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Abstract: The Tibetan pig is an endemic economic animal in the plateau region of China, and has
a unique adaptation mechanism to the plateau hypoxic environment. Research into microRNAs
(miRNAs) involved in the mechanism underlying hypoxia adaptation of Tibetan pig is very limited.
Therefore, we isolated alveolar type II epithelial (ATII) cells from the lungs of the Tibetan pig, cultured
them in normoxia/hypoxia (21% O2; 2% O2) for 48 h, and performed high-throughput sequencing
analysis. We identified a hypoxic stress-related ssc-miR-141 and predicted its target genes. The target
genes of ssc-miR-141 were mainly enriched in mitogen-activated protein kinase (MAPK), autophagy-
animal, and Ras signaling pathways. Further, we confirmed that PDCD4 may serve as the target gene
of ssc-miR-141. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis was performed
to confirm the expression levels of ssc-miR-141 and PDCD4, and a dual-luciferase gene reporter
system was used to verify the targeted linkage of ssc-miR-141 to PDCD4. The results showed that the
expression level of ssc-miR-141 in the hypoxia group was higher than that in the normoxia group,
while the expression level of PDCD4 tended to show the opposite trend and significantly decreased
under hypoxia. These findings suggest that ssc-miR-141 is associated with hypoxia adaptation and
provide a new insight into the role of miRNAs from ATII cells of Tibetan pig in hypoxia adaptation.

Keywords: hypoxia; ssc-miR-141; ATII cells; PDCD4; HEK293T

1. Introduction

Hypoxia is one of the most important environmental factors in the Qinghai–Tibet
plateau that exerts a significant impact on the survival of animals and poses challenges to
mammals [1–3]. Tibetan pigs are endemic economic animals on the Qinghai–Tibet plateau,
and can adapt well to the hypoxic environment [4,5]. Physiologists have shown that Tibetan
pigs have evolved adaptations to survive in high-altitude hypoxic environments, such as
well-developed lungs, thicker alveolar septa, high density of pulmonary arterioles, and
large alveoli [6–8]. Therefore, the Tibetan pig is the most suitable animal model to explore
the hypoxia adaptation mechanism of plateau animals. As the main site of gas exchange,
the alveoli are most vulnerable to the influence of external environment [9]. Alveolar
epithelial cells increase the expression of cytokines, chemokines, and adhesion molecules
upon exposure to a hypoxic environment, which creates an imbalance in the alveolar
environment and contributes to a series of lung diseases such as high altitude pulmonary
edema, pulmonary hypertension, and pulmonary fibrosis [10,11]. The surface of alveolar
epithelial cells is surrounded by ATI and ATII cells. ATII cells can be transformed into ATI
cells, which are responsible for the repair, transformation, and regeneration of alveoli. As
progenitor cells in the alveoli, ATII cells play a very important role in the repair of lung
injury [12]. Royce et al. showed that exosomes from alveolar epithelial cells alleviated
pneumonia and pulmonary fibrosis in chronic allergic airway disease and bleomycin-
induced pulmonary fibrosis models [13]. Another study showed that non-transplantable
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bone marrow mesenchymal stem cells (BMSCs) alleviated lung injury through attenuation
of lipopolysaccharide (LPS)-mediated damage to ATII cells [14]. In acute lung injury, ATII
cells from young mice adapted to stress by increasing the volume and proliferation rate of
intracellular surfactants to reduce inflammatory signals and enhance metabolism [15].

Many recent studies have focused on the relationship between microRNAs (miRNAs)
and hypoxia adaptation. miRNAs such as miR-21-5p, miR-200b/C, and miR-21 have been
shown to play key roles in hypoxia regulation [16–18]. Hypoxia-inducible factor (HIF)
regulates the expression of a variety of genes that allow cells to adapt to and survive under
hypoxic conditions. miRNAs are shown to be involved in regulation of HIF upstream and
downstream signaling pathways; for instance, miR-199a, miR-17-92 cluster, and miR-20b
regulate HIF1α [19–21], and the expression of miR-107, miR-210, and miR-373 was found
to be induced by HIF [22–24]. We found that ssc-miR-141 expression was significantly
upregulated in ATII cells in Tibetan pigs under normoxia and hypoxia conditions. miR-141-
3p is associated with cardiomyocyte apoptosis [25], mesenchymal stem cell senescence [26],
and I/R injury in endothelial cells [27]. However, the role and mechanism of action of
ssc-miR-141 in ATII cells of the Tibetan pig remain to be elucidated.

