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Abstract: Next generation sequencing (NGS) is strategically used for genetic diagnosis in patients
with Charcot–Marie–Tooth disease (CMT) and related disorders called non-syndromic inherited
peripheral neuropathies (NSIPN) in this paper. With over 100 different CMT-associated genes
involved and ongoing discoveries, an important interlaboratory diversity of gene panels exists at
national and international levels. Here, we present the work of the French National Network for Rare
Neuromuscular Diseases (FILNEMUS) genetic diagnosis section which coordinates the seven French
diagnosis laboratories using NGS for peripheral neuropathies. This work aimed to establish a unique,
simple and accurate gene classification based on literature evidence. In NSIPN, three subgroups
were usually distinguished: (1) HMSN, Hereditary Motor Sensory Neuropathy, (2) dHMN, distal
Hereditary Motor Neuropathy, and (3) HSAN, Hereditary Sensory Autonomic Neuropathy. First, we
reported ClinGen evaluation, and second, for the genes not evaluated yet by ClinGen, we classified
them as “definitive” if reported in at least two clinical publications and associated with one report
of functional evidence, or “limited” otherwise. In total, we report a unique consensus gene list for
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NSIPN including the three subgroups with 93 genes definitive and 34 limited, which is a good rate
for our gene’s panel for molecular diagnostic use.

Keywords: rare diseases; public health; Charcot–Marie–Tooth disease; next generation sequencing;
consensus gene list

1. Introduction
1.1. CMT Is a Heterogeneous Genetic Disease

Charcot–Marie–Tooth disease (CMT) encompasses Hereditary Motor and Sensory
Neuropathies (HMSN). They represent the most frequent inherited peripheral neuropa-
thy. Related disorders with overlapping clinical findings include distal Hereditary Motor
Neuropathies (dHMN), Hereditary Sensory Autonomic Neuropathies (HSAN), among
others. Collectively termed non-syndromic inherited peripheral neuropathies (NSIPN) in
this article, these disorders represent the most common group of inherited neuromuscular
diseases with an estimated prevalence of 1 in 2500 [1]. Over the past 30 years, a huge
revolution in molecular genetics and genomics has occurred. Consequently, more than
100 NSIPN causing genes were identified with many different types of mutations and
the number is still increasing [2,3]. In addition, several genes involved in one type of
neuropathy were identified later in other phenotypes. For example, SPTLC1, reported for
the first time as HSAN1A, was recently involved in the HMSN phenotype [4].

1.2. Molecular Diagnosis Is Positive around 40% of Cases

NSIPN represent a number of challenges for molecular diagnostic in laboratories,
due to the clinical and genetic heterogeneity. To date, numerous studies worked on the
rate of molecular diagnosis since the beginning of NGS analysis. In our previous study,
we were able to make a molecular diagnosis in 40% (49/123 patients) with a gene panel
list of 81 genes which were consistent with others studies [5]. Hartley et al. found 24%
of diagnosis (12/50 families) by using whole exome sequencing (WES) [6]. Gonzagua-
Jauregui et al. were able to have a positive rate in 46% (17/37 families) by WES [7]. Dorhn
et al. used a targeted panel between 54–84 genes and identified the genetic cause in 19.8%
(121/612 patients) [8]. By associating Multiplex-ligation-dependent-probe-amplification
(MLPA) for PMP22/GJB1/MPZ and GJB1/MPZ/PMP22, Sanger sequencing, and targeted
panel sequencing exclusively on CMT axonal, Padilha et al. found a molecular diagnosis in
55% of families (33/55) with a gene list panel of 104 genes [9]. Taghizadeh et al. were able
to find a molecular diagnosis in 46.6% patients (27/58) by WES [10]. Cortese et al. found
two diagnosis rates depending on regions, 32% in London with a panel of 50 genes and
30% in Iowa with a panel of 51 ± 23 genes [11].

The 60% undiagnosed cases might be caused by other types of mutations in known
genes not identified, such as deep intronic variations and indels or by mutations in un-
known genes.

