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Abstract: This study examined the effects of single-nucleotide polymorphisms (SNPs) on the devel-
opment of bladder cancer, adding longest-held occupational and industrial history as regulators.
The genome purified from blood was genotyped, followed by SNP imputation. In the genome-wide
association study (GWAS), several patterns of industrial/occupational classifications were added
to logistic regression models. The association test between bladder cancer development and the
calculated genetic score for each gene region was evaluated (gene-wise analysis). In the GWAS and
gene-wise analysis, the gliomedin gene satisfied both suggestive association levels of 10−5 in the
GWAS and 10−4 in the gene-wise analysis for male bladder cancer. The expression of the gliomedin
protein in the nucleus of bladder cancer cells decreased in cancers with a tendency to infiltrate and
those with strong cell atypia. It is hypothesized that gliomedin is involved in the development of
bladder cancer.

Keywords: bladder cancer; genome-wide; occupation

1. Introduction

There were approximately 83,730 new cases of bladder cancer (64,280 in men and
19,450 in women) and approximately 17,200 deaths from bladder cancer (12,260 in men and
4940 in women) in the United States in 2021. The rates of new bladder cancer and death
due to bladder cancer have been decreasing slightly in women in recent years, whereas
in men, incidence rates have been decreasing, but death rates are stable [1]. In Japan,
23,230 cases (17,555 in men and 15,675 in women) of bladder cancer were diagnosed in
2018, and the number of deaths from bladder cancer was 8911 (6014 in men and 2897 in
women) in 2019 [2].

Muscle invasive bladder cancer requires highly invasive treatments such as radical
cystectomy and systemic chemotherapy. In addition, even non-muscle infiltrating bladder
cancer often recurs in the bladder and requires multiple treatments. Thus, medical treatment
for bladder cancer requires a great deal of time and medical expenses.

It is well known that smoking is a risk factor for developing bladder cancer [3,4].
Regarding alcohol drinking, the American Society of Clinical Oncology stated in 2018 that
more than 5% of new cancer cases were due to alcohol consumption [5]. We also reported
that alcohol consumption is an independent risk factor for the development of bladder
cancer in the Japanese population [6].

Occupational and environmental factors are important, in addition to genetic predis-
position for bladder cancer. There was a 45-year observational study in Nordic countries
on the association between occupation and the development of bladder cancer. According
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to this study, occupations with a significantly increased incidence of urothelial cancer, with
a standardized incidence ratio of 1.20 or higher, include male waiters, chimney sweeps,
hairdressers, assistant nurses, seamen, plumbers, cooks and stewards, beverage work-
ers, female tobacco workers, printers, waiters, chemical process workers, sales agents,
hairdressers, mechanics, and administrators [7].

This study examined the effects of single-nucleotide polymorphisms (SNPs) in the
germline genome on the development of bladder cancer in Japan, adding occupational and
industrial history as regulators.

A genome-wide association study (GWAS) comprehensively searches the entire genome
for gene polymorphisms that exhibit significant frequency differences between an unrelated
patient population of a specific disease and an unrelated control population.

In genome-wide studies that analyzed the genomes of bladder cancer patients, 57 SNPs
that may increase susceptibility to bladder cancer were identified in the GWAS Catalog
(Supplementary Table S1). In addition, there are many GWAS papers on bladder cancer [8–25].
In particular, the NAT2 slow acetylator and GSTM1 null genotype are considered to be
potential genetic risk factors for the development of bladder cancer [8]. Polymorphisms
in the NAT2 gene were also investigated in Japan, with a risk ratio of 7.80-times [26]. In
addition, a relatively large GWAS for Japanese bladder cancer patients was announced in
2015, and although smoking has been examined and adjusted as an environmental factor,
occupational factors have not been examined [21]. Therefore, it is important to examine
the relationship between bladder cancer in the Japanese population and SNPs by adjusting
for the industrial/occupational history, in addition to sex, smoking history, and alcohol
drinking history.

2. Materials and Methods

The genome was purified using 10 mL of blood mixed with EDTA collected from
352 bladder cancer patients (302 males, 50 females) and 434 control patients (395 males,
39 females) at Japan Organization of Occupational Health and Safety, Kanto Rosai Hos-
pital and Tokyo Metropolitan Tama Medical Center. Control patients did not include
those with upper tract urothelial cancer because bladder cancer and upper tract urothelial
cancer are considered to be malignant tumors that are anatomically, histologically, and
epidemiologically similar.

