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Abstract: Next-generation sequencing (NGS) has revealed large numbers of genetic variants in
LGMD-related genes, with most of them classified as variants of uncertain significance (VUSs). VUSs
are genetic changes with unknown pathological impact and present a major challenge in genetic
test interpretation and disease diagnosis. Understanding the phenotypic consequences of VUSs
can provide clinical guidance regarding LGMD risk and therapy. In this review, we provide a brief
overview of the subtypes of LGMD, disease diagnosis, current classification systems for investigating
VUSs, and a potential deep mutational scanning approach to classify VUSs in LGMD-related genes.
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1. Introduction

Limb-girdle muscular dystrophies (LGMDs) are the fourth most common form of ge-
netic muscle disease. They are defined by progressive weakness that predominantly affects
the pelvic and shoulder girdle muscles, with age of onset ranging from early childhood to
late adulthood. Based on their inheritance patterns, LGMDs are further subdivided into two
main groups: autosomal dominant forms or LGMD1/LGMD-D, and autosomal recessive
forms or LGMD2/LGMD-R [1]. To date, more than 30 genes associated with different
subtypes of LGMD have been identified, with most of them being LGMD2. Compared to
LGMD1, the LGMD2 subtype occurs much more frequently and is more common in child-
hood but it widely varies between subtypes and among different affected individuals. The
genetic causes of these highly heterogeneous disorders have been widely investigated over
the last sixty years, and LGMD is currently understood to be caused by gene mutations that
result in abnormal proteins throughout muscle cells including in the extracellular matrix,
sarcolemma, cytosolic contents, and nuclei [2,3].

Like other inherited disorders, diagnosis of LGMD begins with a detailed medical and
family history followed by a physical examination. Ancillary testing is helpful and includes
laboratory tests such as creatine kinase level determination, muscle magnetic resonance
imaging, or electrodiagnostics. Final diagnosis often requires muscle biopsy processed
via histochemistry and immunohistochemistry. However, due to large phenotypic hetero-
geneity and overlap across the LGMD subtypes, genetic testing is required for accurate
determination of the LGMD genetic subtype. In some LGMD cases, Sanger sequencing is
still considered standard and is the first diagnostic test performed, especially for known
familial variant testing. For some patients, if protein-based assays and targeted Sanger
sequencing are unable to identify the genetic causes, next-generation sequencing (NGS)
is particularly useful. Recently, panel-based NGS has become widespread in the field of
disease diagnosis, prediction, and risk assessment, showing high efficiency. Therefore,
NGS can greatly help improve the diagnostic success rate of skeletal muscle disorders
including LGMDs (reviewed by [4]). For example, whole-exome sequencing (WES, one
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strategy of NGS) followed by targeted analysis was reported to identify disease-causing
mutations that were previously missed using incomplete Sanger sequencing [5], increasing
the diagnostic success rate to 45% in a cohort of patients with LGMDs in Australia [6]. In
contrast, high-throughput DNA sequencing technology can result in a large number of
identified variants, with the majority of them considered variants of uncertain significance
(VUSs), i.e., missense and intronic variants or in-frame insertions and deletions that have
an unknown or unclear impact on protein function; therefore, their clinical significance
is unknown. Nallamilli et al. [7] conducted NGS-based gene-panel testing on a cohort of
4656 patients from the United States with clinically suspected LGMDs, then diagnostic
variants were interpreted. As high as 72% of the variants were classified as VUSs and only
26% of the variants were classified as pathogenic or likely pathogenic variants, according to
the American College of Medical Genetics and Genomics (ACMG) criteria. The results from
ClinVar, a freely available public archive of human genomic variants and interpretations
of their relationship to diseases and other conditions [8], showed over 30,000 identified
variants in established LGMD genes. Approximately 90% of the reported variants are single
nucleotide substitutions, with half of them defined as VUSs (Table 1).

Table 1. Number of identified variants and VUSs in genes related to LGMD in ClinVar.