1.3. Next Generation Sequencing Technologies Increase the Rate of Molecular Diagnosis

Next generation sequencing (NGS) has revolutionized genomic research. Nowadays,
NGS has been implemented and is largely used in day to day clinical practice. It provides
possibilities for a more efficient genetic diagnostic service to patients with hereditary
neuropathies [5]. Indeed, NGS platforms can perform parallel sequencing of millions of
small DNA fragments. Furthermore, the NGS sequencing cost for large batches of samples
is permanently decreasing and its efficiency growing regarding the time taken to sequence
genetic material compared with the traditional Sanger sequencing method. To summarize,
NGS method allows rapid and relatively cheap parallel sequencing of multiple genomic
loci and the detection of a larger spectrum in DNA variations, providing unknown genetic
variants, which is essential in the context of the genetic heterogeneity of CMT.
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In clinical CMT practices, customized targeted panels of disease-relevant gene is the
most commonly used method for the NGS approach and offers a high degree of coverage
of the selected genes [12]. However, because the mutational screening capacities in the field
of neuropathies are exponentially increasing and the analysis of a gene list from a targeted
panel associated with specific disease groups evolves rapidly.

Due to the overlapping phenotypes of numerous genes in NSIPN, we choose the NGS
analysis of a unique gene panel including genes involved in the three different subgroups.

2. Materials and Methods

Identical Gene List Panel Must Be Performed in Expert Laboratories
In France, several genetic diagnostic laboratories are using NGS for targeted panels of

disease-relevant genes in the NSIPN diagnosis. However, depending on their laboratory
expertise and local history, these gene panels can be slightly different from one institute
to another.

FILNEMUS (Filière Nationale des Maladies Rares Neuromusculaires) was created in
2014 with the National Network for Rare Disease. One of its multiple missions has been
to standardize the NGS diagnostic approach in order to standardize the testing procedure
for patients from different regions. In this context, the nine French genetic diagnostic
laboratories using NGS for myopathies recently published a consensual gene list [13].
Similarly, in this study, we aimed to establish a simple and accurate gene classification, more
comprehensible and accessible for the whole clinical community, to provide a recommended
specific “NSIPN-related disease gene list” to the reference diagnostic centres. We present
an updated list of genes called “unique gene panel” based on the recommendation from
seven specialized neuropathies diagnostic laboratories in France for NSIPN, including the
three subgroups: HMSN, dHMN, and HSAN.

3. Results and Discussion
3.1. The FILNEMUS Consortium Implemented a Unique Gene Panel for NSIPN

The FILNEMUS consortium was a real springboard for the seven French neuropathy
diagnostic laboratories using the NGS approach for NSIPN.

A concerted decision was achieved to identify a unique gene panel including genes
involved in one or several of the three subgroups: (1) HMSN, (2) dHMN, and (3) HSAN.
Each gene was selected through the Gene Table of Neuropathological Disorders [14], the
practical experience from each of the seven diagnosis groups, and finally the available
literature. Following these criteria, 127 genes were classified into NSIPN; 81 genes reported
in HMSN, 26 in dHMN, and 20 in HSAN (Table 1) with overlap between the different
subgroups. For example, TRPV4 is reported in CMT and dHMN, SCN9A in HSAN and
congenital insensitivity and more (see column “Diseases” in supplementary data Table S1,
from references 1 to 281).

Table 1. Summary of National French consensual gene lists for the genetic diagnosis of NSIPN.

Subgroup Definitive Genes
n (%)

Limited Genes
n (%)

Total Genes
n

CMT or HMSN 55 (68%) 26 (32%) 81

dHMN 21(81%) 5(19%) 26

HSAN 17(85%) 3(15%) 20

NSIPN 93 (73%) 34 (27%) 127

3.2. Molecular Strategy Is Based on Four Steps

For NSIPN, the standardized strategy consists in first (1) performing a rapid and
reliable detection of duplication/deletion of the PMP22 gene in patients with relevant
phenotype as HMSN (Figure 1).
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Figure 1. National French consensus strategy for genetic diagnosis of NSIPN using NGS.

In case of duplication, PMP22 absence and depending on the prescription and clinical
data, (2) an NGS analysis of a unique gene panel is performed.

Clinical data of NSIPN, family history, and conduction velocity of the median nerve
are documented to help biologists interpret NGS data. NGS results generate a variants list
classified according to American college of medical genetics ACMG criteria [15]. (3) Diag-
nostic pluridisciplinary meetings between clinicians and geneticists are organised to discuss
the result and the pursuit or not of a molecular diagnosis for the patient. More precisely,
in case we identify a class IV variant (likely pathogenic) or a class V variant (pathogenic)
variant according to the ACMG classification, the analysis is stopped and we correlate the
genotype with the phenotype of the patient. When a class III variant is identified (Variant
of Unknown Significance), we discuss about the potentiality of this variant to be linked to
the phenotype of the patient. If correlation occurs, we ask for familial study and functional
experiments (if available). If no correlation takes place, we ask for additional investigations.
In the absence of a potential variant or if the variant does not correspond to the phenotype,
the meeting discussion turns toward the identification of new genes, (4) by performing
WES or Whole Genome sequencing (WGS).

