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Abstract: The study of microorganisms is a field of great interest due to their environmental (e.g., 
soil contamination) and biomedical (e.g., parasitic diseases, autism) importance. The advent of rev-
olutionary next-generation sequencing techniques, and their application to the hypervariable re-
gions of the 16S, 18S or 23S ribosomal subunits, have allowed the research of a large variety of or-
ganisms more in-depth, including bacteria, archaea, eukaryotes and fungi. Additionally, together 
with the development of analysis software, the creation of specific databases (e.g., SILVA or RDP) 
has boosted the enormous growth of these studies. As the cost of sequencing per sample has con-
tinuously decreased, new protocols have also emerged, such as shotgun sequencing, which allows 
the profiling of all taxonomic domains in a sample. The sequencing of hypervariable regions and 
shotgun sequencing are technologies that enable the taxonomic classification of microorganisms 
from the DNA present in microbial communities. However, they are not capable of measuring what 
is actively expressed. Conversely, we advocate that metatranscriptomics is a “new” technology that 
makes the identification of the mRNAs of a microbial community possible, quantifying gene ex-
pression levels and active biological pathways. Furthermore, it can be also used to characterise sym-
biotic interactions between the host and its microbiome. In this manuscript, we examine the three 
technologies above, and discuss the implementation of different software and databases, which 
greatly impact the obtaining of reliable results. Finally, we have developed two easy-to-use pipe-
lines leveraging Nextflow technology. These aim to provide everything required for an average user 
to perform a metagenomic analysis of marker genes with QIMME2 and a metatranscriptomic study 
using Kraken2/Bracken. 

Keywords: 16S; Bracken; Kraken2; metagenomics; metatranscriptomics; Nextflow; pipeline; 
QIIME2; shotgun sequencing 
 

1. Introduction 
The human being is a complex assembly of approximately 40 trillion eukaryotic cells 

[1], which contain about 22,000 genes [2] and are tightly organised to form organs and 
tissues. In addition, the human microbiota, defined as a community of living microorgan-
isms residing in a given ecological niche, is estimated to comprise as many as 100 trillion 
microbial cells [3], holding about 2 million genes [4]. Therefore, 99% of the genes that can 
be found in a human tissue pool are derived from microorganisms [5]. 

Other studies report that the number of human and bacterial cells are similar [6], and 
that both cell types maintain close contact [7,8]. A number of authors have also confirmed 
that the microbiome, defined as the set of microorganisms, their genes and metabolites in 
a given ecological niche, in adults is relatively stable and persists over time [9]. However, 
there are factors that can affect the microbiome, such as diet, probiotics and prebiotics 
intake, viruses, and drugs [9–12]. It has also been described that the microbiome suffers 
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deep changes during pregnancy, particularly in the vagina and gut [13]. The gastrointes-
tinal tract of the fetus is sterile, and microorganisms colonise the intestine in the course of 
delivery across the birth canal [14–17]. During childhood, the gut microbiome can be also 
influenced by several environmental factors, such as types of childbirth, geographic area, 
breastfeeding, and solid food regimen [18]. 

The gut microbiota is the most studied up to now, as it is known to influence virtually 
all human cells. In the last 5 years, according to PubMed, more than 4300 articles focusing 
on the gut microbiota have been published. This remarkable number represents a high 
percentage of the global publications in the field. As a result, it is now clear that microor-
ganisms residing in the human gut play an important role in the metabolic processes of 
the host and can therefore be a potential source of new therapeutic strategies [19–21]. 

The main objective of this article is to summarise the knowledge about the im-
portance of the microbiome in human health, disease and treatments. Moreover, we also 
aimed to provide an overview of the techniques and available tools in the field, both from 
the methodological and from the bioinformatics point of view. Finally, we also included 
two pipelines to facilitate metagenomics and metatranscriptomics data analysis, and we 
evaluated their performance using both simulated and experimental datasets. They are 
available at the GitHub repository: https://github.com/BioinfoIPBLN/16S-Meta-
transcriptomic-Analysis. 

