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Abstract: Genomic prediction is revolutionizing plant breeding since candidate genotypes can be
selected without the need to measure their trait in the field. When a reference population contains
both phenotypic and genotypic information, it is trained by a statistical machine learning method that
is subsequently used for making predictions of breeding or phenotypic values of candidate genotypes
that were only genotyped. Nevertheless, the successful implementation of the genomic selection (GS)
methodology depends on many factors. One key factor is the type of statistical machine learning
method used since some are unable to capture nonlinear patterns available in the data. While kernel
methods are powerful statistical machine learning algorithms that capture complex nonlinear patterns
in the data, their successful implementation strongly depends on the careful tuning process of the
involved hyperparameters. As such, in this paper we compare three methods of tuning (manual
tuning, grid search, and Bayesian optimization) for the Gaussian kernel under a Bayesian best linear
unbiased predictor model. We used six real datasets of wheat (Triticum aestivum L.) to compare the
three strategies of tuning. We found that if we want to obtain the major benefits of using Gaussian
kernels, it is very important to perform a careful tuning process. The best prediction performance
was observed when the tuning process was performed with grid search and Bayesian optimization.
However, we did not observe relevant differences between the grid search and Bayesian optimization
approach. The observed gains in terms of prediction performance were between 2.1% and 27.8%
across the six datasets under study.

Keywords: kernels; tuning; genomic prediction; Gaussian kernel; grid search; Bayesian optimization

1. Introduction

For breeders to be able to increase genetic gain, they must accurately predict breeding
values or phenotypic values. This goal is not so complex when the traits of interest have a
simple genetic architecture. However, in traits such as grain yield with a complex genetic
architecture that is not well understood, it is more challenging to produce an accurate
prediction of breeding values or phenotypic values [1]. For example, in complex trait
prediction it is very difficult to accurately model genetic interactions such as epistatic
effects, which are common in plant and animal sciences, as well as in biology [2—6], and are
difficult to detect and to model efficiently. For this reason, some models had been proposed
to capture these complex interaction effects more efficiently and, in this way, quantify the
level of influence in understanding the genetic architecture of these traits, thus increasing
the accuracy.
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One popular method in plant and animal breeding used to model complex interactions
more efficiently is the reproducing kernel Hilbert spaces (RKHS) regression [7,8]. The main
idea of an RKHS regression is to project the given original input data available in a finite
dimensional space onto an infinite dimensional Hilbert space. Kernel methods can be
applied with any statistical machine learning algorithm since they transform the input
data using a kernel function, which is then used for applying any conventional statistical
machine learning method. Empirical evidence suggests that most of the time, better results
are obtained with the transformed input. For this reason, RKHS methods are becoming
more popular for analyzing nonlinear patterns in datasets collected in plant and animal
breeding.

RKHS methods are equally efficient, and popular, for regression and classification
problems. One of the most popular methods for classification based on kernels is the
support vector machine (SVM) which was proposed to the computer science community
in the 1990s by Vapnik [9]. This method has been successful in many fields of study
such as speech recognition, text categorization, image recognition, face detection, faulty
card detection, junk mail classification, credit rating analysis, and cancer and diabetes
classification [10,11].

RKHS methods are also very attractive because in addition to being efficient for
capturing nonlinear patterns, they are also efficient for data compression, as the transformed
input has less dimensionally than the original input. For example, when the input is a
matrix of dimension of order 100 x 100,000, the transformed input has a dimension of order
100 x 100, which has less dimension and as such, can reduce the computational resources
required during the training process. There are many transformations (kernel functions)
used to capture nonlinear patterns in the original input, and each type of transformation is
specialized for capturing some type of nonlinear patterns, but it is impossible to capture all
patterns for conventional linear statistical methods.

In the context of genomic selection (GS), RKHS methods are becoming more and
more popular since empirical evidence supports that they help increase the prediction
accuracy regarding linear methods. For example, Long et al. [12] in a study about body
weight of broiler chickens reported a better prediction accuracy of RKHS methods over
linear models. Crossa et al. [13] and Cuevas et al. [14] in wheat (Triticum aestivum L.)
and maize (Zea mays L.) found that the RKHS methods outperformed the linear methods.
However, some authors have also reported minimal differences between RKHS methods
and linear models, which is expected when the nonlinear patterns in the data are minimal
or non-existing [12,15,16].

However, when an appropriate tuning process is not performed, the prediction per-
formance of RKHS methods regarding linear models is not improved. For example, when
the Gaussian kernel is implemented, the bandwidth hyperparameter is set to the median
of the average distances or to 1, which in some cases is not optimal and can cause the
resulting prediction performance to be equal or worse than conventional linear models.
This means that when a nonlinear kernel wants to be implemented, additional work is re-
quired to select the best hyperparameters and increase the probability of a better prediction
performance. This asseveration is also true for all those machine learning methods that
need some hyperparameters to be tuned, since only an optimal tuning process can take
the most advantage of the machine learning method at hand. However, it is also true that
some default hyperparameters often do a decent job in terms of prediction performance,
even though they are not always optimal. For this reason, to obtain all the power of any
statistical machine learning method, a careful tuning process should always be performed.

