
����������
�������

Citation: Li, S.; Yang, W.; Liu, Y.; Li,

G.; Liu, X.; Liu, Y.; Alfano, J.R.;

Zhang, C.; Yu, B. FDDM1 and

FDDM2, Two SGS3-like Proteins,

Function as a Complex to Affect

DNA Methylation in Arabidopsis.

Genes 2022, 13, 339. https://doi.org/

10.3390/genes13020339

Academic Editor: Hongchang Cui

Received: 14 December 2021

Accepted: 9 February 2022

Published: 12 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

FDDM1 and FDDM2, Two SGS3-like Proteins, Function as a
Complex to Affect DNA Methylation in Arabidopsis
Shengjun Li 1,2,3,* , Weilong Yang 2,3, Yunfeng Liu 2,3,4 , Guangyong Li 2,5, Xiang Liu 2,6, Yaling Liu 2,7,
James R. Alfano 2,3,†, Chi Zhang 2,3 and Bin Yu 2,3,*

1 Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy
Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences,
Qingdao 266101, China

2 Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA;
weilong.yang@huskers.unl.edu (W.Y.); yunfengliu_bio@126.com (Y.L.); gli3@unl.edu (G.L.);
xiang_liu@hotmail.com (X.L.); lylzpf@126.com (Y.L.); zhang.chi@unl.edu (C.Z.)

3 School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA
4 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life

Science and Technology, Guangxi University, Nanning 530004, China
5 Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588-0722, USA
6 Shanghai Chenshan Plant Science Research Center & Botany Garden, Chinese Academy of Sciences,

Shanghai 201602, China
7 College of Life Science, Shanxi Agricultural University, Jinzhong 030801, China
* Correspondence: li_sj@qibebt.ac.cn (S.L.); byu3@unl.edu (B.Y.);

Tel.: +86-532-8066-2641 (S.L.); +1-40-2472-2125 (B.Y.)
† Deceased.

Abstract: DNA methylation is an important epigenetic modification required for the specific regula-
tion of gene expression and the maintenance of genome stability in plants and animals. However, the
mechanism of DNA demethylation remains largely unknown. Here, we show that two SGS3-like
proteins, FACTOR OF DNA DEMETHYLATION 1 (FDDM1) and FDDM2, negatively affect the DNA
methylation levels at ROS1-dependend DNA loci in Arabidopsis. FDDM1 binds dsRNAs with 5′

overhangs through its XS (rice gene X and SGS3) domain and forms a heterodimer with FDDM2
through its XH (rice gene X Homology) domain. A lack of FDDM1 or FDDM2 increased DNA
methylation levels at several ROS1-dependent DNA loci. However, FDDM1 and FDDM2 may not
have an additive effect on DNA methylation levels. Moreover, the XS and XH domains are required
for the function of FDDM1. Taken together, these results suggest that FDDM1 and FDDM2 act as
a heterodimer to positively modulate DNA demethylation. Our finding extends the function of
plant-specific SGS3-like proteins.

Keywords: DNA demethylation; SGS3-like protein; FDDM1 and FDDM2; epigenetics; Arabidopsis

1. Introduction

The methylation status of DNA at the 5′ position of cytosine (5 mC) plays crucial
roles in plants’ developmental regulation and environmental adaptation by affecting gene
expression and genome stability [1,2]. The proper level of DNA methylation is dynamically
regulated by de novo methylation and the maintenance of methylation and demethyla-
tion [1,3,4]. Plant DNA methylation occurs in three cytosine contexts at CG, CHG, and
CHH (where H represents A, T, or C) [5,6]. The de novo methylation is established by the
RNA-directed DNA methylation (RdDM) pathway, in which DNA is methylated by DO-
MAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) [7]. Once established, DNA
methylation is maintained by a multitude of DNA methyltransferases, including METHYL-
TRANSFERASE 1 (MET1), CHROMOMETHYLASE 3 (CMT3), and CHROMOMETHY-
LASE 2 (CMT2), in a manner dependent on the cytosine sequence context [8–10]. In addi-
tion, DNA demethylation also contributes to methylation levels [11]. In Arabidopsis, four

Genes 2022, 13, 339. https://doi.org/10.3390/genes13020339 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13020339
https://doi.org/10.3390/genes13020339
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0003-0469-3222
https://orcid.org/0000-0002-4166-9056
https://doi.org/10.3390/genes13020339
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13020339?type=check_update&version=1


Genes 2022, 13, 339 2 of 8

DNA glycosylases, including REPPESSOR OF SILENCING 1 (ROS1), TRANSCRIPTIONAL
ACTIVATOR DEMETER (DME), DEMETER-LIKE PROTEIN 2 (DML2), and DML3, have
been characterized to remove 5 mC from cytosines [12–14].