Designation Gene Protein # of Variants # of VUSs

LGMD D1 DNAJB6 HSP40 346 116
LGMD D2 TNPO3 Transportin 3 323 136

LGMD D3 HNRNPDL Heterogeneous nuclear ribonucleoprotein
D-like protein 158 69

LGMD D4 and LGMD
R1 CAPN3 Calpain3 1047 388

LGMD D5 COL6A1 Collagen 6α1 1219 440
COL6A2 Collagen 6α2 1371 509
COL6A3 Collagen 6α3 1972 957

LGMD R2 DYSF Dysferlin 2129 687
LGMD R3 SGCA α-sarcoglycan 422 140
LGMD R4 SGCB β-sarcoglycan 327 148
LGMD R5 SGCG γ-sarcoglycan 410 142
LGMD R6 SGCD δ-sarcoglycan 510 257
LGMD R7 TCAP Telethonin 200 106
LGMD R8 TRIM 32 Tripartite motif containing 32 410 249
LGMD R9 FKRP Fukutin-related protein 573 256

LGMD R10 TTN Titin 17,986 7315
LGMD R11 POMT1 Protein-O-mannosyl transferase1 609 241
LGMD R12 ANO5 Anoctamin 5 786 395
LGMD R13 FKTN Fukutin 599 263
LGMD R14 POMT2 Protein-O-mannosyl transferase 2 604 297

LGMD R15 POMGnT1 Protein-O-linked mannose β 1,2
Nacetylglucosaminyl transferase 1 662 260

LGMD R16 DAG1 Dystroglycan 376 213
LGMD R17 PLEC Plectin 3355 1677
LGMD R18 TRAPPC11 Transport protein particle complex 11 572 205
LGMD R19 GMPPB GDP-mannose pyrophosphorylase B 203 80
LGMD R20 ISPD Isoprenoid synthase domain 239 129
LGMD R21 POGLUT1 Protein O-glucosyltransferase 1 81 14
LGMD R22 COL6A2 Collagen 6α2 1371 509
LGMD R23 LAMA2 Laminin α2 2330 756

LGMD R24 POMGnT2 Protein-O-linked mannose β 1,2
Nacetylglucosaminyl transferase 2 267 143

LGMD R25 BVES Blood vessel epicardial substance 66 5
LGMD R26 POPDC3 Popeye domain containing 3 29 2
LGMD R27 JAG2 Jagged canonical Notch ligand 2 98 13

Data available on ClinVar. Website: https://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 6 January 2022).

https://www.ncbi.nlm.nih.gov/clinvar/
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2. Current Guidelines and Methods for Variant Classification

The large number of genetic variants identified by widespread NGS of LGMD genes
has created a strong demand for accurate classification of these variants that provides
necessary information to make an informed clinical decision for early diagnosis or person-
alized treatment. Variant classification, the process of determining if a DNA variant causes
disease, is currently based on the ACMG guidelines [9]. The latest revision recommends
classifying variants into five categories based on criteria using evidence from literature
reports, population frequency, mutation databases, computational data, and functional
assays. Available databases used to annotate common variants in LGMD-related genes
include the gnomAD, ClinVar, Leiden Open Variation Database (LOVD), and Human Gene
Mutation Database [10]. Despite the comprehensive criteria provided by the ACMG, the
process of variant classification is still changing and only a small portion of variants can
be confidently predicted based on evidence. The majority of variants fail to be classified
as either pathogenic or benign due to insufficient evidence or conflicting data. In these
situations, the variants are often reported as VUSs.

VUSs represent an ongoing challenge to the interpretation process, as these variants
are more often novel with little to no published data to support classification. Current
methods to refine the pathogenicity of VUSs fall into two categories.