As such, in this paper we carry out a benchmarking study to compare the prediction
performance implementing Gaussian kernels in the context of genomic prediction using
the univariate Bayesian genomic best linear unbiased predictor (GBLUP) model.
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2. Materials and Methods

As the material used was the Bayesian GBLUP model, six real datasets of wheat
(datasets 1 to 6 (wheat data) and metrics were used to evaluate the prediction performance.
Next, the model used is described, followed by the datasets, and finally, the metrics used to
compute the prediction accuracy.

2.1. Bayesian GBLUP Model

For prediction performance, the Bayesian GBLUP model implementing Gaussian
kernels was used. Since the Gaussian kernel only depends on one hyperparameter, only
this hyperparameter was tuned under the following three strategies: (1) no tuning setting
to the bandwidth parameter, (2) tuning using the grid search method, and (3) tuning using
the Bayesian optimization method.

The model used was

Yij = p+ Ei + 8 +8E;; + € 1)

where E; are the fixed effects of environments, Sjs j =1,...,], are the random effects
of lines, ¢E;; are the random effects of genotype by environment interaction, and €;; are
random error components in the model assumed to be independent normal random

variables with mean 0 and variance 0. Furthermore, it is assumed that ¢ = (g1, ..., g) T
N (0, agzK), gL = (3En,...,gE1),...,8E)" ~ Ny [o, 2 (ZEZE 0 ngzg) } , where K
is the Gaussian kernel (GK) that mimics a covariance matrix to capture the degree of
similarity between lines, such as the genomic relationship matrix (Linear kernel) proposed
by VanRaden (2008) [17], but is now computed assuming a nonlinear kernel such as the GK,
where (O denotes the Hadamard product. The GK was computed using the GK function:

K(x,%) = e YIi=5l? withy >0 )

where x; and x; are the marker vectors for the ith and jth individuals (genotypes), respec-
tively [18]. It is necessary to point out that the GK function was reparametrized as:

K(Xilxj) — elog p”Xi*X]'HZ, with pE (0,1) (3)

using the variable change (p = e~7). Subsequently, the three strategies for tuning the

bandwidth () hyperparameter used in this implementation are listed as follows:

(1) Manual tuning (no tuning, denoted as NT) setting, using the value of v = 1, which is
equivalent to setting p = e~ 1.

(2) Tuning using a grid search (GrS) strategy with 26 values in the grid for the values of p
between 0.01 and 0.999 with increments of 0.04, this means that 26 values of p were
evaluated. The normalized root mean squared error (NRMSE) was used as metric for
choosing the optimal p value in the inner testing set.

(3) Tuning p using the Bayesian optimization (BO) method. The NRMSE was also used
as metrics to select the optimal p value in the inner testing set.

The implementation of this model with the three strategies of tuning the p hyper-
parameter of the GK was carried out in the R statistical software [19] using the BGLR
library [20].

2.2. Datasets 1 to 6 (Wheat Data)

Spring wheat lines selected for grain yield analyses from CIMMYT first year yield
trials (YT) were used as the training population to predict the quality of lines selected from
early year trails (yet) for grain yield analyses in a second year. More details of these datasets
can be found in Ibba et al. [21] where the analyses were conducted for 14 traits but in this
study, we used only the trait grain yield for each of the six sets of data reported below:

-Dataset 1, Wheat_1 (YT 2013-14/ YT 2014-15), 1,301 lines from the 2013-14 YT and
472 lines from the 2014-2015 EYT trial. In this dataset, only the grain yield trait was used.
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-Dataset 2, Wheat_2 (YT2014-15/YT2015-16), 1,337 lines from the 2014-15 YT and 596
lines from the 2015-2016 EYT trial.

-Dataset 3, Wheat_3 (YT2015-16/YT2016-17), 1,161 lines from the 2015-16 YT and 556
lines from the 2016-2017 EYT trial.

-Dataset 4, Wheat_4 (YT2016-17/YT2017-18), 1,372 lines from the 2016-17 YT and 567
lines from the 2017-2018 EYT trial.

-Dataset 5, Wheat_5 (YT2017-18/YT2018-19), 1,386 lines from the 2017-18 YT and 509
lines from the 2018-2019 EYT trial.

-Dataset 6, Wheat_6 (YT 2018-19/YT 2019-20), 1,276 lines from the 2018-19 YT and 124
lines from the 2019-2020 EYT trial.

All the lines were genotyped using genotyping-by-sequencing (GBS). The TASSEL ver-
sion 5 GBS pipeline was used to call marker polymorphisms, and a minor allele frequency
of 0.01 was assigned for SNP discovery. The resulting 6,075,743 unique tags were aligned to
the wheat genome reference sequence (RefSeq v.1.0) IWGSC 2018) with an alignment rate
of 63.98%. After filtering for SNPs with homozygosity >80%, p-value for Fisher’s exact test
<0.001 and x2 value lower than the critical value of 9.2, we obtained 78,606 GBS markers
that passed at least one of those filters. These markers were further filtered for less than 50%
missing data, greater than a 0.05 minor allele frequency, and less than 5% heterozygosity.
Markers with missing data were imputed using the ‘expectation-maximization” algorithm
in the ‘R” package rrBLUP [22].