The plant-specific SGS3-like proteins have been reported to play essential roles in post-
transcriptional gene silencing (PTGS) and RdDM [15–21]. The Arabidopsis genome encodes
14 SGS3-like proteins [18,22]. Among them, SGS3 is required for natural virus resistance and
regulates the production of trans-activating small interfering RNAs [17,23]. INVOLVED IN
DE NOVO DNA METHYLATION (IDN2, also known as RDM12) and its closely related
proteins positively act in the RdDM pathway [15,16,20,21]. The SGS3-like proteins harbor
various combinations of an XS domain required for RNA-binding, a zinc-finger domain,
a coil-coil domain and an XH domain that mediates protein-protein interaction [17]. It is
reported that IDN2 and FACTOR OF DNA METHYLATION 1 (FDM1) bind 5′ overhang-
ing double-stranded RNAs (5′ dsRNAs) through the XS and coil-coil domains [15,18,21].
However, the biological function of other SGS3-like proteins remains unclear.

Here, we report that the other two SGS3-like proteins, FACTOR OF DNA DEMETHY-
LATION 1 (FDDM1, AT5G59390) and FDDM2 (AT4G01180), form a complex to partici-
pate in DNA demethylation in Arabidopsis. We found that FDDM1 binds dsRNAs with
5′ overhangs, which requires its XS domain, and that FDDM1 forms a heterodimer with
FDDM2 through its XH domain. Loss-of-function mutations of FDDM1 and FDDM2 led
to increased methylation levels of several examined loci. Interestingly, double mutant
analyses showed that FDDM1 and FDDM2 do not work redundantly in modulating DNA
methylation levels, indicating the FDDM1 and FDDM2 act as a heterodimer to promote
DNA demethylation.

2. Materials and Methods
2.1. Plant Materials and Growth Condition

Salk_059303 (fddm1-1), Salk_021139 (fddm1-2), and CS822551 (fddm2-1) were obtained
from the ABRC Stock Center and are in Columbia (Col) genetic background. These mutants
were identified with a combination of gene-specific primers and T-DNA primers (Table S1),
and the T-DNA insertion sites were confirmed by sequencing. The fddm1-2 fddm2-1 mutant
was generated through crossing single mutants. Plants were grown at 22 ◦C with 16 h
light/8 h dark cycles in the growth chamber.

2.2. Construction of Plasmids and Plant Transformation

To generate pFDDM1:FDDM1-GFP, a 4.1 Kb genomic DNA fragment containing the
FDDM1 promoter and coding region was amplified and cloned into the pMDC204 binary
vector. FDDM1-T1 (lacking the XH domain) and FDDM1-T2 (lacking the XS domain) were
cloned into the pMDC83 vector to generate 35S:FDDM1-T1 and 35S:FDDM1-T2 constructs,
respectively. The FDDM2 coding sequence was PCR amplified and inserted into the
pMDC83 vector to generate the 35S:FDDM2 construct. The primers used are listed in
Table S1. All of the binary constructs were transformed into fddm1-1 or fddm2-1 mutants
through Agrobacterium-mediated transformation. The transgenic plants were screened on
a MS medium with Hygromycin B.

2.3. DNA Methylation Assay

The DNA methylation assay was performed as described previously [24]. The genomic
DNAs were digested with a methylation-sensitive restriction enzyme and subsequently
used for PCR analysis. The undigested genomic DNA was simultaneously amplified as the
loading controls using primers listed in Table S1. For bisulfite sequencing, genomic DNA
was converted with a BisulFlash DNA modification Kit (Epigentek) following the manual’s
instructions. The targeting loci were PCR amplified and ligated into a pGEM T vector for
DNA methylation analysis.
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2.4. RT-PCR Analysis

Total RNA was extracted from inflorescence with a TRIzol reagent and reverse-
transcribed using oligo-dT primers with Promega M-MLV. The resulting cDNAs were
used as templates for PCR amplification with gene-specific primers (Table S1).

2.5. DNA/RNA Binding Assay

The DNA/RNA binding assays were performed as previously described [18]. FDDM1
and truncated FDDM1 were amplified and cloned into a pMAL-c5x vector (NEB) to generate
MBP fusion constructs. The MBP fusion proteins were expressed in Escherichia coli (E. coli)
BL21 and purified as described [18]. The radioactive labeled ssRNA, dsRNAs, ssDNA, and
dsDNAs were produced according to [18]. The DNA primers are listed in Table S1.