2.1. Co-Segregation and Biochemical Assays or Single-Variant Functional Assays

Classical approaches for interpreting variants require genotype–phenotype association
studies in which large patient cohorts are needed to include enough patients with each
variant to achieve statistical significance. This strategy has clear limits in interpreting
variants associated with rare diseases such as LGMDs because the variants are present in
only a few individuals. Another strategy is to broadly share genetic variants with little to
no clinical information with clinical geneticists and research communities with the hope
of aggregating genetic data across cohorts. Because VUSs are regularly identified from
genome-wide testing, they can more easily be resolved through access to phenotype data
from other individuals harboring the same variants observed elsewhere [11]. The main goal
of global variant sharing is to enable robust diagnoses to be made as quickly as possible
through collaborating and sharing detailed case-level information. A successful example is
DECIPHER, a web-based international resource that aims to share and compare genomic
and phenotypic data from patients with developmental disorders [12]. The DECIPHER
database contains variant and phenotype information of tens of thousands of patients
from more than 30 countries. Identification of additional patients worldwide who share
common variants and phenotypic and clinical features aids the clinical interpretation of
VUSs. To date, no global data-sharing resource has been developed specifically for LGMDs,
but there are available resources such as the ClinVar which is funded by the NIH and was
established as a database that provides a mechanism to upload and share phenotypic and
clinical information on variants across the human genome [13,14]. Unfortunately, such data-
sharing efforts might not greatly benefit the classification of variants in LGMDs, as many
variants are only ever seen in a small number of individuals. A final strategy is to develop
functional assessments, in vitro or in vivo, to evaluate the phenotypic consequences of
gene variants, providing one of the strongest types of evidence recommended by the
ACMG guideline for variant classification. For LGMDs, functional assays have traditionally
been applied to each VUS as it is encountered in an individual. Due to its physiological
and genetic similarities to humans, the mouse is the most commonly used model [15] to
understand how specific variants identified in patients can influence the function of specific
tissues in LGMDs. Recently, the zebrafish has become a useful vertebrate genetic model
for human pathogenetic studies [16–18] due to low cost and relatively short generation
time. Even though a combination of functional analysis and genetic testing has been used
to elucidate some pathogenic mechanisms in LGMDs, the majority of LGMD variants
remain uninterpretable or have conflicting interpretations. Individual assays have not
generally been performed for rare clinical missense variants, and if they were, it was only
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after the discovery of the variant. In addition, these traditional assays are both time- and
resource-intensive. Thus, this approach is clearly limited in scale to tens or hundreds
of variants.

2.2. Computational/In Silico Prediction Tools

In order to rapidly predict variant effects and serve as a basis for clinical decision
making, many computational or in silico approaches have been developed that rapidly
analyze all possible variants of a gene of interest by predicting their effects at both the
nucleotide and amino acid level. In silico refers to computational tools in chemistry, biology,
and pharmacology that determine the effect of variants on primary and alternative gene
transcripts and other genomic elements as well as the potential impact of variants on protein
structure, activity, post-translational modification, and protein–protein interaction. Several
methods have successfully been applied to human disease modeling, drug discovery, and
variant interpretation. Certain types of variants detected by genetic testing using methods
such as short insertions, deletions, and truncating mutations are more easily classified
as pathogenic by in silico prediction tools, because their effect on protein structure and
function is more evident.

Missense variants in protein-coding regions, which comprise 45% of variants impli-
cated in disease [19], are more difficult to classify. Until now, in silico prediction algorithms
such as PolyPhen2 [20], SIFT [21], and Mutation Taster [22] have often been used to predict
pathogenesis of the missense variants in LGMDs. In most situations, more than one of
the above prediction algorithms is used to predict the functional consequences of variants
and potentially explain the pathogenic causes of LGMDs [23–25]. Furthermore, to take
the results of many prediction tools into account, less biased methods such as CADD [26]
and REVEL [27] were developed and became preferred when assessing variants. Beyond
primary prediction of protein structure and function, pathogenicity prediction tools used
for protein networks and pathways [28] and phosphorylation [29] also reported on LGMD
genes. To date, prediction tools are mainly used on variants in coding regions or vari-
ants affecting splicing, and newer tools are beginning to address additional non-coding
sequences [26].