2.3. Metrics for Evaluation of Prediction Accuracy

In each of the six datasets, the seven outer fold cross validation was implemented [18].
For this reason, 7 — 1 folds were assigned to the outer-training set and the remaining were
assigned to the outer-testing set, until each of the 7 folds were tested once. For tuning the
bandwidth, hyperparameter in the Gaussian kernel five nested cross-validations was used,
that is, the outer-training was divided into five groups where four were used for the inner
training set (80% of the training) and one for the validation (inner-testing) set (20% of the
outer training). Next, the average of the five validation folds was reported as the metric of
prediction performance to select the optimal hyperparameter (bandwidth of the Gaussian
kernel). Then, using this optimal hyperparameter (bandwidth), the GBLUP model was
refitted with the whole outer-training set (the 7 — 1 folds), and finally, the prediction of

. 2
each outer-testing set was obtained. The mean square error [MSE=% (XL, (y,- —f (xi)) ),

with y; denoting the observed value i, while f(x;) represents the predicted value for
observation i] and the normalized root mean squared error (NRMSE = %), where

. 2
RMSE = \/ Ll (yi —f (xi)) , was used as a metric to evaluate the prediction accuracy.

To compare the three strategies of tuning in terms of MSE, the relative efficiencies were
computed between the prediction performance strategy NT and GrS,

MSENT

REpge = ——NT
MSE MSEG;’S

where MSEnT and MSEg,s denote the MSE under the strategy of NT and tuning using
GrS, respectively. When REy sg > 1, the best prediction performance in terms of MSE
was obtained using the GrS strategy, but when REysg < 1, the NT strategy was supe-
rior in terms of prediction accuracy. When REy;sg = 1, both strategies of tuning were
equally efficient. We also computed the relative efficiency in terms of MSE between the
strategy of NT and tuning using BO strategy and between the GrS and BO strategy. The
relative efficiencies just mentioned above were also computed in terms of NRMSE, and the
interpretation is the same as in the terms of MSE.
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3. Results

The results are provided in three main sections, one for each dataset (Datasets 1-
3). For each dataset, results are presented based on prediction performance in terms of
MSE and NRMSE. Results of datasets 1-3 (wheat 1-3, respectively) are described below.
Results from dataset 4-6 (wheat 4-6, respectively) including figures and tables are given in
Supplementary Materials. Only three datasets are provided in this section to avoid both
redundancy and making the results section unnecessarily long.

3.1. Dataset 1 (Wheat 1, YT _13_14 and TY _14_15)
3.1.1. Prediction Performance in Terms of MSE

The MSE for environment YT_13_14 was 0.128, 0.128, and 0.138 for methods BO, GrS,
and NT, respectively, and for YT_14_15 environment, the MSE observed was 0.123 (BO),
0.123 (GrS), and 0.133 (NT), while across environments (Global), the observed MSE was
0.125 (BO), 0.125 (GrS), and 0.135 (NT). (Figure 1A and for more details, see Appendix A
Table Al.)
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Figure 1. Dataset 1 (Wheat 1). (A) Mean squared error (MSE) and the corresponding standard error
(SE) of the methods: Bayesian optimization (BO), grid search optimization (GrS), and no tuning
(NT) for each environment and across environments of dataset 1. (B) Relative efficiency in terms of
the mean squared error (RE_MSE) computed by dividing the MSE of NT and BO; NT and GrS; or
GrS and BO. Prediction performance is reported for each environment and across environments in
the dataset 1. When RE_MSE>1, the denominator method outperforms the numerator in terms of
prediction performance. (C) Normalized root mean square error (NRMSE) and the corresponding
standard error (SE) of the methods Bayesian optimization (BO), grid search optimization (GrS), and
no tuning (NT) for each environment and across environments of dataset 1. (D) Relative efficiency in
terms of the normalized mean squared error (RE_NRMSE) computed by dividing the NRMSE of NT
and BO; NT and GrS; or GrS and BO. Prediction performance is reported for each environment and
across environments in dataset 1. When RE_NRMSE>1 the denominator method outperforms the
numerator in terms of prediction performance.

The observed relative efficiencies in terms of MSE for the comparison NT/BO were
1.077, 1.088, and 1.079 for environments YT _13_14, YT 14 15 and across environments
(Global), respectively. Therefor BO had a better prediction performance than NT in every
environment by 7.7% (YT_13_14), 8.8% (YT_14_15) and 7.9% (Global). For the compari-
son NT/GrS, the relative efficiencies were 1.077 (YT_13_14), 1.081 (YT_14_15), and 1.077
(Global). That is, GrS outperformed NT in every environment by 7.7% (YT_13_14), 8.1%
(YT_14_15) and 7.7% (Global). The observed relative efficiencies for the comparison,
GrS/BO, were 1.001 (YT_13_14), 1.007 (YT_14_15) and 1.002 (Global). Results showed that
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MSE

0.39

029

0.1

0.04

both GrS and BO methods had similar performance in every environment. These results
can also be observed in Figure 1B and for further details see Table A2.

3.1.2. Prediction Performance in Terms of NRMSE

The NRMSE for environment YT_13_14 was 0.846, 0.846, and 0.877 for methods BO,
GrS, and NT, respectively. For environment YT_14_15, the NRMSE was 0.799 (BO), 0.802
(GrS), and 0.837 (NT), while for Global, the NRMSE was 0.460 (BO), 0.461 (GrS), and 0.478
(NT) (see Figure 1C and Appendix A Table A1 for further details).