1.1. Microbiota: Human Health, Disease and Treatment 
In recent decades, the microbiome has been studied to determine the involvement of 

these microorganisms in the development and prognosis of different diseases. Numerous 
studies and recent reviews have discussed different aspects of the microbiome and its 
possible role in human health, including in neonates and early life [22–24], but also re-
garding specific diseases such as cardiometabolic disorders [25], inflammatory bowel dis-
eases [26,27], autoimmune diseases [28,29], neuropsychiatric diseases [30,31] and cancer 
[32,33]. In fact, it is now known that some gut bacteria can interact with human cells and, 
in particular, regulate the immune system [34] and mucosal immunity or inflammation 
[35] (see Figure 1). A wide range of metagenomic studies have focused on pathologies and 
their relationship with the treatment. Although this is a very mature field, there is much 
room for improvement, given that countless tissues and organs have not been studied in 
detail yet. The identification of the microbiota of each tissue and its association with dis-
eases represents only one of the strategies implemented. Additionally, more knowledge 
about microbial composition diversity, microenvironments favoured by microbiota, or 
microbiota–host interactions, could contribute to the efforts against many diseases (see 
Figure 1). 
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Figure 1. Effects of the gut microbiome on diseases and international metagenomics and meta-
transcriptomics consortia and projects. We collected examples for different diseases regarding a 
variety of organs and the implications of microorganisms for prognosis and treatment, most of them 
derived from gut microbiome. For instance, some species has been linked to lung disease [36,37]. 
Inflammatory and immune diseases have a strong relationship with microorganisms [38–44], as well 
as diabetes [44], neurodegenerative and neuropsychiatric disorders [44–46], cancer [47–50], cardio-
vascular susceptibility [51,52] and liver disease [53]. There are several consortia whose aim is to 
obtain microorganism information from different types of samples, as de Human microbiome pro-
ject [54–60], 2nd part [61,62] the metagenomics of the human intestinal tract [63], the Human Food 
Project and the American gut [64] and others. CRC: colorectal cancer, HCC: hepatocellular carci-
noma, ASD: Autism Spectrum Disorders. Created with BioRender.com. 

1.2. Techniques Based on Next-Generation Sequencing 
The main tools used to carry out this type of analysis (see Figure 2) have been made 

possible thanks to the advent of high-throughput DNA sequencing. The most commonly 
used techniques to detect microorganisms are meta-taxonomy, which refers to the se-
quencing of marker genes, and metagenomics, which refers to the random sequencing of 
microbial DNA [65]. Bacteria and archaea can be identified on the basis of the 16S subunit 
of small ribosomal RNA (16S rRNA), a gene that is distinctive for prokaryotic cells [66]. 
The equivalent method for detecting fungi is based on the use of nuclear ribosomal inter-
nal transcribed spacer (ITS), 18S rRNA or 26S rRNA regions [67]. Specifically, the 16S 
rRNA subunit has highly conserved regions common to the majority of bacteria, as well 
as unique hypervariable regions (V-regions) for each bacterial species. This allows the se-
quencing (using universal primers) and taxonomic identification of the bacteria that are 
present in a community, without amplification of human DNA [66,68]. 
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Despite the sequencing of the 16S rRNA gene amplicon representing the primary tool 
for characterising bacteria in tissues with low bacterial biomass, this approach is limited 
by the challenges associated with short-read-length sequencing, including GC bias, se-
quencing errors and limited accuracy in taxonomic profiles at the species level [69,70]. For 
example, it is unable to detect more than 50% of species at the phylum Radiation, which 
represents 15% of the entire bacterial domain [71,72]. The technique is even more limited 
when it comes to defining and differentiating bacterial species between commensal and 
pathogenic strains [73], especially in the case of horizontal gene transfer. In addition, the 
selection of the variable regions to be analysed for each experiment must be carefully con-
sidered. This selection is essential because differences in the resulting microbial composi-
tion have been reported depending on the selected primer, as well as on the database and 
the bioinformatic tools used in the taxonomic assignment [66]. To overcome some of these 
technical limitations, other approaches rely on sequencers with longer reads, such as those 
provided by Pacific Biosciences (PacBio) and Oxford Nanopore (ONT), which can provide 
sequences exceeding 10,000 bp in length. These are currently being used for metagenomic 
assembly in low diversity communities [74] and the technique is expected to be improved 
for more complex metagenomic studies.  