Occupational and environmental data were obtained from the Inpatient Clinico-
Occupational Database of Rosai Hospital Group (ICOD-R), provided by the Japan Organi-
zation of Occupational Health and Safety. The ICOD-R includes an occupational history of
current and past three jobs, information on smoking, and alcohol habits using interviews
and questionnaires completed at the time of admission. Detailed occupational histories
were coded with three-digit codes in the Japan Standard Occupational Classification and
Japan Standard Industrial Classification corresponding to the International Standard Indus-
trial Classification and International Standard Occupational Classification, respectively [27].
The Japan Standard Occupational Classification is composed of 12 major groups, 74 minor
groups, and 329 unit groups [28], whereas the Japan Standard Industrial Classification is
composed of 20 divisions, 99 major groups, 530 groups, and 1460 industries [29]. Other
clinical data were obtained from electronic medical records. Missing values exist due to
omission or lack of description by patients.

2.1. A New Classification of Industry/Occupation

To create a new classification, we divided the occupations into four groups: professional,
service, management, and blue-collar workers, and further divided the industries into three
groups: white-collar industry, blue-collar industry, and service industry. These two kinds of
groups were combined into a total of 12 (4 × 3) industry/occupation classes [30,31]. Using
this classification, tentatively named the Zaitsu classification, we previously reported an
association between occupation and the prognosis of bladder cancer [32].
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2.2. Clinical and Environmental Factor

From the clinical data, categorical variables were preliminarily analyzed by Fisher’s
exact test between two or multiple groups, and continuous variables were preliminarily
analyzed by the Mann–Whitney U test. Furthermore, logistic regression analysis was
performed with the development of bladder cancer as the objective variable, whereas
age, sex, Brinkman index (BI) classified into four groups (0: BI 0, 1: 1–399, 2: 400–799,
3: 800≤), alcohol consumption history (2 levels, yes or no), and industrial / occupational
classifications of the longest-held job for each patient were explanatory variables.

The industrial/occupational classifications added to the logistic regression model here
were: (a) industrial classification (20 divisions, Supplementary Table S2); (b) the 35 major
groups included in industrial classification divisions D (Construction), E (Manufacturing),
and H (Transport and postal services); and (c) Occupational classification major groups
(12 categories, Supplementary Table S3). From the logistic regression models of a, b, and c,
the explanatory variables related to industry/occupation were selected by the backward
step-wise method using the Akaike information criterion.

2.3. Genotyping

Performed by Riken Genesis Co., Ltd. (Taito-Ku, Tokyo, Japan). Samples were geno-
typed using the Illumina Infinium Asian Screening Array-24 v1.0 BeadChip, which com-
bines genome-wide coverage of East Asian populations, relevant clinical research content,
and scalability for genomic screening. For quality control of samples, we excluded those
with (i) a sample call rate < 0.99, (ii) a person with the lowest call rate from the pairs with
a proportion IBD (identity-by-descent) > 0.1875, and (iii) outliers from Japanese clusters
identified by principal component analysis using the genotyped samples and East Asians
in the International Genome Sample Resource [33] (The 1000 Genomes Project Consortium
2015). For quality control of genotypes, we excluded those with a (i) SNP call rate < 0.99 or
(ii) p-value for the Hardy-Weinberg Disequilibrium test < 0.001.

2.4. Imputation

We utilized SNP imputation for all samples under 1000 Genomes Project Phase 3 as
a reference panel [34]. We implemented the pre-phasing by Eagle [35,36] and imputation
by Minimac3 [37]. After imputation, we excluded SNPs with an imputation quality of
R-square < 0.3.

2.5. GWAS

We conducted 6 GWAS patterns for bladder cancer development by logistic linear
models using SNP dosage obtained by SNP imputation and Efficient and Parallelizable As-
sociation Container Toolbox (EPACTS) [38]. In the association test, age, sex, smoking history
(Brinkman Index, ordered category with 0 < 1 < 2 < 3 levels), alcohol consumption history
(2 levels, yes or no), and several patterns of industrial/occupational classifications were
added to logistic regression models. Tested industrial/occupational classifications were:
(i) 1 variable with 20 levels for industrial classification divisions, (ii) selected industrial clas-
sification division(s) from 20 variables with 2 levels (yes or no) by the backward step-wise
method in a logistic regression model without SNP dosage, (iii) 1 variable with 12 levels
for occupational classification major groups, (iv) selected occupational classification major
group(s) from 12 variables with 2 levels (yes or no) by the backward step-wise method in a
logistic regression model without SNP dosage, (v) selected industrial classification major
groups from 35 variables with 2 levels (yes or no) by the backward step-wise method in a
logistic regression model without SNP dosage, and (vi) the Zaitsu classification. We also
used only male samples for GWAS, taking into account sex differences in some occupations.
We did not conduct GWAS using only females due to the small number of cases. We set the
genome-wide significance level for our study at p = 5 × 10−8 and suggestive association
level at p = 10−5 [39].
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2.6. Gene-Wise Analysis