The relative efficiencies in terms of NRMSE for comparison NT/BO were 1.037, 1.047,
and 1.038 for environments YT_13_14, YT_14_15 and across environments (Global), respec-
tively. Method BO outperformed NT in every single environment by 3.7% (YT_13_14), 4.7%
(YT_14_15) and 3.8% (Global). For comparing NT/GrS, the relative efficiencies observed
were 1.036 (YT_13_14), 1.043 (YT_14_15), and 1.037 (Global). The GrS method had better
performance than the NT method in all three environments by 3.6% (YT_13_14), 4.3%
(YT_14_15) and 3.7% (Global). Regarding GrS/BO, the observed efficiencies were 1.000
(YT_13_14), 1.004 (YT_14_15), and 1.001 (Global). Thus, results showed that both GrS and
BO had similar prediction accuracy with only very small differences (see Figure 1D and for
more details, see Appendix A Table A2).

3.2. Dataset 2 (Wheat 2)
3.2.1. Prediction Performance in Terms of MSE

Results on MSE for environment YT _14_15 were 0.072, 0.072, and 0.083 for BO, GrS,
and NT, respectively. For the YT_15_16 environment, the MSE was 0.116 (BO), 0.117 (GrS),
and 0.149 (NT), while across environments (Global), the MSE was 0.083 (BO), 0.084 (GrS),
and 0.101 (NT) (Figure 2A, Appendix B Table A3).
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Figure 2. Dataset 2 (Wheat 2). (A) Mean squared error (MSE) and the corresponding standard error
(SE) of the methods Bayesian optimization (BO), grid search optimization (GrS), and no tuning (NT)
for each environment and across environments of dataset 2. (B) Relative efficiency in terms of the
mean squared error (RE_MSE) computed by dividing the MSE of NT and BO; NT and GrS; or GrS and
BO. Prediction performance is reported for each environment and across environments in the dataset
2. When RE_MSE>1 the denominator method outperforms the numerator in terms of prediction
performance. (C) Normalized root mean squared error (NRMSE) and the corresponding standard
error (SE) of the methods Bayesian optimization (BO), grid search optimization (GrS), and no tuning
(NT) for each environment and across environments of dataset 2. (D) Relative efficiency in terms of
the normalized mean squared error (RE_NRMSE) computed by dividing the NRMSE of NT and BO;
NT and GrS; or GrS and BO. Prediction performance is reported for each environment and across
environments in dataset 2. When RE_NRMSE>1 the denominator method outperforms the numerator
in terms of prediction performance.

The relative efficiencies for NT/BO were 1.161, 1.278, and 1.211 for environments
YT _14_15, YT_15_16 and across environments (Global), respectively. BO had a better pre-
diction performance than NT in every environment by 16.1% (YT_14_15), 27.8% (YT_15_16),
and 21.1% (Global). For NT/GrS, the relative efficiencies were 1.156 (YT_13_14), 1.266
(YT_14_15), and 1.205 (Global). Results showed that GrS outperformed NT in every environ-
ment by 15.6% (YT_14_15), 26.6% (YT_15_16), and 20.5% (Global). The relative efficiencies
for GrS/BO were 1.004 (YT_13_14), 1.009 (YT_14_15), and 1.005 (Global). Both GrS and BO
methods had similar performance in every environment (Figure 2B, Table A4).

3.2.2. Prediction Performance in Terms of NRMSE

When comparing the three tuning strategies based on NRMSE, for environment
YT_14_15, the NRMSE was 0.930, 0.933, and 1.001 for methods BO, GrS, and NT, respec-
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tively, and for YT_15_16 the NRMSE was 0.885 (BO), 0.889 (GrS) and 1.000 (NT). For the
environment across traits (Global), the NRMSE was 0.586 (BO), 0.588 (GrS), and 0.645 (NT).
(Figure 2C and Appendix B Table A3.)

The comparison of NT/BO for NRMSE was 1.076, 1.130, and 1.100 for environments
YT _14_15, YT_15_16 and across environments (Global), respectively. Thus, the BO method
outperformed NT in every environment by 7.6% (YT_14_15), 13.0% (YT_15_16), and 10.0%
(Global). For NT/GrS, the relative efficiencies were 1.073 (YT_14_15), 1.125 (YT_15_16), and
1.097 (Global). Clearly GrS had better performance than the NT in all three environments by
7.3% (YT_14_15),12.5% (YT_15_16), and 9.7% (Global). Concerning GrS/BO, the efficiencies
were 1.003 (YT_13_14), 1.004 (YT_14_15), and 1.003 (Global). Results showed that both
tuning methods GrS and BO had similar prediction accuracy (Figure 2D and Appendix B
Table A3).