Currently, for variant prediction of LGMD genes, computational prediction is the only
approach that can provide evidence at a large scale. Unfortunately, this high-throughput
approach poses certain limitations. It can identify only a small fraction of pathogenic
variants with high confidence because none of these tools reach an accuracy above 90% [30].
A recent evaluation of predictor performance on 22 human disease genes revealed that with
a threshold detecting 80% of pathogenic variants, the false prediction rate was 36% [31].
The rate of false positive or negative results was even higher when using genomes from
patients of African descent, which harbor the highest genetic diversity [32]. Thus, mis-
classified variants may be present in the scientific literature and variant databases, greatly
interfering with the interpretation of diagnostic sequencing results. One study reclassified
176 DYSF variants in a large French series of dysferlinopathy patients and revealed changed
pathogenicity for 17 variants [33]. To overcome the limitation of poor accuracy, using more
than one in silico tool is recommended. A consensus prediction between the different tools
was obtained by identifying predicted protein disruptions that were consistent among
all the tools with the highest confidence. However, different computational prediction
algorithms may produce conflicting information [34,35]. In this situation, in vivo or in vitro
functional characterization is needed to validate the in silico models.

3. The Emergence of High-Throughput Functional Assays

To overcome the limitations of biochemical assays and computational predictions,
an experimental approach to assess thousands of variants simultaneously is needed.
Deep mutation scanning (DMS), a technology collectively pioneered by Fowler et al. [36],
Ernst et al. [37], and Hietpas et al. [38], among others, can be used to measure the func-
tional consequences of variants on a massive scale, especially those in coding regions. This
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high-throughput approach has been widely used to assess the effects of variants identified
in promoters [39], enhancers [40], splice sites [41,42], and UTRs [43,44], collectively called
multiplex assays of variant effect (MAVE) [45]. In DMS, a pooled library is constructed
that includes all possible single nucleotide or amino acid variants in a specific gene. There
are a variety of methods for making mutagenesis libraries, including simple error-prone
PCR [46] and our recently published approach using reversibly terminated inosine for more
even representation [47]. The library of variants is then introduced into a model system
where the genotype is linked to the phenotype. Model systems that have been used in DMS
are typically bacteria, yeast, or cultured human cells, since mouse and zebrafish models
used for single variant assays are not suitable for large-scale screening. After specific cells
are selected based on protein function, high-throughput sequencing can be used to create
sequence-function maps.

All instances of DMS share a similar process, but the type of functional assay is
often specific to a protein and its function being tested, which can include the impact
of variants on protein structure, catalytic or enzymatic activity, stability, ligand binding,
protein interaction, or the expression of a fluorescent protein. The most frequently used
functional assay is growth-based. This assay is usually performed in yeast or cell lines
where the pathogenesis of a variant is coupled with the organism’s survival with or without
a drug selection [48]. Phage display is another widely used assay to select clones with
corresponding variants. Phage display systems display proteins on the surface of a phage,
and the selection is made with the use of specific antibodies or ligands [49,50]. Selection
based on fluorescence-activated cell sorting (FACS) is useful for investigating variants
that affect enzyme activity, protein stability, or protein abundance [51–53], where the
fluorescence intensity is proportional to the features of proteins. In addition, luciferase
reporter assay was reported to evaluate the impact of variants on splicing [54] and variants
within the non-coding regions [39]. Moreover, several groups combined the results from
multiple DMS studies [53] or integrated DMS in computational prediction tools [55] to
improve the accuracy of variant classification.

Deep mutational scanning approaches have been widely applied to cancer-risk genes.
For example, with the use of DMS, more than 2000 missense variants in BRCA1 were
measured [50], improving the diagnosis and understanding of disease risk. However, none
of the LGMD-associated genes have been analyzed by this method. Because of its high
throughput and accuracy, we think that this technology represents a viable strategy for
overcoming the challenges associated with VUSs in LGMDs. In the remainder of this
review, we propose a deep mutational scanning protocol using sarcoglycans as an example
to discuss the feasibility of applying this technology on LGMDs.

4. Proposed Deep Mutational Scanning on Sarcoglycan Proteins

Sarcoglycans are a family of transmembrane proteins found within the dystrophin–
glycoprotein complex (DGC). DGC is a large molecular complex that plays both a me-
chanical and signaling role between the intracellular cytoskeleton and the extracellular
matrix around muscle cells [56,57]. Four sarcoglycans have been identified in skeletal and
cardiac muscle: α-, β-, γ-, and δ-sarcoglycan transcribed from gene SGCA, SGCB, SGCG,
and SGCD, respectively. These four sarcoglycans form a tetrameric subcomplex, which
together stabilizes the sarcolemma and protects the muscle fibers from contraction-induced
injury [58]. Additional ε- and ζ-sarcoglycans were found in smooth muscle, replacing α-
and γ-sarcoglycan in the sarcoglycan complex [59,60].