For SNPs contained within 50 bp upstream and downstream of the gene regions
defined in Ref Gene [40], we calculated the genetic score (GS) [41] as described below, and
the association test between bladder cancer development and GS for each gene region was
evaluated by the Burden test and SKAT-O test using EPACTS (version 3.2.6) (University
of Michigan, Ann Arbor, MI, USA). In our study, we performed gene-wise analysis for
20,865 regions. We set the genome-wide significance level for our study at p = 2.4 × 10−6

(=0.05/20,865) and suggestive association level at p = 10−4. Adjusting factors in GWAS were
also included in the gene-wise analysis. GWAS and gene-wise analysis were performed by
StaGen Co., Ltd. (Taito-ku, Tokyo, Japan 111-0051).

GSi =
M

∑
j=1

xijβ j/M (1)

Here, the GSi of an individual patient is equal to the weighted sum of the individual’s
genotypes, xj (0, 1, 2), at SNPs in genei. Weights (βj) are calculated by EPACTS and M is the
number of SNPs in genei.

2.7. Immunohistochemistry

The expression of gliomedin protein was examined by tissue immunostaining using
paraffin-embedded bladder tumor tissue removed by transurethral resection of the bladder
tumor. The antibody used was anti-GLDN (gliomedin) polyclonal antibody (26185-1-AP, Pro-
teintech, Rosemont, IL, USA). Two independent pathologists evaluated histological staining
by the immunoreactive score [42] and individual scores were analyzed after averaging.

2.8. Study Approval

The Ethical Committee of the Japan Organization of Occupational Health and Safety
approved the experiments (2018-2). All experiments were performed in accordance with
relevant guidelines and regulations, including any relevant details. Written informed
consent was received from patients prior to inclusion in the study.

3. Results
3.1. Clinical and Environmental Factors

The age of the bladder cancer patients included was slightly lower than the control
patients for men and higher for women (Table 1). Malignant tumors other than urothelial
cancer were observed in 13.9% of men and 18.0% of women in the bladder cancer group,
and 72.2% of men and 59.0% of women in the control group. In the male control group,
46.6% had prostate cancer and 11.1% had renal cell carcinoma (Supplementary Table S4).

In terms of smoking history, a high Brinkman index classified into four stages and the
development of male bladder cancer were slightly related. The Brinkman index 2–3 group
had more male bladder cancer than the Brinkman index 0–1 group (Table 1). As for
alcohol consumption history, bladder cancer patients drank slightly less alcohol than
control patients overall (Table 1). The overall distributions of the divisions of industrial
classification (Table 2), occupational classification major groups (Table 3), and groups in
the Zaitsu classification (Table 4) were not significantly different from controls in male,
female, and all bladder cancer patients. Looking at the individual divisions of industrial
classification, bladder cancer was less frequent in division G and more frequent in division S
in male cases and all cases (Table 2). In addition, in the individual major groups of
occupational classification, bladder cancer was significantly more common in the major
group F in male cases and all cases (Table 3).
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Table 1. Clinical and environmental factors.

Male Female All

Bladder Ca Control Bladder Ca Control Bladder Ca Control

Age (yrs) n = 300 n = 395 n = 50 n = 39 n = 350 n = 434

71.4 ± 10.3 72.8 ± 11.8 72.0 ± 10.1 64.6 ± 12.1 71.5 ± 10.2 72.1 ± 12.1

p-value 0.0079 0.0030 0.0850

Brinkman index (BI) n = 282 n = 298 n = 48 n = 27 n = 330 n = 325

0 27.7% 29.9 83.3% 81.5 35.8% 35.0

1 13.5 19.1 6.3 11.1 12.4 15.4

2 27.3 24.2 2.1 3.7 23.6 23.1

3 31.6 26.8 8.3 3.7 28.2 24.9

p-value for 2 × 4 columns 0.0952 0.7276 0.1073

p-value for BI 0 vs. BI 1–3 0.4621 1.0000 0.8696

p-value for BI 0–1 vs. BI 2–3 0.0288 1.0000 0.1569

Alcohol consumption n = 281 n = 291 n = 47 n = 27 n = 328 n = 318

0 23.5% 21.3 63.8% 63.0 29.3% 23.0

1 76.5 78.7 36.2 37.0 70.7 77.0

p-value 0.2222 1.0000 0.0736

Ages were analyzed by the Mann–Whitney U test, whereas the Brinkman index and alcohol consumption were
analyzed by Fisher’s exact test between two or multiple groups.

