaluated by independent test only. The area under the receiver operating
characteristic curve (AUROC) was calculated as the main performance evaluation metric.
In addition to AUROC, the accuracy (ACC), sensitivity (Sn), and specificity (Sp) were
calculated to measure the performance on algorithms comparison:

Sn =
TP

TP + FN

Sp =
TN

TN + FP

Acc =
TP + TN

TP + FN + FP + TN

3. Results
3.1. Performances Based on Different Features

Recent studies have proven sequence-derived features are high reliability and effec-
tiveness to reflect intrinsic relation to the targets. Here, we explored and compared eight
different encoding methods for predicting the target specificity of m5C-regulators. After
the CD-HIT filter, there are 269, 841, and 175 sequences considered as substrates of NSUN2,
YBX1, ALYREF on mature mRNA model and 335, 1137, and 381 on full transcript model.

To identify the optimal features for the m5C-regulators prediction, the performance of
5-fold cross-validation on the training data (Table S1) and the independent test (Table 3)
were both reported. In general, each feature achieved better performance on the full
transcript model than the mature mRNA model, because the sequences of the exons are
more conserved than sequences of introns which may have similar patterns. Among
the eight encoding schemes, the PSNP methods achieved the best average performances
on the regulator–substrate prediction, with AUROC scores of 0.869, 0.724, and 0.889 in
independent tests of the NSUN2, YBX1, and ALYREF substrate prediction on the mature
mRNA model. Although the “COMPOSITION” method had the best performances of
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YBX1 and ALYREF prediction on full transcript model, the performances are faint higher
than PSNP method (0.764 of COMPOSITION vs. 0.763 of PSNP on YXB1 and 0.849 of
COMPOSITION vs. 0.847 of PSNP on ALYREF). Additionally, the performances on mature
mRNA model may reflect the actual prediction performances without overestimation due
to polyA selection during library preparation [58]. Thus, the PSNP encoding method was
selected to build predictors and further analysis.

Table 3. Independent test with different features.

Mature mRNA Model Full Transcript Model
Average

NSUN2 YBX1 ALYREF NSUN2 YBX1 ALYREF

EIIP 0.656 0.656 0.807 0.721 0.764 0.849 0.742
autoCor 0.567 0.546 0.584 0.523 0.617 0.710 0.591
crossCor 0.594 0.520 0.718 0.609 0.597 0.679 0.620
PseKNC 0.660 0.622 0.723 0.738 0.732 0.774 0.708

ChemProper 0.602 0.649 0.665 0.698 0.692 0.778 0.681
ONE_HOT 0.606 0.646 0.668 0.708 0.690 0.778 0.683
CONPOSI 0.656 0.656 0.807 0.721 0.764 0.849 0.742

PSNP 0.869 0.724 0.889 0.871 0.763 0.847 0.827

Additionally, except PSNP feature, two features with lower performance were com-
bined randomly to test their performances (Table S2). Compared to PSNP feature, the
EIIP–autoCovar combination features and EIIP–CONPOSI combination features achieved
slight improvements (0.768 vs. 0.763; 0.849 vs. 0.847) for YBX1 and ALYREF substrate
prediction, respectively, in full transcript model. These results suggest the PSNP may be
the most appropriate feature for substrate prediction of m5C regulators.

3.2. Performances Based on Different Length Windows

The sequence windows length contains important sequence information and will
affect the prediction performances [59,60], thus, we tried to optimize the length of the input
sequences. The sequences with 21-, 31-, 41-, 51-, 61-, 71-, and 81-nt length and with an m5C
modification site in the middle were tested to find the most promising prediction results
(Figures 2 and 3). On both the mature mRNA model and full transcript model, performances
of NSUN2 and ALYREF substrate prediction were improving at the beginning, reaching the
highest AUROC, and AUROC decreased as the length further increased. For YXB1 substrate
prediction, the performances improved in a relatively steady manner and stabilized in
the end as the length increased. Based on these results, the 51 nt and 51 nt for ALYREF,
71 nt and 61 nt for NSUN2, and 71 nt and 61 nt for YBX1 were selected on the mature
mRNA model and full transcript model, respectively. These selected sequences can be freely
accessed at https://github.com/SXWuFJMU/m5CRegpred/ (accessed on 1 March 2022).
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3.3. Performances Based on Different Machine Learning Algorithms

Although the SVM is the most popular algorithm on the RNA modification prediction
filed [25,58,61–67], we also conducted a system comparison for the performances among
SVM, RF, GLM, and XGBoost. The AUROC, accuracy, sensitivity, and specificity were
calculated to measure the performance of predictors by independent test (Figure 4). In
general, the performances were stable when the optimized sequence lengths were used
among different machine learning algorithms, despite the SVM has the best performances.
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3.4. Data Interpretation