3.3. Dataset 3 (Wheat 3)
3.3.1. Prediction Performance in Terms of MSE

The observed MSE for environment YT_15_16 was 0.062, 0.063, and 0.067 for tuning
methods BO, GrS, and NT, respectively. For environment YT_16_17, the MSE for the
different tuning methods was 0.199 (BO), 0.197 (GrS), and 0.215 (NT). Across environments
(Global), the MSE was 0.103 (BO), 0.102 (GrS), and 0.110 (NT). These results can be observed
in Figure 3A and Appendix C Table A5.
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Figure 3. Dataset 3 (Wheat 3) (A) Mean squared error (MSE) and the corresponding standard error
(SE) of the methods Bayesian optimization (BO), grid search optimization (GrS), and no tuning (NT)
for each environment and across environments of dataset 3. (B) Relative efficiency in terms of the
mean squared error (RE_MSE) computed by dividing the MSE of NT and BO; NT and GrS; or GrS and
BO. Prediction performance is reported for each environment and across environments in the dataset
3. When RE_MSE>1 the denominator method outperforms the numerator in terms of prediction
performance. (C) Normalized root mean square error (NRMSE) and the corresponding standard
error (SE) of the methods Bayesian optimization (BO), grid search optimization (GrS), and no tuning
(NT) for each environment and across environments of dataset 3. (D) Relative efficiency in terms of
the normalized mean squared error (RE_NRMSE) computed by dividing the NRMSE of NT and BO;
NT and GrS; or GrS and BO. Prediction performance is reported for each environment and across
environments in dataset 3. When RE_NRMSE>1 the denominator method outperforms the numerator
in terms of prediction performance.

The observed relative efficiencies in terms of MSE of the BO, GrS, and NT tuning
methods for NT/BO were 1.069, 1.081, and 1.074 for environments YT_15_16, YT_16_17 and
Global, respectively. Results showed that BO had a better prediction performance than NT
by 6.9% (YT_15_16), 8.1% (YT_16_17), and 7.4% (Global). For the ratio NT/GrS, the relative
MSE efficiencies were 1.066 (YT_15_16), 1.088 (YT_16_17), and 1.077 (Global). That is, GrS
outperformed NT in every environment by 6.6% (YT_15_16), 8.8% (YT_16_17) and 7.7%
(Global). For GrS/BO results were 1.003 (YT_15_16), 0.993 (YT_16_17) and 0.997 (Global).
Thus, both tuning methods GrS and BO had similar performance in every environment, as
displayed in Figure 3B and shown in Table A6.
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3.3.2. Prediction Performance in Terms of NRMSE

Next, we provide the results in terms of NRMSE, where we can observe that for
environment YT _15_16, the NRMSE was 0.846, 0.848, and 0.874 for methods BO, GrS, and
NT, respectively. While for environment YT_16_17 the NRMSE was 0.864 (BO), 0.861 (GrS)
and 0.900 (NT). For across the environment (Global), the NRMSE was 0.522 (BO), 0.521
(G1S), and 0.541 (NT) (Figure 3C and for further details, see Appendix C Table A5).

The observed relative efficiencies in terms of NRMSE in the comparison NT/BO
were 1.034, 1.042, and 1.037 for environments YT_15_16, YT_16_17 and across environ-
ments (Global), respectively. Clearly BO outperformed NT in every environment by 3.4%
(YT_15_16), 4.2% (YT_16_17) and 3.7% (Global). For the NT/GrS ratio, the relative efficien-
cies in terms of NRMSE were 1.031% (YT_15_16), 1.046% (YT_16_17), and 1.039 (Global).
The GrS tuning method had a better prediction accuracy than NT in every environment
by 3.1% (YT_15_16), 4.6% (YT_16_17), and 3.9% (Global). When comparing GrS/BO, the
relative efficiencies were 1.002 (YT_15_16), 0.996% (YT_16_17), and 0.998% (Global) were
very similar (Figure 3D and Appendix C Table A6).

4. Discussion

Genomic selection (GS) is revolutionizing plant and animal breeding, as it saves
significant resources for selecting the candidate individuals without phenotypic measures
of the traits of interest. A statistical machine learning model is trained with a reference
population that was genotyped and phenotyped, which is subsequently used to produce
predictions of the breeding values or traits of interest used for the selection process [23].
However, the successful implementation of the GS methodology strongly depends on the
quality of the predictions. High prediction accuracy requires a successful GS application,
but with low prediction accuracies, the outcomes of the GS can be misleading. As such, to
improve the accuracy of the outcome of the GS methodology, many factors that impact the
performance of the GS methodology need to be optimized.

Since the GS methodology is a predictive methodology, one of the key factors for
optimization is the use of the statistical machine learning methods. For example, when
the traits to be predicted contain nonlinear patterns, it is obvious that specific statistical
machine learning algorithms are required. Kernel methods are powerful tools that capture
complex nonlinear patters in the data. For this reason, these methods: (a) are considered
promising tools for large-scale and high-dimensional genomic data processing; (b) further
improve the scalability of conventional machine learning methods since they can work
with heterogeneous inputs; (c) exploit complexity to improve prediction accuracy, but
not so much as to increase the understanding of the complexity; (d) contain kernels with
great versatility and composite kernels can be built; however, only some can be computed
in closed form while others require an iterative process; and (e) kernel methods can be
implemented with any statistical machine learning method, which makes these methods
really versatile [18]. Nevertheless, the implementation of these methods increases the
complexity to obtain a successful implementation since additional hyperparameters need
to be tuned; many kernels contain at least one hyperparameter that requires tuning.