Table 2. Distribution of industrial classification divisions.

Industrial Classification A B C D E F G H I J K L M N O P Q R S T

Male

Bladder Ca (n = 236) 0.8 0.0 0.0 11.0 25.4 2.5 1.3 * 9.3 11.4 3.4 1.3 5.9 3.4 2.1 2.1 1.7 0.8 3.0 5.9 * 8.5

Control (n = 289) 1.7 0.0 0.0 11.4 26.3 1.7 5.2 * 8.7 10.0 2.8 2.1 3.5 3.8 1.4 1.4 2.4 0.3 3.8 1.7 * 11.8

Female

Bladder Ca (n = 41) 2.4 0.0 0.0 0.0 14.6 0.0 0.0 2.4 12.2 4.9 0.0 2.4 2.4 0.0 0.0 2.4 0.0 4.9 0.0 51.2

Control (n = 27) 0.0 0.0 0.0 0.0 18.5 0.0 0.0 0.0 7.4 0.0 3.7 0.0 7.4 0.0 11.1 3.7 0.0 3.7 0.0 44.4

All

Bladder Ca (n = 277) 1.1 0.0 0.0 9.4 23.8 2.2 1.1 * 8.3 11.6 3.6 1.1 5.4 3.2 1.8 1.8 1.8 0.7 3.2 5.1 * 14.8

Control (n = 316) 1.6 0.0 0.0 10.4 25.6 1.6 4.7 * 7.9 9.8 2.5 2.2 3.2 4.1 1.3 2.2 2.5 0.3 3.8 1.6 * 14.6

See Supplementary Table S2 for details of industrial classification divisions. p-values analyzed among multiple
groups by Fisher’s exact test were 0.2929, 4873, and 0.3358 for males, females, and all, respectively. Asterisks
indicate p-values less than 0.05 analyzed by Fisher’s exact test in individual 2 × 2 groups. Classifications G and S
in males and G, L, and S in all were selected by the backward step-wise method.
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Table 3. Distribution of occupational classification major groups.

Occupational Classification A B C D E F G H I J K L

Male

Bladder Ca (n = 246) 4.2 19.9 15.3 15.7 4.2 3.8 * 0.8 12.7 5.5 6.8 2.5 4.2

Control (n = 291) 5.2 18.0 15.6 15.6 5.9 0.3 * 2.4 12.5 4.8 6.2 1.7 5.2

Female

Bladder Ca (n = 20) 0.0 2.4 12.2 14.6 4.9 0.0 0.0 9.8 0.0 0.0 4.9 51.2

Control (n = 15) 0.0 14.8 14.8 11.1 14.8 0.0 0.0 3.7 0.0 0.0 0.0 44.4

All

Bladder Ca (n = 266) 3.6 17.3 14.8 15.5 4.3 3.2 * 0.7 12.3 4.7 5.8 2.9 14.8

Control (n = 306) 4.7 17.7 15.5 15.2 6.3 0.3 * 2.2 11.7 4.4 5.7 1.6 14.6

See Supplementary Table S3 for details of occupational classification major groups. p-values analyzed among
multiple groups by Fisher’s exact test were 0.2209, 0.9430, and 0.2979 for males, females, and all, respectively.
Asterisks indicate p-values less than 0.05 analyzed by Fisher’s exact test in individual 2 × 2 groups. Classification
F in males and all was selected by the backward step-wise method.

Table 4. Distribution of groups in the Zaitsu classification.

Blue-Collar Industry Service Industry White-Collar Industry

Blue-Collar
Worker

Service
Worker Professional Manager Blue-Collar

Worker
Service
Worker Professional Manager Blue-Collar

Worker
Service
Worker Professional Manager

Male

Bladder Ca
(n = 216) 21.8 19.4 10.2 2.3 5.1 * 14.8 1.4 1.4 3.2 9.3 10.2 0.9

Control
(n = 255) 23.5 19.2 9.8 3.9 1.2 * 18.4 0.4 2.0 0.8 10.2 10.6 0.0

Female

Bladder Ca
(n = 20) 25.0 15.0 0.0 0.0 5.0 35.0 0.0 0.0 0.0 10.0 10.0 0.0

Control
(n = 35) 17.1 20.0 0.0 0.0 2.9 31.4 2.9 0.0 0.0 8.6 17.1 0.0

All

Bladder Ca
(n = 236) 22.0 19.1 9.3 2.1 5.1 * 16.5 1.3 1.3 3.0 9.3 10.2 0.8

Control
(n = 290) 22.8 19.3 8.6 3.4 1.4 * 20.0 0.7 1.7 0.7 10.0 11.4 0.0

p-values analyzed among multiple groups by Fisher’s exact test were 0.1424, 0.4563, and 0.1999 for males, females,
and all, respectively. Asterisks indicate p-values less than 0.05 analyzed by Fisher’s exact test in individual
2 × 2 groups.