Although the exact motif for m5C modification sites is unknown, the motif of YBX1
substrate was identified as “CA(U/C)C” in human [68] before YBX1 is considered as an m5C
reader. Further, Chen et al. [8] and Yang et al. [69] proved that YBX1 preferred to bind with
“CA(U/C)m5C” rather than unmethylated “CA(U/C)C”, which suggests “CA(U/C)C” may
be one motif for YBX1 dependent m5C. However, the motif of ALYREF is unclear. Another
study based on NSUN2 knockout suggests “NGGG” is enriched among the NSUN2-
dependent m5C sites [16]. In this project, after the YBX1 CLIP data mapping with m5C
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sites, there are 53 (3.36%, 53/1576) sequences contained “CA(U/C)C” motif. For NSUN2
data, there are 227 (55.6%, 227/408) sequences containing “NGGG”. The modification sites
with potential motif were summarized in Supplementary Materials Table S3.

To better understand which sequences may contribute to the predictors, the motif
among training data were analyzed by the STREME [70] from MEME suit. The most
enriched motif for each regulator was presented in Figure 5. The results are similar to
the previous studies, the GC-enriched sequences are around the m5C sites, regardless of
whether there are substrates of NSUN2, YBX1, and ALYREF. Additionally, the motif for
the YBX1 motif is insignificant, which may explain the lower performance of substrate
prediction of YBX1 and suggest extra sequence-based features can be considered for the
performance improvement. We also analyzed the motifs of the false-negative sites in the
independent test. The false negative data of NSUN2 substrate are enriched in the GA-
enriched sequences, whereas motifs for ALYREF false negative sites were different in full
transcript and mature mRNA model.
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3.5. Case Study

The low resolution m5C profile on the breast epithelium cell line MCF10A generated by
the m5C-meRIP technique was obtained from GSE53370 [71]. There are 1,744,029 cytosines
located on the m5C peaks, and each cytosine was considered as the putative methylation
sites. After prediction by m5CRegpred, 16,313 cytosines (Supplement Materials Table S4)
were considered regulated by NSUN2 and recognized by at least one m5C reader with
high confidence (probability > 95%). Among these results, cytosine located in gene PTPN2
(chromosome 18: 12789928), which is a tumor suppressor gene [72] with a low expression
ratio in breast cancer [73], was a putative site regulated by NSUN2 and YBX1. The hypo-
expression of NSUN2 were observed in the breast cancer [30], which may cause the low
m5C level on mRNA. Although gene expression level of YBX1 is undifferentiated [74], less
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PTPN2 mRNA will be recognized by YBX1 due to the low methylation. Considering the
YBX1 can stabilize mRNA [8], the impaired recognition by YBX1 will lead to the decay of
PTPN2 and contribute to the development of breast cancer.

4. Discussion

In the past 10 years, RNA modifications-associated biological processes and molecular
functions were widely explored to suggest the epi-transcriptome is an important layer
in epigenetics regulation. The function and disease association of m5C were discussed
also. Although the importance of m5C was proven, the attention on m5C modification
is still less enthusiastic than m6A modification due to the lack of a dependable detecting
method [7,16,60]. Here, we presented a bioinformatics work to show the substrates of m5C
regulators can be distinguished by machine learning approaches, which provide a conve-
nient and fast way on m5C relevant studies. In this study, we compared different encoding
methods, length windows, and machine learning algorithms to build the optimal predictor
(AUROC scores 0.869, 0.724, and 0.889 for NSUN2, YBX1, and ALYREF, respectively) on
mature mRNA model. However, there are some limitations in the current study. The major
defect is the bias of prediction results. The bias of result was considered in the site predic-
tion field, such as using likelihood ratio (LR) to justify the probability. In these studies, the
likelihood ratio was calculated by the probability of motif occurrence and the probability
of observed RNA modification. Considering the motif of m5C is unclear (only can be
summarized as the GC-enrich region) and the probability of observed RNA modification
cannot be replaced with the probability of m5C regulated by NSUN2/YBX1/ALYREF, the
bias is difficult to be calculated based on current knowledge.

Additionally, there are some shortcomings can be improved in further study. Firstly,
although the sequence-derived features-based predictors have achieved acceptable per-
formances, the advanced genomic features [75] should be considered to improve the
performance in the future, especially for YBX1 substrate prediction. Secondly, the deep
learning algorithms which were applied in the site prediction studies [76–79] recently, have
better power than machine learning. Therefore, deep learning can be used to improve
performance. Thirdly, the current prediction only focuses on one methyltransferase and two
readers due to limited published dataset. More m5C regulators will be considered further
once the sequencing results are released. Finally, some recent studies have suggested that
RNA modification regulation is tissue-specific. Thus, the elaborate prediction with the
tissues/cell lines specific should be considered in further research.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes13040677/s1, Supplementary Table S1: Cross-validation with different features, Table S2:
Independent test with two features combination, Table S3: m5C sites with putative NSUN2/YBX1
motif, Table S4: MCF10A putative data.
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