However, to guarantee a successful application of kernel methods, it is of paramount
importance to choose not only the statistical machine learning algorithm with which the
kernels will be implemented, but also carry out a careful tuning process to be able to take
the major advantage of its power [24]. The selection of appropriate hyperparameters maxi-
mizes model accuracy, considerably reducing the risk of overfitting and producing a model
with a variance that is too high. Nevertheless, we need to be aware that the right tuning
process is more expensive in terms of computational resources, since hyperparameters are
not learned directly through the training process including model parameters. For example,
in the grid search approach that was used here to select the optimal hyperparameter, we
manually defined a subset of 26 values for the bandwidth hyperparameter space and ex-
hausted all combinations of the specified hyperparameter subsets, that is, each combination
performance was evaluated using cross-validation and the best performing hyperparameter
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combination was chosen. Then, with this optimal hyperparameter combination, the model
was refitted to the whole training set, and finally with this model, the predictions were made
for the testing set. Since the model is evaluated with each combination of hyperparameters
before the final training with the optimal combination of hyperparameters to produce
the predictions, the increase in the required computation power is directly proportional
to the size of the grid. For this reason, the grid search approach is the most expensive
method for hyperparameter tuning, and even the Bayesian optimization is less expensive
and more efficient than grid search—even though it requires considerable computation
resources. Bayesian optimization is more efficient since it builds a probabilistic model
for a given function and analyzes this model to make decisions where to subsequently
evaluate the given function. The two main components of Bayesian optimization are: (a)
a prior function that captures the main patterns of the unknown objective function and a
probabilistic model that describes the data generation mechanism; and (b) an acquisition
function (loss function) that describes how optimal a sequence of queries is, usually taking
the form of regret [25]. Although these are clear advantages of the Bayesian optimization
algorithm, it still requires considerable computational resources.

In this study, we found that the Bayesian optimization required around only 15% less
time for the implementation regarding the grid search approach, and the grid search is
approximately 20 times more expensive in computation resources than manual tuning. For
this reason, the tuning process, most of the time (when nonlinear patterns are present in
the inputs) improves prediction accuracy, although it is significantly more time consuming
when it comes to implementation. However, it is important to point out that here the grid
search approach was slightly more costly than the Bayesian optimization, since the size of
the grid contain 26 values, but if the size of the grid is increased, the grid search is expected
to be more expensive in terms of computational resources than the Bayesian optimization.

Our results show that when using the grid search and Bayesian optimization methods,
better prediction performance was obtained regarding the strategy of no tuning. In terms
of MSE, we observed gains in prediction accuracy between 7.7 and 8.8% (dataset 1), 15.6
and 27.8% (dataset 2), 6.6 and 8.8% (dataset 3), 15.5 and 16.8% (dataset 4), 4.1 and 10.8%
(dataset 5) and 4.5 and 10.8% (dataset 6). On the other hand, in terms of NRMSE, the gains
were between 3.6 and 4.7% (dataset 1), 7.3 and 13% (dataset 2), 3.1 and 4.6% (dataset 3), 7.2
and 8.2% (dataset 4), 2.1 and 5.2% (dataset 5), and 2.1 and 4.4% (dataset 6). These results
corroborate that an appropriate tuning process is necessary to take advantage of the data
and kernel methods. However, we did not find relevant differences between the grid search
and Bayesian optimization methods, which in part can be because we used a grid with 26
values for selecting the optimal hyperparameter, which is not a small tuning subset. In
addition, the gain in prediction performance between the six datasets was heterogenous,
which can be interpreted as the level of nonlinear patterns between the data being are
different, because we did not use any criteria to use the six particular datasets.

Finally, with this application we illustrate the important role of the tuning process
in Gaussian kernels, and thus are able to take more advantage of kernel methods. This is
necessary to guarantee the near or optimal use of kernel methods not only in the context of
genomic prediction but in all type of prediction problems. However, the price that we pay
for the optimal use of kernel methods is that more computational resources are required to
be able to choose the optimal hyperparameters. Moreover, this asseveration applies not
only for other types of kernel methods but to all machine learning methods that contain
hyperparameters that need to be tuned. Nevertheless, the larger the number of parameters
to be tuned, the greater the computational resources are required to obtain the optimal
hyperparameters.