In the selection of explanatory variables concerning industry/occupation by the back-
ward step-wise method for logistic regression models, industrial classification divisions G
and S, and occupational classification major group F, were selected in male cases from all
divisions and from all major groups, respectively, whereas in all cases including both men
and women, industrial classification divisions G, L, and S, and occupational classification
major group F remained.

In addition, from the major groups in industrial classification divisions D, E, and H,
“Manufacture of general-purpose machinery”, “Miscellaneous manufacturing industries”,
“Construction work by specialist contractor”, “Equipment installation work”, and “Railway
transport” were selected as explanatory variables in male cases, whereas “Miscellaneous
manufacturing industries”, “Construction work by specialist contractor”, and “Railway
transport” remained in all cases. The overall distribution of bladder cancer cases in these
industrial major groups was not different from that of the controls (Table 5).
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Table 5. Distribution of industrial classification major groups in divisions D, E, and H in males.

Major Group Bladder Ca_Male (%) Control_Male (%)

Manufacture of food 1.9 3.7
Manufacture of beverages, tobacco, and feed 0.0 0.7

Manufacture of textile products 0.9 1.5
Manufacture of lumber and wood products, except furniture 0.0 0.7

Manufacture of furniture and fixtures 0.9 0.0
Manufacture of pulp, paper, and paper products 0.0 0.7

Printing and allied industries 1.9 0.0
Manufacture of chemical and allied products 4.6 3.0
Manufacture of petroleum and coal products 0.0 0.0

Manufacture of plastic products, except otherwise classified 3.7 0.0
Manufacture of rubber products 0.0 0.0

Manufacture of leather tanning, leather products and fur skins 0.9 0.0
Manufacture of ceramic, stone, and clay products 0.0 3.0

Manufacture of iron and steel 3.7 2.2
Manufacture of non-ferrous metals and products 1.9 1.5

Manufacture of fabricated metal products 6.5 9.0
Manufacture of general-purpose machinery 0.9 3.7
Manufacture of production machinery 3.7 1.5

Manufacture of business-oriented machinery 2.8 5.2
Electronic parts, devices, and electronic circuits 4.6 4.5

Manufacture of electrical machinery, equipment, and supplies 2.8 2.2
Manufacture of information and communication electronics equipment 4.6 6.0

Manufacture of transportation equipment 5.6 6.7
Miscellaneous manufacturing industries 3.7 0.7

Construction work, general including public and private construction work 8.3 9.0
Construction work by specialist contractor, except equipment installation work 11.1 5.2

Equipment installation work 4.6 10.4
Railway transport 4.6 1.5

Road passenger transport 6.5 6.7
Road freight transport 5.6 8.2

Water transport 0.9 0.0
Air transport 0.9 0.0
Warehousing 0.9 1.5

Services incidental to transport 0.9 0.7
Postal services, including mail delivery 0.0 0.0

The p-value analyzed among multiple groups by Fisher’s exact test was 0.2649 for males. Groups in italics were
selected by the backward step-wise method.

3.2. Sample QC

For 789 genotyped samples of 830 samples, 21 were excluded in which the sample
call rate was <0.99, the proportion IBD was >0.1875, and outliers from Japanese clusters
identified by principal component analysis (Supplemental Figure S1). In our study, we
used 766 samples in GWAS (Supplementary Table S5).

3.3. SNP QC for Imputation

We selected SNPs to be used for SNP imputation. The number of SNPs loaded on the
chip was 659,184 and the number of SNPs genotyped was 657,060. In addition, there were
641,043 SNPs with a definite chromosomal location, 395,708 SNPs with a call rate of 99% or
higher, a p-value of 0.0001 for the Hardy–Weinberg law of equilibrium, and a minor allele
frequency (MAF) of 1% or higher. SNP imputation was performed using 395,708 SNPs
(Supplementary Table S6).