2.6. Yeast Two-Hybrid Assay

FDDM1, FDDM1-T1, and FDDM1-T2 were cloned into pGADT7 (AD) or pGBKT7
(BD) (Clontech, Mountain View, CA, USA) to generate the various constructs used for the
Yeast two-hybrid assay. The BD-FDDM1-T3 and BD-FDDM1-T4 constructs were generated
using the PfuUltra II Fusion HS DNA polymerase (600670; Agilent, Santa Clara, CA, USA).
FDDM2 was cloned into pGADT7 to generate the AD-FDDM2 construct. The primers are
listed in Table S1. The bait and prey pair constructs were co-transformed into yeast strain
AH109. The interactions were tested on drop-out medium without tryptophan and leucine
(–TL) or without adenine, histidine, tryptophan, and leucine (-AHTL). The interaction of
the FDM1 XH domain with FDM1 itself was employed as a positive control [18].

2.7. BiFC and Co-IP Assays

BiFC and co-IP assays were performed as previously described [25]. For BiFC, paired
nVenus-FDDM1 and cCFP-FDDM1 or cCFP were co-expressed in Nicotiana benthamiana
(N. benthamiana) leaves. After 40 h of expression, a fluorescence signal was detected using
a confocal microscope (Fluoview 500 workstation; Olympus, Tokyo, Japan). To examine
the interaction by co-IP assay, the combination of MYC-FDDM2 with FDDM1-GFP or
GFP was co-expressed in N. benthamiana leaves. IP was carried out with protein extracts
using anti-GFP antibodies, and the proteins were detected with the antibodies against
YFP (B230720; Biolegend, San Diego, CA, USA) or MYC (06-340; Millipore, Burlington,
MA, USA).

3. Results
3.1. XS Domain of FDDM1 Is Required for Binding of 5′ Overhang dsRNAs

FDDM1 (AT5g59390) and FDDM2 (AT4g01180) are two uncharacterized SGS3-like pro-
teins that have high similarities (~82%) (Figure S1). They share high similarities with IDN2
and have the conserved domains of SGS3-like proteins, including XS, the coil-coil domain,
and the XH domains (Figure 1A). As IDN2 binds 5′ overhanging dsRNAs (5′ dsRNAs)
through its XS and coil-coil domains [15,21], we suspected that FDDM1/FDDM2 might also
bind 5′ dsRNAs. We then used FDDM1 as a reporter to test this possibility through an RNA
pull down assay. The recombined full-length and truncated FDDM1 fused with a maltose-
binding protein epitope at their N terminus were expressed in E. coli, purified with amylose
resin, and then incubated with radioactive labeled RNAs, including a single-stranded RNA
and a 5′ dsRNA (Figure 1B–F). FDDM1 and FDDM1-T1 (lacking the XH domain) retained
the 5′ dsRNAs but not the ssRNA (Figure 1C–E). In contrast, FDDM1-T2 (lacking the XS
domain) did not bind the 5′ dsRNAs (Figure 1F). The addition of unlabeled 5′ dsRNA of
the same sequence reduced the binding of the radioactive one (Figure 1C). In addition, we
found that FDDM1 did not bind either methylated or unmethylated dsDNAs (Figure 1G).
However, we cannot rule out that FDDM1 may bind other specific DNA sequences. These
results demonstrate that FDDM1 binds 5′ dsRNAs, which requires the XS domain.
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Figure 1. FDDM1 binds 5′ overhang dsRNAs but not DNAs. (A) The schematic structure of the
FDDM1, truncated FDDM1, FDDM2 and IDN2 proteins. ZF: Zinc-finger; CC: Coil-Coil. (B) The
purified proteins used in RNA and DNA binding assays. Proteins were resolved by SDS–PAGE gel
and stained with Coomassie Brilliant Blue. The protein molecular masses are indicated on the right.
(C,D) FDDM1 binds 5′ overhang dsRNA but not single-stranded RNA (ssRNA). The probes used in
the binding assay are shown on the right. * indicates radioactive labeled RNA strand. 5′ overhang
dsRNA: 35 bp dsRNA with 18 nt overhangs at each end. Competitor: unlabeled probe of the same
sequence. (E,F) The XS domain, but not the XH domain, is required for the FDDM1-RNA interaction.
(G) FDDM1 does not bind DNAs. Various DNA probes used in the binding assay are shown on the
right. Asterisks indicate radioactive labeled DNA strand. Approximately 50 µg proteins were used
for the binding assay.