5. Conclusions

In this research, we compared three tuning strategies (manual, grid search, and
Bayesian optimization) using the bandwidth parameter of the Gaussian kernel in the
context of genomic prediction under a Bayesian best linear unbiased predictor model
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(GBLUP). We found that manual tuning produced sub optimal results, when with antici-
pation, the value of the bandwidth hyperparameter was fixed. However, when the grid
search and Bayesian optimization were implemented, we obtained better prediction perfor-
mance, which means that using these two strategies significantly increases the probability
of reaching the optimal hyperparameter values. The superiority of the grid search and
Bayesian optimization was observed in the six datasets under study and the gain observed
in terms of prediction performance was between 2.1 and 27.8%. However, we did not find
a significant difference in the prediction performance between the grid search and Bayesian
optimization. In part, this can be attributed to the fact that we used 26 values in the grid
search method for the tuning process of the bandwidth hyperparameter. Even though our
results are not conclusive, we have empirical evidence corroborating that performing an
appropriate tuning process is necessary in order to take advantage of the data and statistical
machine learning implemented.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/ genes13122282 /s1 with results from Datasets 4-6 (Wheat 4-6)
Figure S1. Dataset 4 (Wheat 4) (A) Mean squared error (MSE) and the corresponding standard error
(SE) of the methods Bayesian optimization (BO), grid search Optimization (GrS) and no tuning (NT)
for each environment and across environments of dataset 4. (B) Relative efficiency in terms of the
mean squared error (RE_MSE) computed by dividing the MSE of NT and BO; NT and GrS; or GrS
and BO. Prediction performance is reported for each environment and across environments in dataset
4. When RE_MSE>1, the denominator method outperforms the numerator in terms of prediction
performance. (C) Normalized root mean square error (NRMSE) and the corresponding standard
error (SE) of the methods: Bayesian optimization (BO), grid search optimization (GrS), and no tuning
(NT) for each environment and across environments of dataset 4. (D) Relative efficiency in terms of
the normalized mean squared error (RE_NRMSE) computed by dividing the NRMSE of NT and BO;
NT and GrS; or GrS and BO. Prediction performance is reported for each environment and across
environments in dataset 4. When RE_NRMSE>1, the denominator method outperforms the numerator
in terms of prediction performance. Figure S2. Dataset 5 (Wheat 5). (A) Mean squared error (MSE)
and the corresponding standard error (SE) of the methods: Bayesian optimization (BO), grid search
optimization (GrS), and no tuning (NT) for each environment and across environments of dataset 5.
(B) Relative efficiency in terms of the mean squared error (RE_MSE) computed by dividing the MSE
of NT and BO; NT and GrS; or GrS and BO. Prediction performance is reported for each environment
and across environments in dataset 5. When RE_MSE>1, the denominator method outperforms the
numerator in terms of prediction performance. (C) Normalized root mean squared error (NRMSE)
and the corresponding standard error (SE) of the methods: Bayesian optimization (BO), grid search
optimization (GrS), and no tuning (NT) for each environment and across environments of dataset
5. (D) Relative efficiency in terms of the normalized mean squared error (RE_NRMSE) computed
by dividing the NRMSE of NT and BO; NT and GrS; or GrS and BO. Prediction performance is
reported for each environment and across environments in dataset 5. When RE_NRMSE>1, the
denominator method outperforms the numerator in terms of prediction performance. Figure S3.
Dataset 6 (Wheat 6). (A) Mean squared error (MSE) and the corresponding standard error (SE) of
the methods: Bayesian optimization (BO), grid search optimization (GrS), and no tuning (NT) for
each environment and across environments of dataset 6. (B) Relative efficiency in terms of the mean
squared error (RE_MSE) computed by dividing the MSE of NT and BO; NT and GrS; or GrS and
BO. Prediction performance is reported for each environment and across environments in dataset
6. When RE_MSE>1, the denominator method outperforms the numerator in terms of prediction
performance. (C) Normalized root mean squared error (NRMSE) and the corresponding standard
error (SE) of the methods: Bayesian optimization (BO), grid search optimization (GrS), and no tuning
(NT) for each environment and across environments of dataset 6. (D) Relative efficiency in terms
of the normalized mean squared error (RE_NRMSE) computed by dividing the NRMSE of NT and
BO; NT and GrS; or GrS and BO. Prediction performance is reported for each environment and
across environments in dataset 6. When RE_NRMSE>1, the denominator method outperforms
the numerator in terms of prediction performance. Table S1. Prediction performance for every
environment and across environments (Global) of the dataset 4 in terms of their mean squared error
(MSE), normalized root mean square error (NRMSE) under three methods of tuning (BO, GrS and
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NT). MSE_SE and NRMSE_SE denotes the standard errors (SE) under MSE and NRMSE. Table S2.
Prediction performance for each environment and across environments (Global) of dataset 4 in terms
of their relative efficiencies (RE) under two metrics (MSE and NRMSE). In the column method we
represent the two tuning strategies that were used to compute their RE_MSE and RE_NRMSE. Table
S3. Prediction performance for every environment and across environments (Global) of dataset 5 in
terms of their mean squared error (MSE), normalized root mean square error (NRMSE) under three
methods of tuning (BO, GrS and NT). MSE_SE and NRMSE_SE denotes the standard errors (SE) under
MSE and NRMSE. Table S4. Prediction performance for each environment and across environments
(Global) of dataset 5 in terms of their relative efficiencies (RE) under two metrics (MSE and NRMSE).
In the column method, we represent the two tuning strategies that were used to compute their
RE_MSE and RE_NRMSE. Table S5. Prediction performance for every environment and across
environments (Global) of dataset 6 in terms of their mean squared error (MSE), normalized root mean
square error (NRMSE) under three methods of tuning (BO, GrS and NT). MSE_SE and NRMSE_SE
denotes the standard errors (SE) under MSE and NRMSE. Table S6. Prediction performance for each
environment and across environments (Global) of dataset 6 in terms of their relative efficiencies (RE)
under two metrics (MSE and NRMSE). In the column method, we represent the two tuning strategies
that were used to compute their RE_MSE and RE_NRMSE.
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Appendix A

Table Al. Prediction performance for every environment and across environments (Global) of the
dataset 1 in terms of mean squared error (MSE), normalized root mean square error (NRMSE) under
three methods of tuning (BO, GrS, and NT). MSE_SE and NRMSE_SE denotes the standard errors
(SE) under MSE and NRMSE.

Dataset Method Env MSE MSE_SE NRMSE NRMSE_SE
Wheat 1 BO YT_13_14 0.128 0.006 0.846 0.012
Wheat 1 BO YT_14_15 0.123 0.016 0.799 0.017
Wheat 1 BO Global 0.125 0.004 0.46 0.007

Wheat 1 GS YT_13_14 0.128 0.006 0.846 0.011
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Table Al. Cont.