3.4. Imputation

The number of SNPs able to be imputed was 47,109,297. Of the 47,109,297 SNPs, 11,175,945
with an R-squared value greater than 0.3 were used in the GWAS (Supplementary Table S7).
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3.5. Results of GWAS and Gene-Wise Analysis

No SNPs satisfying the genome-wide significance level 5 × 10−8 were detected in
GWAS in all cases or in male cases. A Manhattan plot of the genome-wide association test
for each analysis pattern is shown in Figure 1. In the gene-wise analysis, no genes satisfying
the genome-wide significance level 2.4 × 10−6 were detected in all cases or in male cases.
In GWAS and gene-wise analysis, the gliomedin (GLDN) gene located at 15q21.2 satisfied
both a suggestive association level of 10−5 in GWAS and suggestive association level of
10−4 in gene-wise analysis (Table 6 and Figure 2).
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2.35 × 
10−5 

(v) 15 GLDN 
rs169643

18 
5167192

0 
T C 0.13 0.06 1.31 0.28 

2.17 × 
10−6 

0.1 0.02 
1.57 × 
10−5 

Analysis: industrial/occupational factors added in GWAS and gene-wise analysis in male bladder 
cancer: (i) 1 variable with 20 levels for industrial classification divisions; (ii) selected industrial 
classification divisions G and S for male bladder cancer; (iii) 1 variable with 12 levels for occupa-

(i)

(iii)

(ii)

(vi)(v)

(iv)

Figure 1. Manhattan plots of GWAS: (A) All bladder cancer; (B) male bladder cancer. Indus-
trial/occupational factors added in GWAS: (i) 1 variable with 20 levels for industrial classification
divisions; (ii) selected industrial classification divisions G and S for male bladder cancer, with divi-
sions G, L, and S for all bladder cancer; (iii) 1 variable with 12 levels for occupational classification
major groups; (iv) selected occupational classification major group F; (v) selected industrial classifica-
tion major groups in D, E, and H, i.e., “Manufacture of general-purpose machinery”, “Miscellaneous
manufacturing industries”, “Construction work by specialist contractor”, “Equipment installation
work”, and “Railway transport” for male bladder cancer, and “Miscellaneous manufacturing indus-
tries”, “Construction work by specialist contractor”, and “Railway transport” for all bladder cancer;
and (vi) the Zaitsu classification, The SNPs in the GDLN region are plotted in red.

Table 6. Results of GWAS and gene-wise analysis for bladder cancer. Results that satisfied both
p < 10−5 by GWAS and p < 10−4 by gene-wise analysis were selected.

Annotation Allele Frequency GWAS Gene-Wise

Analysis Chr Gene rsID BP Ref Alt Case Control Beta SE p Value Beta SE p Value

(i) 15 GLDN rs10162956 51673125 C T 0.13 0.06 1.26 0.28 6.37 × 10−6 0.1 0.02 3.13 × 10−5

(ii) 15 GLDN rs10162956 51673125 C T 0.13 0.06 1.26 0.27 4.39 × 10−6 0.1 0.02 1.84 × 10−5

(iii) 15 GLDN rs28619121 51671391 C T 0.13 0.06 1.22 0.27 8.70 × 10−6 0.1 0.02 3.80 × 10−5

(iv) 15 GLDN rs16964318 51671920 T C 0.13 0.06 1.23 0.27 5.78 × 10−6 0.1 0.02 2.35 × 10−5

(v) 15 GLDN rs16964318 51671920 T C 0.13 0.06 1.31 0.28 2.17 × 10−6 0.1 0.02 1.57 × 10−5

Analysis: industrial/occupational factors added in GWAS and gene-wise analysis in male bladder cancer:
(i) 1 variable with 20 levels for industrial classification divisions; (ii) selected industrial classification divi-
sions G and S for male bladder cancer; (iii) 1 variable with 12 levels for occupational classification major
groups; (iv) selected occupational classification major group F; (v) selected industrial classification major
groups in D, E, and H, i.e., “Manufacture of general-purpose machinery”, “Miscellaneous manufacturing indus-
tries”, “Construction work by specialist contractor”, “Equipment installation work”, and “Railway transport”,
Chr: chromosome, BP: base pair position, Ref: reference allele, Alt: alternative allele, SE: standard error.
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Figure 2. A representative regional plot of GLDN region. Added industrial/occupational factors were
selected among industrial classification major groups in D, E, and H, i.e., “Manufacture of general-
purpose machinery”, “Miscellaneous manufacturing industries”, “Construction work by specialist
contractor”, “Equipment installation work”, and “Railway transport” for male bladder cancer.