Sarcoglycans were first associated with LGMD in a report of a severe form of mus-
cular dystrophy (SCARMD) affecting 93 children in Tunisia [61]. Affected children were
characterized by muscle atrophy predominantly in the girdle and truncal muscles and
showed markedly high creatine kinase activity between the ages 3 to 12 years. In 1992,
chromosomal linkage analysis revealed that the defective gene associated with SCARMD
was located on chromosome 13q12, later known as SGCG [62]. The same year, biopsies of
four SCARMD patients showed deficiency in a 50 kd protein called adhalin [63] that was
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later renamed α-sarcoglycan. These observations support the complexity of this disease
in which the loss of different types of sarcoglycan subunits leads to the same phenotype.
We now know that the loss of any single sarcoglycan often leads to concomitant reduced
or absent sarcolemmal expression of all four sarcoglycans [3,64,65]. However, conflicting
data exist, suggesting that residual sarcoglycan may be present in some cases of limb-girdle
muscular dystrophies. Mutations of any of the sarcoglycan complex subunits (α, β, δ, and
γ) cause four distinct categories of limb-girdle muscular dystrophy: LGMD 2D, 2E, 2F, and
2C, respectively. Collectively called sarcoglycanopathies, they are one of the most common
LGMDs, accounting for 5% to 10% of cases and >60% of severe cases. Phenotypically,
progression of the disease ranges from very mild to very severe Duchenne-like muscular
dystrophy [66–68]. In general, muscle biopsies from patients with sarcoglycanopathies
show deficiency in one or more sarcoglycans, which makes the diagnosis challenging with-
out clear and unambiguous genetic testing results. More complicatedly, some sarcoglycan
mutations have been reported to be associated with respiratory failure and cardiomyopa-
thy (reviewed by [69]). Thus, accurate diagnosis of sarcoglycanopathy relies on genetic
testing. Variant interpretation becomes essential especially for missense variants for which
pathogenesis is difficult to predict. Based on data from ClinVar, a total of 400 missense
mutations have been identified in four sarcoglycan genes, with only 11% classified as
pathogenic or benign (Figure 1). To the best of our knowledge, a high-throughput and
reliable functional assay that enables more rapid and accurate interpretations of variants
related to LGMDs is not yet developed. Here, we focused on missense and nonsense
substitutions in the protein-coding region, as these variants are more likely to alter protein
function [70]. We propose a DMS approach to classify all possible missense and nonsense
mutations in sarcoglycan genes (SGCA as an example). The workflow is shown in Figure 2.
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Figure 1. Number of missense variants identified in sarcoglycan genes. Variants were classified
according to ACMG guidelines. The majority of identified variants are classified as VUSs or variants
with conflicting interpretations.

As the first step of designing a DMS protocol, mutational libraries were constructed
to cover all possible single amino acid changes throughout the entire SGCA gene. This
step was performed by cloning mutant oligonucleotide pools into a lentiviral vector. The
libraries with thousands of different variants were then packaged into lentivirus, followed
by expression in our cell-based model where the genotype is linked to phenotype. The
multiplicity of infection (MOI) was controlled to be 0.1–0.3 so that each transduced cell
would express only one SGCA variant. The design of the functional assay for mutant
selection was based on the fact that α-sarcoglycan is a surface protein, and disease-causing
variants often lead to premature degradation and deficient trafficking, resulting in the
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absence of sarcoglycan on the cell surface. In this case when non-permeabilized cells were
labeled with fluorescent-conjugated sarcoglycan antibodies, cells harboring pathogenic
variants were more likely to exhibit little to no surface sarcoglycan expression and show
low to no fluorescent signal. In contrast, cells carrying benign variants were more likely to
show high fluorescent signal. Fluorescently labeled cells were then sorted into different bins
according to fluorescence intensity and further subjected to high-throughput sequencing to
measure the frequency of variants across bins.
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Figure 2. The workflow for high-throughput functional screen of SGCA. A comprehensive library
containing every possible missense variant in the SGCA gene was delivered into a cell-based model
system via lentiviral transduction at an MOI of 0.1–0.3. Non-permeabilized cells were then labeled by
an antibody against an extracellular epitope of α-sarcoglycan and subjected to selection for membrane
localization by FACS. DNA from selected cells was deeply sequenced to derive a functional score for
each variant.