Dataset Method Env MSE MSE_SE NRMSE NRMSE_SE
Wheat 1 GS YT_14_15 0.123 0.016 0.802 0.015
Wheat 1 GS Global 0.125 0.004 0.461 0.007
Wheat 1 NT YT_13_14 0.138 0.007 0.877 0.012
Wheat 1 NT YT_14_15 0.133 0.015 0.837 0.009
Wheat 1 NT Global 0.135 0.005 0.478 0.008

Table A2. Prediction performance for each environment and across environments (Global) of dataset

1 in terms of their relative efficiencies (RE) under two metrics (MSE and NRMSE). In the column

“method” we represent the two tuning strategies that were used to compute RE_MSE and RE_NRMSE.

Datasets Env Method RE_MSE RE_NRMSE
Wheat 1 YT _13_14 NT/GrS 1.077 1.036
Wheat 1 YT _13_14 GrS/BO 1.001 1
Wheat 1 YT _14_15 NT/BO 1.088 1.047
Wheat 1 YT _14_15 NT/GrS 1.081 1.043
Wheat 1 YT _14_15 GrS/BO 1.007 1.004
Wheat 1 Global NT/BO 1.079 1.038
Wheat 1 Global NT/GrS 1.077 1.037
Wheat 1 Global GrS/BO 1.002 1.001
Appendix B

Table A3. Prediction performance for every environment and across environments (Global) of dataset

2 in terms of mean squared error (MSE), normalized root mean Square Error (NRMSE) under three
methods of tuning (BO, GrS, and NT). MSE_SE and NRMSE_SE denotes the standard errors (SE)

under MSE and NRMSE.
Dataset Method Env MSE MSE_SE NRMSE NRMSE_SE
Wheat 2 BO YT _14_15 0.072 0.002 0.93 0.011
Wheat 2 BO YT_15_16 0.116 0.002 0.885 0.008
Wheat 2 BO Global 0.083 0.002 0.586 0.008
Wheat 2 GS YT_14_15 0.072 0.002 0.933 0.011
Wheat 2 GS YT_15_16 0.117 0.002 0.889 0.007
Wheat 2 GS Global 0.084 0.002 0.588 0.008
Wheat 2 NT YT_14_15 0.083 0.003 1.001 0.003
Wheat 2 NT YT_15_16 0.149 0.003 1 0.004
Wheat 2 NT Global 0.101 0.003 0.645 0.007
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Table A4. Prediction performance for each environment and across environments (Global) of dataset

2 in terms of their relative efficiencies (RE) under two metrics (MSE and NRMSE). In the column

method we represent the two tuning strategies that were used to compute RE_MSE and RE_NRMSE.

Datasets Env Method RE_MSE RE_NRMSE
Wheat 2 YT 14_15 NT/BO 1.161 1.076
Wheat 2 YT 14 15 NT/GrS 1.156 1.073
Wheat 2 YT 14_15 GrS/BO 1.004 1.003
Wheat 2 YT _15_16 NT/BO 1.278 1.13
Wheat 2 YT _15_16 NT/GrS 1.266 1.125
Wheat 2 YT_15_16 GrS/BO 1.009 1.004
Wheat 2 Global NT/BO 1.211 1.1
Wheat 2 Global NT/GrS 1.205 1.097
Appendix C

Table A5. Prediction performance for every environment and across environments (Global) of the

dataset 3 in terms of their mean squared error (MSE), normalized root mean square error (NRMSE)
under three methods of tuning (BO, GrS, and NT). MSE_SE and NRMSE_SE denotes the standard
errors (SE) under MSE and NRMSE.

Dataset Method Env MSE MSE_SE NRMSE NRMSE_SE
Wheat 3 BO YT_15_16 0.062 0.003 0.846 0.009
Wheat 3 BO YT_16_17 0.199 0.015 0.864 0.016
Wheat 3 BO Global 0.103 0.005 0.522 0.013
Wheat 3 GS YT_15_16 0.063 0.002 0.848 0.009
Wheat 3 GS YT_16_17 0.197 0.016 0.861 0.016
Wheat 3 GS Global 0.102 0.005 0.521 0.014
Wheat 3 NT YT_15_16 0.067 0.003 0.874 0.012
Wheat 3 NT YT_16_17 0.215 0.014 0.9 0.006
Wheat 3 NT Global 0.11 0.004 0.541 0.01

Table A6. Prediction performance for each environment and across environments (Global) of dataset

3 in terms of their relative efficiencies (RE) under two metrics (MSE and NRMSE). In the column

method we represent the two tuning strategies that were used to compute RE_MSE and RE_NRMSE.

Datasets Env Method RE_MSE RE_NRMSE
Wheat 3 YT 15_16 NT/BO 1.069 1.034
Wheat 3 YT _15_16 NT/GrS 1.066 1.031
Wheat 3 YT_15_16 GrS/BO 1.003 1.002
Wheat 3 YT 16_17 NT/BO 1.081 1.042
Wheat 3 YT _16_17 NT/GrS 1.088 1.046
Wheat 3 YT 16_17 GrS/BO 0.993 0.996
Wheat 3 Global NT/BO 1.074 1.037
Wheat 3 Global NT/GrS 1.077 1.039
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