In the Manhattan plot of male bladder cancer cases, there were peaks satisfying a
suggestive level of p < 10−5 between LINC00922 and CDH5 in chromosome 16, and between
LINC00473 and PDE10A in chromosome 6, but they were outside the genetic regions in the
regional plots of GWAS results (Supplementary Figure S2).

In all bladder cancer cases, Manhattan plot peaks satisfying p < 10−5 were observed near
WNT2B in chromosome 1 and XYLB of chromosome 3 (Supplementary Figures S3 and S4),
but they did not satisfy the suggestive association level of p < 10−4 in gene-wise analysis.

3.6. Expression of Gliomedin Protein in Bladder Cancer Tissues

The expression of the gliomedin protein (Figure 3) in the nucleus of bladder cancer
cells was lower in cancers with a tendency to infiltrate and those with strong cell atypia, as
shown in Table 7. The expression of the gliomedin protein in the cytoplasm of cancer cells
and in the nucleus of stromal cells was not associated with the degree of cancer infiltration
or cancer cell atypia.
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Figure 3. Gliomedin (GLDN) protein expression in bladder cancer. Left: a case with low gliomedin
expression in both the nucleus and cytoplasm of cancer cells; Right: a case with high gliomedin
expression in both the nucleus and cytoplasm of cancer cells. Scale bar = 0.5 µm.

Table 7. Expression of gliomedin protein in bladder cancer tissues.

Cancer Cell Nucleus Cancer Cell Cytoplasm Stromal Cell Nucleus

With muscle invasion (n = 13) 4.42 ± 2.01 * 6.50 ± 2.85 3.73 ± 1.58

Without muscle invasion (n = 54) 5.84 ± 2.37 * 6.24 ± 2.89 4.16 ± 1.76

With submucosal invasion (n = 30) 5.02 ± 1.77 ** 6.52 ± 2.46 3.95 ± 1.53

Without submucosal invasion (n = 37) 5.99 ± 2.68 ** 6.11 ± 3.16 4.18 ± 1.87

High-grade cancer (n = 25) 4.78 ± 1.69 # 6.82 ± 2.62 3.98 ± 1.31

Low-grade cancer (n = 40) 6.08 ± 2.60 # 6.09 ± 2.97 4.19 ± 1.96

*: p = 0.0395, **: p = 0.0827, #: p = 0.0186 by the Welch’s Two Sample t-test, values: mean ± SD, high grade: grade 3;
low grade: grades 1 and 2.

4. Discussion

Kawasaki City, where Kanto Rosai Hospital is located, is a traditional heavy industry
area adjacent to the Tokyo Metropolitan area. Fuchu City, where Tokyo Metropolitan Tama
Medical Center is located, is a commercial and residential area on the outskirts of Tokyo.
Therefore, workers engaged in the primary sector of industry and mining industry were
limited in this study.
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The reason why the industrial classification divisions G, L, and S, and the occupational
classification major group F were particularly adopted as the adjusting factors in certain
patterns of GWAS analysis is that these factors were selected by the backward step-wise
method in the analysis of the patient background. In addition, the adjusting factors
were selected from the industrial classification major groups included in the industrial
classification divisions D, E, and H for men because a relatively large number of cases were
included in these three divisions.

The occupations vulnerable to bladder cancer in previous reports were fairly specific
and limited. Compared with these, this study mainly used the relatively rough classifica-
tion of industry/occupation such as industrial classification divisions, major groups, and
occupational classification major groups. Therefore, the purpose of this study was not to
examine the relationship between SNPs and specific environmentally exposed substances,
such as nicotine and aromatic amines, but rather to incorporate the contribution of broader
industrial/occupational environmental factors, such as stress stimulation and work en-
vironment, into the development of bladder cancer as adjustment factors. Under these
conditions, the gliomedin gene was detected in this study by GWAS and gene-wise analysis
as a gene that may be associated with the development of bladder cancer in males.

GWAS is widely performed to replicate obtained results with other datasets. However,
detailed recording of occupational/industrial history, such as ICOD-R, is not comprehen-
sively enforced in Japan, making it difficult to replicate GWAS with occupational/industrial
history as an adjusting factor. Therefore, in this study, in addition to GWAS to verify one
SNP, the results were supported by performing gene-wise analysis to examine the associa-
tion between a given pathological condition and a certain gene as a whole.

Kaneko et al. used ICOD-R occupational classification major groups to demonstrate
that occupations with high physical activity reduced the risk of cancer [27]. They also
compared the categories included in the manufacturing industry division (Division E)
of ICOD-R and noted that the incidence of ureter cancer in the electronics category is
higher than that in the food manufacturing category [43]. Therefore, adding the indus-
trial/occupational classification to the adjusting factors of GWAS, even if it is relatively
rough, is considered to be meaningful in examining the development of cancer.