Alternatively, shotgun metagenomics sequencing allows the study of the genomes in 
a microbial community, in order to determine their composition and provide insights into 
the biodiversity and functions of their components [75] (see Figure 2). After DNA extrac-
tion, it is fragmented and sequenced, so the use of specific loci as sequencing targets is 
avoided. Protein coding sequences from the metagenomic reads are then selected and 
compared with protein coding sequences from a reference database to obtain a functional 
profile. This method could be used to provide a profile describing the predicted biological 
functions discovered in the sequenced metagenome [75,76]. In addition, this methodology 
is able to detect viruses and viroids. Despite its numerous benefits, shotgun metagenomics 
sequencing has some limitations during DNA preparation and post-analytical processing 
techniques. Overall, the in silico inference of the metagenome has greatly improved the 
understanding of the microbial population dynamics and the contributions of the micro-
biota in the host. However, this technique does not offer any information about the mi-
crobial gene expression patterns that occur in response to environmental stimuli. Meta-
transcriptomic sequencing, however, can additionally identify mRNAs present in a mi-
crobial community, quantifying gene expression levels and providing the information 
needed to perform a functional study [77–79] (see Figure 2). Several studies have demon-
strated that functional redundancy exists among related bacterial taxa and, as such, it is 
an important component of host fitness, as it has been described that functions can be 
conserved despite perturbations disrupting the balance of bacterial populations [80]. 
Moreover, metatranscriptomics allows sequencing of both the microorganisms and the 
host, so functional relationships can be established [64] regarding the observed phenotype 
on the basis of measurements of microbial activity and/or population dynamics [81].  

As a complement, other -omic techniques, such as metaproteomics and metabolomics 
approaches, can be used to generate profiles of proteins and metabolites present in a sam-
ple [82,83]. Both techniques can identify metabolites and proteins that may mediate inter-
actions between microorganisms [84]. However, the integration of multiple “meta-omics” 
can generate complex insights and involve comprehensive data analysis, requiring skills 
that may be lacking in most research groups [85].  
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Figure 2. Workflow of a metagenomic analysis: laboratory and bioinformatic analysis. 16S 
rRNA/mRNA/DNA is extracted. Subsequently, they are sequenced. The raw data files are processed 
using different protocols. On the one hand, de novo assembly can be performed for unknown se-
quences. On the other hand, samples can be processed directly using different tools. The advantages 
and disadvantages of the different methodological approaches are presented. Figure created with 
BioRender.com. 

1.3. Bioinformatic Tools 
A number of bioinformatic tools have been designed to identify the microorganisms 

present in a sample. The information generated using high-throughput sequencing is be-
coming increasingly large and this poses a growing challenge for computational methods, 
which must minimise processing and memory requirements in order to provide a fast 
response and avoid overloading computational resources. Therefore, sample pre-pro-
cessing is an essential step for a proper data analysis workflow. After quality analysis and 
removal of adapters and host data (if necessary), two main approaches can be highlighted: 
(1) classification of reads and (2) assembly of sequences (see Table 1 for details). All meth-
ods included in this classification rely on public databases, so consequently the content of 
these repositories and their quality have a large impact on the results and the interpreta-
bility of the microbiome. 

1.3.1. Pre-Processing 
Pre-processing is usually the first and essential step in next-generation sequencing 

(NGS) analysis. The reliability of the results will be directly dependent on the quality of 
the dataset. There are plenty of tools to perform this step, mainly to identify and remove 
low-quality sequences and contaminants. Some of them are summarised below.  
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Trimming and Quality Filter 
The FastQC software [86] is employed for analysing the quality of reads, sequence 

length distribution and GC content distribution of each sample. The MultiQC software 
provides the possibility to summarise in a single report all information obtained by 
FastQC and others, so more accurate decisions are possible [87]. According to the report, 
it may be recommended to trim or filter out low-quality reads, as well as to remove 
adapter sequences. The cutadapt software allows users to remove adapter sequences, low-
quality reads, primers, poly-A tails and other types of undesired sequences [88]. Similarly, 
Trimmomatic is a very flexible and efficient pre-processing tool that can correctly handle 
paired-end data, and trim and remove adapters matching the technology used for the se-
quencing process [89]. 

Another useful software is FastQ Screen which compares sequencing libraries with 
databases of whole genomes of organisms to infer whether the library composition 
matches the expected one [90]. Finally, BBtools trims and filters the reads using k-mers 
and entropy information, and also allows coverage normalisation by reducing the sam-
pling of the reads (i.e., digital normalisation) [91]. 

Host Removal 
This step is used to remove unwanted reads that align with any selected reference 

sequence, for example, those derived from hosts and/or possible contaminating factors, 
which all depend on the particular goals of the study and the applied technology. There 
are pipelines to perform most of these steps automatically. Among these, we can highlight 
kneadData [92] and miARma-Seq [93,94]. KneadData is a tool created to perform quality 
studies of metagenomic and metatranscriptomic sequencing data. In these experiments, 
samples are usually taken from a host, so the ratio of host to bacterial reads is high. This 
tool makes an in silico separation of bacterial reads from these “contaminating” reads, re-
gardless of whether these come from the host, from bacterial 16S sequences or from other 
sources. miARma-Seq is a tool created to perform next generation sequencing (NGS) stud-
ies, and it can automatise many of the steps within the pre-processing of sequences, in-
cluding filtering out low-quality sequences, removing adapters and separating host se-
quences. 