PDCD4, encoding programmed cell death protein 4, is a member of the apoptotic
factor family and a key inducer of apoptosis [28]. PDCD4 plays a pro-inflammatory
role in many inflammatory diseases. For instance, PDCD4 gene deletion significantly
reduced the inflammatory response of the spinal cord in a mouse experimental allergic
encephalomyelitis model [29] and significantly reduced LPS-induced inflammatory injury
in mice and increased their survival rate as compared to that of wild-type mice [30]. In
a high fat-induced obesity mouse model, PDCD4 deletion reduced inflammation in the
adipose tissue [31]. In recent years, more and more studies have focused on the regulation
of PDCD4 by miRNAs. Ma et al. [32]. Found that miR-532 could attenuate hypoxia-
induced cardiomyocyte apoptosis by targeting PDCD4 and Zhou et al. [33] showed that
the long-noncoding RNA lncRNA-GAS5 regulated PDCD4 expression by targeting miR-21
and mediated myocardial infarction-induced cardiomyocyte apoptosis. In another study,
miR-145 overexpression protected rats from myocardial infarction by targeting PDCD4
and consequently reducing apoptosis and mitochondrial stress [34]. Although PDCD4
plays an important regulatory role in various types of apoptosis, its mechanism of action in
hypoxia-induced ATII cells of the Tibetan pig remains unclear. Therefore, this study aimed
to verify whether PDCD4 is indeed a target gene of ssc-miR-141 using a dual-luciferase
reporter assay system. We performed functional enrichment analysis to investigate the
main biological functions of ssc-miR-141 and PDCD4, and evaluated the relevant regulatory
mechanisms. Our findings will provide better evidence for understanding the regulation of
miRNAs in ATII cells of the Tibetan pig under hypoxic conditions.

2. Materials and Methods
2.1. Samples

A newborn Tibetan piglet was selected and slaughtered under aseptic conditions
after anesthesia to collect the lung tissue. Primary ATII cells were isolated from the lungs
according to the method of Yang et al. [35]. Isolated ATII cells were randomly divided into
two groups, namely the control group (21% O2, normoxia) and experimental group (2% O2,
hypoxia). Cells were cultured in normoxia (74% N2, 5% CO2, 21% O2) or hypoxia (93% N2,
5% CO2, 2% O2) using a mixed three-gas incubator.

2.2. Ssc-miR-141 Target Gene Prediction and Functional Enrichment Analysis

We found significant differences in the expression levels of ssc-miR-141 in ATII cells
under normoxic and hypoxic conditions based on our previous miRNA sequence data. To
further understand the mechanism of action of ssc-miR-141, we used TargetScan (www.
TargetScan.org/,accessed on 1 June 2022), MIREAP (http://www.mireap.org/, accessed on
1 June 2022), and miRanda (http://www.bioinformatics.com.cn/local_miranda_miRNA_
target_prediction_120/, accessed on 1 June 2022) online software to predict the target
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genes of ssc-miR-141. Venny2.1 (https://bioinfogp.cnb.csic.es/tools/venny/index.html/,
accessed on 5 June 2022) online software was used to determine their intersections. Finally,
we used the DAVID6.8 (https://david.ncifcrf.gov/, accessed on 6 June 2022) software to
perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis.

2.3. Screening of Target Genes Related to Hypoxia Resistance in ATII Cells

Based on the ssc-miR-141 target genes predicted by the three bioinformatic software
tools, we determined the intersection of the target gene set using the Venny 2.1 online
software. The previous high-throughput sequencing results were screened in cells treated
with different oxygen concentrations. Finally, we randomly selected PDCD4 as the next
step for verification and to further screen out the key target genes in ATII cells from the
Tibetan pig involved in hypoxia regulation, in combination with results of enrichment
analysis of functional genes.