The control group in this analysis included several malignant tumor diseases other
than urothelial cancer. The inclusion of many cases of other malignancies in the control
group of GWAS for bladder cancer is controversial. It is thought that pathways common to
malignancies in general are less likely to be detected, but on the other hand, it may be more
effective in order for pathways specific to bladder cancer to emerge.

The gliomedin gene encodes a protein containing olfactomedin-like and collagen-like
domains. The gliomedin protein, which is present in both transmembrane and secretory
forms, promotes the formation of the Node of Ranvier in the peripheral nervous system [44].
Mutations in the gliomedin gene cause lethal congenital contracture syndrome [45]. Autoan-
tibodies to the gliomedin protein have also been identified in patients with multifocal motor
neuropathy serotypes [46]. An important paralog of the gliomedin gene is olfactomedin
protein family [47].

The expression of gliomedin mRNA and protein is found in the nuclei of many types
of cancer cells, including urothelial cancer [48]. The early deregulation of gliomedin during
liver tumorigenesis was previously reported [49]. The gliomedin paralog, olfactomedin 4, is
a glycoprotein with an olfactomedin-domain, which is involved in numerous intracellular
signaling pathways, including NF-κB, and is associated with innate immunity. Further-
more, olfactomedin 4 suppresses the development and progression of cancer [50,51], and
tumorigenesis is observed in olfactomedin4 deficient mice [52]. Thus, it is hypothesized that
gliomedin is also involved in the development of bladder cancer by a mechanism similar
to that of olfactomedin 4 in innate immunity and oncogenesis in a certain environment.

As the expression of the gliomedin protein in the nucleus of cancer cells is decreased
in bladder cancer with strong nuclear atypia and infiltration tendency, it is speculated that
gliomedin may act as a tumor suppressor factor in bladder cancer. As GWAS suggested a
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relationship between the gliomedin gene and the development of bladder cancer in men,
further studies are required.

5. Conclusions

In conclusion, the gliomedin gene was suggested to be related to the development
of male bladder cancer by adding longest-held occupational and industrial history as
regulators in the GWAS and gene-wise analysis. In addition, the expression of the gliomedin
protein in the nucleus of bladder cancer cells was lower in cancers with a tendency to
infiltrate and those with strong cell atypia.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13030448/s1, Figure S1: Results of a principal component
analysis (A) Our samples and East Asian samples in IGSR. (B) Our samples and Chinese and Japanese
samples in IGSR. The number of outliers from Japanese clusters was eight and these samples were
excluded; Figure S2: Regional plots of LINC00922 CDH5 (Upper) and LINC00473 PDE10A (Lower)
regions. Added industrial/occupational factors were industrial classification divisions G and S for the
upper panel and Zaitsu classifications for the lower; Figure S3: Regional plots of the WNT2B region.
Added industrial/occupational factors were 1 variable with 20 levels for industrial classification
divisions for the upper panel, industrial classification divisions G, L, and S for the middle, and selected
industrial classification major groups in divisions D, E, and H for the lower; Figure S4: Regional
plots of the XYLB region. Added industrial/occupational factors were 1 variable with 20 levels
for industrial classification divisions for the upper panel, industrial classification divisions G, L,
and S for the middle, and selected industrial classification major groups in divisions D, E, and H
for the lower; Table S1: SNPs susceptible to bladder cancer; Table S2: Japan Standard Industrial
Classification (Rev. 13 October 2013), Divisions; Table S3: Japan Standard Occupational Classification
(Rev. 5 December 2009), Major groups; Table S4: Incidence of malignant tumors other than urothelial
cancer; Table S5: For 789 genotyped samples of 830 samples, 21 samples were excluded in which
the sample call rate was <0.99, the proportion IBD was > 0.1875, and outliers from Japanese clusters
identified by principal component analysis. In our study, we used 766 samples in GWAS; Table S6: We
selected SNPs to be used for SNP imputation. The number of SNPs loaded on the chip was 659,184,
and the number genotyped was 657,060. In addition, there were 641,043 SNPs with a definite
chromosomal location, 395,708 SNPs with a call rate of 99% or higher, a p-value of 0.0001 for the
Hardy–Weinberg law of equilibrium, and a minor allele frequency (MAF) of 1% or higher. SNP
imputation was performed using 395,708 SNPs; Table S7: The number of SNPs that was able to be
imputed was 47,109,297. Of the 47,109,297 SNPs, 11,175,945 with an R-square value greater than 0.3
were used in the GWAS.
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