3.2. FDDM1 and FDDM2 Are Involved in DNA Demethylation

In order to identify the functions of FDDM1 and FDDM2, we obtained their T-DNA
insertion null mutants from the Arabidopsis stock center, including Salk_059303 (fddm1-1),
Salk_021139 (fddm1-2), and CS822551 (fddm2-1) (Figure S1A–D). Because FDDM1 and
FDDM2 are homologs of IDN2, we first evaluated the effect of fddm1 and fddm2 on the
DNA methylation status at the ATSN1 locus, which is silenced in the wild-type plant.
The loss-of-function mutations of FDDM1 and FDDM2 did not affect DNA methylation
levels at the ATSN1 locus (Figure 2A). Recent studies also indicate the involvement of
non-coding RNAs in active DNA demethylation at a specific DNA locus [20]. Since FDDM1
and FDDM2 are RNA-binding proteins, we reasoned that they might function in the DNA
demethylation process. We examined the DNA methylation status at the DT-77 locus,
whose methylation is controlled by the DNA demethylation enzyme ROS1 [20]. Relative
to Col (wild-type plant; WT), the DNA methylation contents of DT-77 were increased in
fddm1-1, fddm1-2, and fddm2-1 (Figure 2A and Figure S3A). We further analyzed the DNA
methylation status at additional ROS1-dependent DNA loci, including DT-239, DT-52,
and DT-77, using bisulfite sequencing. The DNA methylation contents were increased in
fddm1-1 and fddm2-1 when compared with WT (Figure 2B,C). The expression of a wild-
type copy of FDDM1 and FDDM2 in fddm1-1 and fddm2-1, respectively, rescued the DNA
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methylation status at various DNA target loci (Figure S3B,C). These results suggest that
FDDM1 and FDDM2 may modulate DNA methylation levels at ROS1-depedent DNA loci.
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Figure 2. FDDM1 and FDDM2 are required for DNA demethylation. (A) FDDM1 and FDDM2
are required for DNA demethylation at the DT-77 locus. HaeIII- or HpaII-digested genomic DNAs
were used for the PCR amplification of AtSN1, while BstUI-treated genomic DNAs were used for the
amplification of DT-77. Undigested genomic DNAs are used as loading controls. (B,C) The bisulfite
sequencing analyses of DNA methylation at various genotypes. The percentage of methylated
cytosine in different cytosine contexts is shown. (D) FDDM1 and FDDM2 do not act redundantly
in DNA demethylation. Restriction enzyme-digested and undigested (loading control) DNAs were
used as templates for the PCR amplification of various loci.

The high similarity between FDDM1 and FDDM2 suggests that they may act re-
dundantly in modulating DNA methylation at ROS1-dependent DNA loci. We therefore
constructed an fddm1-2 fddm2-1 double mutant and examined the demethylation status in
the various loci in this mutant. Unexpectedly, the DNA methylation contents in fddm1-2
fddm2-1 seem similar to those in fddm1-2 or fddm2-1 (Figure 2D and Figure S3D), suggesting
that FDDM1 and FDDM2 may not redundantly affect DNA methylation.

3.3. FDDM1 and FDDM2 Form a Heterodimer

The genetic non-redundancy of FDDM1 and FDDM2 raised a possibility that FDDM1
and FDDM2 act as a complex in DNA demethylation. We first used a yeast two-hybrid
assay to test this possibility. The co-expression of BD-FDDM1/AD-FDDM2, but not the
negative control pairs, enabled yeast cells to grow in the medium lacking Ade (Figure 3A,B),
showing the FDDM1–FDDM2 interaction. In this assay, we employed the interaction
between FDM1XH (XH domain of FDM1) and the full-length FDM1 as a positive control,
which was reported by our lab previously [19]. We also did not observe the self-interaction
of FDDM1 (Figure 3B). Next, we determined the protein domain of FDDM1 required for the
FDDM1–FDDM2 interaction using truncated FDDM1 proteins. Deletion of the XH domain
(FDDM1-T1), but not the XS domain (FDDM-T2) and the coil-coil domain (FDDM-T3),
abolished the interaction (Figure 3C). Two conserved amino acids, W (tryptophan) and
E (glutamic acid) in the XH domain, were reported to play the key roles in mediating
protein interaction [19]. To validate our result, we replaced the two conserved amino acids
(W520 and E532) with A (alanine) in the XH domain of FDDM1 (FDDM1-T4; Figure 3A).
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As expected, FDDM1-T4 did not interact with FDDM2 (Figure 3C). The results of the yeast
two-hybrid indicate that the XH domain of FDDM1 mediates the interaction with FDDM2.
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Figure 3. FDDM1 and FDDM2 act in DNA demethylation via forming a heterodimer. (A) The
schematic structure of the truncated FDDM1 proteins. (B) FDDM1 interacts with FDDM2. Protein–
protein interaction enables the growth of yeast cells on an adenine-deficient medium (–Ade–Leu–
Trp). The interaction between FDM1XH and FDM1 was used as the positive control. (C) The
XH domain is required for the FDDM1–FDDM2 interaction. (D) A BiFC analysis to detect the
FDDM1–FDDM2 interaction in tobacco leaf cells. The green color indicates the BiFC signal (originally
yellow fluorescence) detected by confocal microscopy. (E) A co-IP analysis to detect the FDDM1–
FDDM2 interaction. MYC-FDDM2 co-expressed with FDDM1-GFP or GFP in tobacco leaves. IP was
performed with anti-GFP antibodies, and the proteins were detected with the antibodies against MYC
or GFP. (F) The XS and XH domains of FDDM1 are required for DNA demethylation. The restriction
of enzyme-digested and undigested (loading control) DNAs were used as templates for the PCR
amplification of DT-77.