2.4. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) Analysis

RNA from ATII cells exposed to different oxygen concentrations was extracted by
Trizol, and used to synthesize first-strand cDNA according to the Mir-X miRNA First-
Strand Synthesis Kit (AG, Changsha, Hunan, China), using Evo M-MLV RT Kit and gDNA
clean cDNA of mRNA was generated for qPCR (Accurate Biology) using Mir-X miRNA
qRT PCR SYBR kit (AG, Changsha, Hunan, China) and LightCycler® 480 Instrument II
(Roche, Basel, Switzerland).

The mature ssc-miR-141 sequence was obtained from the miRBase database. Upstream
primers were designed and the mRQ 3’ universal primer was used downstream; U6
was used as the internal reference gene. The mRNA sequences of PDCD4 and internal
reference β-actin were selected from National Center for Biotechnology Information (NCBI;
https://www.ncbi.nlm.nih.gov/, accessed on 6 June 2022); primers were designed by
Premier 5.0 and Primer-BLAST software and synthesized by Zhongke Yutong (Xian, Shanxi,
China) Biotechnology Co., Ltd. The details of the primers are shown in Table 1. Reaction
conditions were as follows: pre-denaturation at 95 ◦C for 30 s; denaturation at 95 ◦C for 5 s,
annealing at 60 ◦C for 35 s, 40 cycles; storage at 4 ◦C, and analysis of melting curves after
amplification. Three replicates were performed for each sample.

Table 1. Primer information for qPCR.

Gene Primer Sequence (5′–3′)

ssc-miR-141
Forward: GTAACACTGTCTGGTAAAGATG

Reverse: mR Q 3′Primer(Universal
downstream primers)

PDCD4 Forward: TCATCCCGTGACTCTGGC
Reverse: GGTAGTCCCCTTCCTTTCC

β-actin Forward: ATATTGCTGCGCTCGTGGT
Reverse: TAGGAGTCCTTCTGGCCCAT

U6
Forward:

GGAACGATACAGAGAAGATTAGC
Reverse: TGGAACGCTTCACGAATTTGCG

2.5. Construction of Recombinant Plasmid

According to the data obtained by high-throughput sequencing, the 3′-UTR sequence
and mutated sequence of the PDCD4 gene were synthesized and cloned into a dual-
luciferase reporter gene vector (pmirGLO). SacI and XhoI (20 bp) restriction sites were
introduced into the 5′ and 3′ ends of the target gene sequence, respectively, and the 3′-UTR
fragment of PDCD4 with an ssc-miR-141–binding site was cloned into pmirGLO (Promega,
Madison, WI, USA) (Figure 1). The vector was digested with SacI and XhoI to obtain the
wild-type construct. To construct the PDCD4 3′-UTR dual-luciferase reporter wild-type
vector (pmirGLO-PDCD4 3′-UTR) and mutant vector (pmirGLO-mut-PDCD4 3′-UTR),

https://bioinfogp.cnb.csic.es/tools/venny/index.html/
https://david.ncifcrf.gov/
https://www.ncbi.nlm.nih.gov/
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miRNA mimics (ssc-miR-141 mimics) and miRNA negative controls (miRNA NC) were
designed and synthesized by Gema Pharmaceutical Technology Co., Ltd. (Shanghai, China).
The ssc-miR-141 mimics and NC were co-transfected into the HEK-293T cells and their
fluorescence activity was detected by the dual-luciferase reporter gene system. When the
transcription of firefly luciferase is blocked, the translation of firefly luciferase protein
is inhibited and the fluorescence of firefly decreases; however, the expression of Renilla
luciferase is unaffected and serves as a normalized internal reference. At this time, firefly
luciferase activity/Renilla luciferin. Any decrease in the enzymatic activity value can be
used to determine whether the miRNA has a direct regulatory effect on the target gene.
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Figure 1. Schematic diagram of pmirGLO-PDCD4-3’UTR recombinant vector.