In our DMS approach, we constructed saturation mutant libraries for SGCA in which
each amino acid was substituted with each of the other 19 common amino acids or a
premature stop at every single position. Although some substitutions are unlikely to occur
naturally, their inclusion could still provide us valuable insight. However, our libraries
were limited to missense and nonsense SGCA variants. The functional impact of other
variants such as frameshift, indels, splice variants, and variants in non-coding regions
needs to be further evaluated. Pathogenic variants in SGCA resulted in the mislocaliza-
tion of α-sarcoglycan to the cytoplasm but not the cell membrane, which allowed us to
separate variants by fluorescence labeling assays. Variants associated with differing levels
of α-sarcoglycan on the cell membrane could be separated by FACS, and they were all
subsequently sequenced by NGS. Our functional assay is considered a well-established
functional approach that can provide strong evidence in SGCA classification. The ACMG
provides two sets of criteria for variant classification, including the strong evidence codes
PS3 (well-established functional assays show deleterious effect) and BS3 (well-established
functional assays show no deleterious effect). Our functional assay based on membrane
localization of the α-sarcoglycan met criterion PS3 [71], and the variants that led to mis-
localization of α-sarcoglycan were deleterious. However, our assay was not applicable
to BS3 since the presence of membrane localization of the α-sarcoglycan is suggestive of
functionality but may include some pathogenic variants. Protein membrane localization
may not necessarily reflect normal protein function, especially for sarcoglycans that form a
complicated tetrameric complex. Thus, proper assembly of the sarcoglycan complex may
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represent a better way to study sarcoglycan functions in the context of sarcoglycanopathies.
Therefore, in our current project of classifying SGCB variants, we started evaluating the
variant effect on complex assembly. Finally, preliminary data on SGCA variant classification
show a bimodal distribution of variant types within our mutational library, indicating the
presence of potential pathogenic and benign variants. However, interpreting the variants
that fall between these two populations, such as variants that lead to a mild or impenetrant
phenotype, is challenging. Thus, our current approach is biased toward severe pathogenic
variants and leads to some variants not being resolved by DMS. To accurately annotate
these variants, a secondary in vivo validation is needed.

5. Conclusions and Future Perspectives

Next-generation sequencing is steadily becoming more common in accurate disease
diagnosis. Large-scale sequencing results in the identification of enormous numbers of
genetic variants with unknown clinical significance. Resolving the functional consequence
of variants is an ongoing challenge. As we described in this review, there are several
approaches that are currently being used for VUS classification. However, they are limited
by throughput and accuracy. A high-throughput screening approach that can functionally
test the effects of thousands of variants at once has not yet been reported on LGMD genes.
We proposed a DMS approach to scan all possible missense and nonsense mutations
throughout the SGCA coding region, regardless of whether they were previously reported
in a patient. A similar approach is being tested on other sarcoglycan genes to improve
the classification of VUSs. Furthermore, to make our screening data easily accessible
for research and clinical use, we publicly shared our data using the NIH sequencing
reads archives (SRA) for raw data and the Gene Expression Omnibus (GEO) database for
estimated functional scores. Our goal is to share data and interpretations for all tested
variants via online portals with online user interfaces to enable rapid searches for specific
variants and evidence that supports their pathogenicity (clinical data, in silico predictions,
and functional scores from DMS). We think that our functional classification of VUSs
supports immediate diagnostic interpretations of newly identified genetic variants and the
application of this high-throughput approach for additional LGMD genes improves the
diagnostic rate of LGMDs.
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