To validate the interaction observed in Y2H, we performed the bimolecular fluo-
rescence complementation (BiFC) assay in tobacco leaf cells by transiently co-expressing
nVenus-FDDM1 (FDDM1 fused with the N-terminal fragment of Venus) with cCFP-FDDM2
(FDDM2 fused with the C-terminal fragment of cyan fluorescent protein). The yellow flu-
orescence signal was detected in the nucleus when nVenus-FDDM1 co-expressed with
cCFP-FDDM2, but not in the negative control cCFP (Figure 3D). Additionally, we also co-
transformed the MYC-tagged FDDM2 with GFP-tagged FDDM1 or GFP in tobacco leaves
and tested their interactions by coimmunoprecipitation (co-IP) assay. In the FDDM1-GFP,
but not in the GFP precipitated fraction, MYC-FDDM2 protein was detected by western
blot (Figure 3E). Taken together, these results reveal that FDDM1 and FDDM2 interact in
plant cells.
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3.4. XS and XH Domains of FDDM1 Are Required for Modulating DNA Methylation Levels

Based on the fact that the XS and XH domains play important roles in dsRNA binding
and heterodimer formation, we wanted to know the effect of the XH and XS domains
on the FDDM1 function in plants. We generated transgenic fddm1-1 plants expressing
FDDM1-T1 (lacking the XH domain) or FDDM1-T2 (lacking the XS domain). Unlike the
full-length FDDM1 protein, FDDM1-T1 and FDDM1-T2 did not complement the increased
DNA methylation levels in fddm1-1 (Figure 3D and Figure S4). These results demonstrate
that the XH domain and the XS domain are essential for the function of FDDM1 in DNA
demethylation.

4. Discussion

In summary, we show that FDDM1 and FDDM2 participate in DNA methylation in
Arabidopsis. This result adds a new function to the plant-specific SGS3-like gene family.
FDDM1 and FDDM2 do not act redundantly. Rather, they likely form a hetero-complex to
function, as a lack of the XH domain of FDDM1 disrupts the FDDM1-FDDM2 interaction,
resulting in increased DNA methylation levels.

How does the FDDM1-FDDM2 complex affect DNA methylation? There are at least
three possibilities. First, it may positively contribute to DNA demethylation through the
ROS1 pathway. The IDN2 complex is proposed to bind the RNA duplex formed by siRNA
and long non-coding RNAs to trigger downstream events in the RdDM pathway [16,18,20].
Thus, the FDDM1–FDDM2 complex may bind non-coding RNAs to facilitate DNA demethy-
lation, given the fact that the FDDM1 mutant lacking the ability to bind 5′ dsRNAs fails to
rescue the increased DNA methylation levels in fddm1. In addition, IDN2 has been shown
to interact with chromatin-remodeling factors to contribute to RdDM [26]. By analog,
FDDM1/FDDM2 may act similarly in modulating DNA demethylation. Second, it may
be a negative regulator of DNA methylation process. However, the DNA methylation of
AtSN1 is not affected by fddm1, suggesting that FDDM1 and FDDM2 may not function
through the RdDM pathway. Third, it may indirectly contribute to the DNA methylation
process through modulating the expression of genes involved in DNA methylation. Clearly,
these possibilities need to be further examined.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes13020339/s1, Figure S1: The amino acid sequence alignment of FDDM1 (AT5g59390) and
FDDM2 (AT4g01180). Figure S2: Identification of fddm1-1, fddm1-2 and fddm2-1. Figure S3: FDDM1
and FDDM2 are required for DNA demethylation. Figure S4: FDDM1-T1 and FDDM-T2 proteins in
transgenic plants detected by western blot. Table S1: Primers used in this study.
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