2.6. Cell Culture and Transfection

HEK-293T cells were purchased from the Cell Bank of the Chinese Academy of Sci-
ences, and cultured in high-glucose Dulbecco’s modified Eagle’s medium (DMEM) contain-
ing 10% fetal bovine serum (FBS). After several passages, well-grown cells were seeded in
a 24-well plate at a density of about 1 × 104 cells/well. Transfection was performed using
Lipofectamine™ Reagent 2000 (Invitrogen, Waltham, MA, USA) and miRNA mimic as per
the manufacturer’s instructions. The mimic NC/ssc-miR-141 mimic and PDCD4-3′-UTR
wild-type and mutant recombinant plasmids were co-transfected into HEK-293T cells.
There were four groups in the experiment as follows: pmirGLO-PDCD4-WT + NC mimic
group, pmirGLO-PDCD4-WT + ssc-miR-141 mimic group, pmirGLO-PDCD4-Mut + NC
mimic group, and pmirGLO-PDCD4-Mut + ssc-miR-141 mimic group. Three replicate
wells were set for each group of samples.

2.7. Dual-Luciferase Reporter Gene Activity Assay

Transfected HEK-293T cells were subjected to the luciferase reporter assay after
48 h. The assay was performed in 96-well plates according to manufacturer’s guidelines
(Promega, Madison, WI, USA). Renilla luciferase activity was normalized to the corre-
sponding firefly luciferase activity and plotted as a percentage of control. Three biological
replicates were evaluated for each treatment.

2.8. Statistical Analysis

Statistical analysis was performed on the experimental data using IBM SPSS 21.0.
Independent sample t-test was used for pairwise comparisons, and Duncan’s multiple com-
parisons and one-way analysis of variance (ANOVA) were used for comparison between
multiple groups. Data were expressed as mean ± standard error. GraphPad Prism 8.0
software was used to draw graphs; p < 0.05 indicated significant difference, and p < 0.01
indicated extremely significant difference.

3. Results
3.1. Ssc-miR-141 Target Gene Prediction

In this study, 14,353, 13,022, and 11,294 target genes of ssc-miR-141 were predicted
from three online software tools. The online software Venny 2.1 was used to determine
their intersection, and a total of 8649 target genes were obtained (Figure 2).
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Figure 2. Target gene prediction of ssc-miR-141.

3.2. GO and KEGG Pathway Enrichment Analysis of Ssc-miR-141 Target Genes

GO functional enrichment analysis was performed on the 8649 target genes predicted
for ssc-miR-141; the results are shown in Figure 3A,B. The target genes of ssc-miR-141
were significantly enriched in immune system process (GO:0002376), metabolic process
(GO:0008152), biological regulation (GO:0065007), cellular process (GO:0009987), and other
entries at the biological process (BP). These target genes were significantly enriched in
molecular functions (MF) such as binding (GO:0005488). At the cellular component (CC)
level, the target genes were significantly enriched in cell part (GO:0044464), organelle
(GO:0043226), etc. Following the GO functional annotation, we performed KEGG pathway
enrichment analysis for the predicted target genes. The target genes of ssc-miR-141 were
significantly enriched in mitogen-activated protein kinase (MAPK) signaling pathway
(ko04010), autophagy-animal (ko04140), cell adhesion molecules (CAMs) (ko04514), and
Ras signaling pathway (ko04014) (Figure 3C,D).

3.3. RT-qPCR Analysis

To verify the accuracy of the sequencing results and confirm the reliability of the
target gene prediction results, ssc-miR-141 and key target gene expression was verified
by RT-qPCR. The expression level of ssc-miR-141 in the hypoxia group was significantly
higher than that in the normoxia group (p < 0.05) (Figure 4B), consistent with the results
of high-throughput sequencing (Figure 4A). The expression of PDCD4 was significantly
downregulated in the hypoxia group as compared to that in the normoxia group (p < 0.01)
(Figure 4C,D). Therefore, based on the negative regulatory relationship between miRNAs
and target genes, we selected PDCD4 as a possible target gene of ssc-miR-141.