3.3. Genes Are Classified Depending on Literature Evidence Based on Strande Publication and
ClinGen Evaluation

We reported first the ClinGen evaluation (https://www.clinicalgenome.org/, accessed
on 15 December 2021). ClinGen classified gene as definitive when a strict correlation is well
established between the phenotype and the genotype, limited when not, and moderate
when between both. For the genes not evaluated yet by ClinGen, we classified them
as “definitive” if a minimum of two clinical studies were reported, associated with one
report of functional evidence [16], such as, for example, for the MPZ (Myelin Protein
Zero) gene. We chose papers reporting genes involving several families and we took
into account the pathogenicity of the variants described with low or absence gnomAD
(https://gnomad.broadinstitute.org/, accessed on 15 December 2021) occurrence. We
classified genes as “limited” if there was not enough bibliographic data (one or two clinical
cases without functional evidence/one clinical case and one functional evidence), such as,
for example, the PNKP (Polynucleotide Kinase Phosphatase) gene. An important point is
that some genes are involved in different phenotypes and can be “definitive” in one type
of neuropathy and “limited” in another. For example, DYNC1H1 is classified as “limited”

https://www.clinicalgenome.org/
https://gnomad.broadinstitute.org/
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in HMSN and “definitive” in dHMN. There is a broad clinical overlap in axonal HMSN
and dHMN with some common genes involved as DYNC1H1, GARS1, HSPB1, HSPB8,
IGHMBP2, MFN2, and PLEKHG5, as represented in Figure 2. This point led us to consider a
unique gene panel for this disease’s group. We also observed a phenotypic overlap between
NSIPN, but also with other diseases, such as distal myopathies or hereditary spastic
paraplegia (HSP), as described in Pipis et al. [12,17]. A limitation of this classification is that
some genes with strong clinical evidence are classified as “limited” due to poor functional
evidence, such as HK1. Another important point to notice is that two genes MED25 and
KIF1B were disputed and no more involved in HMSN and “replaced” by PNKP and MFN2
in their locus.
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3.4. This Classification Allows Stratification of Variant Analysis

At least, 93 genes can be classified as “definitive” with, in detail: 55/81 genes in the
HMSN group (68%), 21/26 in the dHMN group (81%), and 17/20 genes in the HSAN
group (85%) leading to an overall 73% of genes having enough scientific evidence (Table 1).
Compared to the myopathy consensus which defined 70% of definitive genes [13], we have
the same literature proof for the molecular diagnosis of NSIPN. Through this classifica-
tion, an accurate initial determination of the patient’s entry diagnosis allows the genetic
screening of the most relevant genes potentially involved. This consensual diagnostic
strategy was validated by the expert clinician group and geneticists and adopted by all
participating laboratories.

4. Conclusions
How Does This Consortium Helps Molecular Diagnosis in NSIPN?

This consensus is likely to increase the diagnostic rate and further our understanding
of the genetic basis of NSIPN diseases as well. The burden of variable interpretation is
considerable, and robust filtering strategies that use all the available clinical, genetic, and
bioinformatics informations are required to classify variants.

Thanks to the nationwide FILNEMUS genetic diagnosis working-group, a yearly
update of the consensual gene lists will be done. In this regard, the aim of this working
group is to gradually classify all “gene-related diseases” associations according to the
published ClinGen Clinical Validity framework.
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Within the next four years, we believe that the rapid expansion of NGS platforms
across France with the implementation of bioinformatics tools to analyse the large volume
of data generated will allow us to combine the WES and WGS strategy to the diagnosis
of NSIPN, using this unique gene panel for an in silico first-step variant analysis. These
techniques are very useful to increase the diagnostic yield in NSIPN. However, accurate
and precise phenotyping of patients are mandatory for the NGS approach. Skipping this
step leads to false diagnoses and increases diagnostic wavering.

This unique gene panel recommendation is thought to be a real improvement for the
diagnosis. Our goal is to provide access to accurate diagnosis and appropriate treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13020318/s1, Table S1: National French consensual gene
lists for the genetic diagnosis of NSIPN.
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