3.4. Analysis of Ssc-miR-141–Binding Site in PDCD4 3′-UTR

A dual-luciferase activity assay was performed using 293T cells to verify whether ssc-
miR-141 binds to the 3′-UTR of PDCD4. The luciferase activity was significantly inhibited
in the group transfected with ssc-miR-141 mimics + PDCD4 WT (p < 0.01) but not in the
group co-transfected with ssc-miR-141 + PDCD4 MUT (p > 0.05) (Figure 5). These results
suggest that ssc-miR-141 mimics are involved in the regulation of PDCD4 expression by
binding to the predetermined binding site in the 3′-UTR.
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Figure 5. Double luciferase activity assays. Relative luciferase reporter expression was normal-
ized to Negative control(NC). Each experiment was repeated three times. Data are presented as
mean ± standard error. ** indicates p < 0.01 compared to mock NC; ns indicates no difference
compared to mock NC (HEK-293T cells).

4. Discussion

While the continuing research on miRNAs has revealed the functions of several new
miRNAs, the functions of many miRNAs are still unknown. A miRNA regulates the
expression of its corresponding target gene. It is quite complicated and difficult to study
the target genes of miRNAs through verification. The action sites of miRNAs include the
3′-UTR, 5′-UTR, and the open-reading frame (ORF) of the target gene. One miRNA may
act on different target genes or multiple miRNAs may regulate the expression of the same
target gene [36]. Therefore, miRNA target gene verification methods can be divided into
bioinformatic software-based prediction and experimental verification methods, which
can quickly and efficiently screen miRNA target genes and play a very important role
in miRNA research. However, the former is associated with a high false-positive rate.
Therefore, a combination of experimental validation is usually warranted to confirm the
functions of miRNAs. In this study, we used TargetScan, MIREAP, and miRanda to predict
target genes, and narrowed down the results to the 8649 common target genes obtained by
the intersection. These genes were subjected to GO and KEGG enrichment analysis, from
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which PDCD4 was selected as a candidate target gene. Then, a dual-luciferase reporter
analysis system was used for experimental verification. This method can accurately and
directly determine the binding site of miRNAs on their target genes. Herein, this strategy
provided guidance for the in-depth study of the hypoxia adaptation mechanism of the
lungs of the Tibetan pig.

In this study, GO and KEGG enrichment analysis of ssc-miR-141 target gene set was
performed. ssc-miR-141 target genes were significantly enriched in biological processes
such as immune system processes, metabolic processes, biological regulation, and cellular
process. ssc-miR-141 was thought to play a role in the immune response of Tibetan pig
ATII cells exposed to hypoxia. KEGG analysis showed that ssc-miR-141 target genes were
significantly enriched in MAPK, autophagy animal, Ras, and other pathways signaling
related to cell repair and immunity. It is speculated that ssc-miR-141 is involved in apoptosis
and immune-inflammatory responses that are mediated by targeting these genes involved
in the aforementioned signaling pathways.

The current research on the miR-141 family is mainly focused on inflammation and
apoptosis. miR-141-5p can affect cervical cancer cell proliferation and apoptosis by target-
ing BTG1 [37]. Li et al. [38] found that miR-141-3p promotes nasopharyngeal carcinoma
(NPC) by targeting neoplasm metastasis 1 (NME1). Another study [39] found that downreg-
ulation of miR-141-3p expression during hypoxia promoted tube formation, migration, and
invasion of human umbilical vein endothelial cells (HUVECs) and inhibited apoptosis by
targeting Notch2. miR-141 induced the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2
p45-related factor 2 (Nrf2) signaling pathway to promote PC12 cell viability and reduce
H/R-induced cell damage by inhibiting apoptosis and alleviating oxidative stress [40].
These studies suggest that the regulation of miR-141 expression in cells may be related to
apoptosis and inflammation. miR-141 is speculated to regulate hypoxia-induced apoptosis
and inflammatory response in ATII cells from Tibetan pigs, which allows them to adapt
to the hypoxic environment. The target genes predicted in this study were significantly
enriched in immune-inflammation–related signaling pathways such as the MAPK, au-
tophagy animal, and Ras signaling pathways. A large number of studies have shown
that the MAPK signaling pathway plays an important role in hypoxic environment. For
instance, the activation of MAPK signaling significantly promotes the survival of cardiomy-
ocytes via inhibition of stress of the endoplasmic network. This study further provides
new insights in the molecular mechanism of hypoxia-mediated cardiomyocyte injury [41].
miR-19a could attenuate MAPK signaling pathway activity by targeting CCL20, and conse-
quently abrogate H/R-induced cardiomyocyte injury [42]. Gong et al. [43] demonstrated
the inhibitory effect of miR-20a on the p38 MAPK/c-Junction N-terminal kinase (JNK)
signaling pathway via TLR4 targeting, which effectively protected cardiomyocytes from
H/R injury. Thus, miR-20a serves as an alternative target for alleviating myocardial I/R
injury. In a hypoxic environment, a regulatory network formed by the NOTCH, hypoxia,
and Ras/MAPK pathways may allow animals to adapt to changes in oxygen concentration
during developmental processes [44].

Autophagy is a conserved lysosomal degradation pathway that is involved in elimi-
nating damaged organelles and proteins in response to a variety of pathological processes,
thereby avoiding excessive damage and dysfunction in various organs and cells [45].
In mice, the antioxidant effect of autophagy maintains the glomerular endothelial cell
barrier under starvation conditions by activating the cellular antioxidant system [46].
Zhang et al. [47] showed that autophagy is an adaptation in chronically hypoxic cells. Sex-
ual metabolic response is necessary to prevent an increase in the reactive oxygen species
levels and cell death. Therefore, it is speculated that the target genes significantly enriched
in the MAPK and autophagy animal, and Ras signaling pathways may be related to the
adaptation of Tibetan pig ATII cells to a hypoxic environment. To further confirm the
accuracy of sequencing results and target gene prediction results, we performed RT-qPCR
analysis to evaluate expression of ssc-miR-141 and the key target gene PDCD4. ssc-miR-141
sequencing results were consistent with RT-qPCR verification results, and the hypoxia
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group had a significantly higher expression level of miR-141 than the normoxia group.
These results indicate that ssc-miR-141 activation negatively regulated the expression of its
target mRNA PDCD4 in ATII cells from Tibetan pigs exposed to hypoxia. The expression
level of PDCD4 in the hypoxia group was significantly lower than that in the normoxia
group, and the expression trend among the groups was opposite to that of ssc-miR-141. In
the dual-luciferase reporter assay, the luciferase activity of cells co-transfected with ssc-miR-
141 mimic and pmirGLO-PDCD4-WT significantly reduced, indicating that ssc-miR-141 can
target and bind to PDCD4. Some studies have found that PDCD4 plays an important role in
miRNA-mediated anti-cardiomyocyte apoptosis, including miR-21 [31] and miR-532 [32].
The above results indicate that the upregulated expression of ssc-miR-141 inhibited the
expression of PDCD4 and alleviated the damage to Tibetan pig ATII cells caused by the
hypoxic environment. It is speculated that the overexpression of ssc-miR-141 can effectively
enhance the adaptation of the lungs of the Tibetan pig to a hypoxic environment.

5. Conclusions

Ssc-miR-141 expression was significantly upregulated in hypoxic environment, and
the 8649 target genes were significantly enriched in signaling pathways such as MAPK,
autophagy, and Ras. The dual-luciferase reporter gene assay confirmed that miR-141
could directly target and bind to the 3′-UTR region of PDCD4, and there was an obvious
negative regulatory relationship between them. Our findings provide evidence for the role
of ssc-miR-141 in ATII cells of the Tibetan pig, and will contribute to the understanding of
miRNA-mediated gene regulation mechanisms during hypoxic stress.
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