1.3.2. Taxonomic Identification 
After quality control, reads can be directly submitted to taxonomic identification [65] 

using two main procedures: taxonomic classification or de novo assembly. The taxonomic 
classification of each read is a form of binning, as it groups reads according to their taxon 
ID. Binning can also be done by using other properties, such as compositional and co-
abundance profiles. However, these methods usually require assembling the reads into 
longer contigs, which provide better results for profiling [95,96]. On the other hand, reads 
can be used for de novo assembly to obtain longer sequences, called contigs or scaffolds. 
This process is usually done when the sample may contain microorganisms that have not 
been correctly identified or have not been included in the available databases. Therefore, 
the choice among the approaches above mainly depends on the goal of the study, the 
samples and the knowledge of the microorganisms represented. In this section, we first 
performed a brief description of the main de novo assembly tools used in metagenomics 
(for more information see the references [65,97,98]), and then we focused on taxonomic 
classification in more detail. 

Assembly 
In sequencing experiments, specifically metagenomics experiments, hundreds of mil-

lions of reads can be generated in a single sample. Depending on the number of reads and 
the complexity of the microbial species to be studied, some libraries can be sequenced 
with enough depth, making possible the attempt of assembling the original genome 
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sequence. In this case, as the sample contains multiple genomes, they require adapted 
algorithms, especially due to the unequal sequencing depth among organisms. In addi-
tion, it is very common for different strains of the same species to appear in the sample 
without a clonality event. Even so, assembly and binning of a metagenomics sample often 
succeeds in merging many of the reads, resulting in contigs that are easier to align to a 
genome reference database [98]. 

There are a number of assemblers that are based on assembling short reads into 
longer contiguous sequences. Some of them are MetaVelvet [99], MetaVelvet-SL [100] and 
Ray Meta [101], which are single k-mer Bruijn-graph-based assemblers for metagenomic 
data. IDBA (Iterative De Bruijn Graph Assembler) [102] and IDBA_UD first implemented 
this approach going from small k’s to large k’s, replacing reads with preassembled contigs 
at each iteration. IDBA-UD is a version of the IDBA assembler modified to tolerate uneven 
depth of coverage [103]. SPAdes [104] and MetaSPAdes [105] were developed for the as-
sembly of single-cell cells, metagenomes and plasmids. These software work well with 
isolates and metagenomes but can be computationally expensive for any larger dataset 
[104,106]. MEGAHIT, which can be a fast and robust solution for large and complex met-
agenomic samples, uses a range of k-mers to iteratively improve assembly [107]. Finally, 
Bowtie2 or BWA-mem can be employed for validation of assembled contigs [95,107,108], 
along with a number of other tools. MEGAHIT [109] computes a number of statistics about 
the assembly errors and mismatches. CheckM [110] and BUSCO [111] also estimate both 
completeness and contamination of recovered genomes by employing lineage-specific 
single-copy marker genes and single-copy orthologs, respectively. 

Methods based on de novo assembly were essential a decade ago, as microbial ge-
nome databases were not large enough. However, in recent years, lower sequencing costs 
have caused the number of near-complete genomes to increase exponentially [112]. Alt-
hough a significant number of microorganisms remain to be characterised, we now find 
thousands of unique sequenced genomes accumulated for the application of reference-
based methods [113]. 

Taxonomic Classification 
Taxonomic classification tools compare sequences against a reference database of mi-

crobial genomes to determine sample composition. Early metagenomics analyses em-
ployed BLAST [114] to compare each read to all sequences stored in GenBank [115]. How-
ever, reference databases and the size of sequencing datasets have exponentially grown, 
rendering this strategy obsolete due to the large computational requirements. This has led 
to the development of metagenomics classifiers that provide much faster results, although 
at the expense of sensitivity compared to BLAST. 

Currently, we find tools that may provide different information: some return a map-
ping of each read, while others provide the overall composition of the sample. Different 
strategies have been implemented to obtain this output, including read alignment, k-mers 
mapping, use of whole genomes, alignment of marker genes only or DNA translation, and 
alignment with protein sequences [65,116]. 

Taxonomic Profiles Based on Marker Genes 
Taxonomic profiles based on marker genes arise from the identification of clade-spe-

cific gene-sets, so the identification of one of these genes is evidence that a member of the 
clade is present. The reference databases are much smaller, and therefore the assignment 
is much faster. The aligners are also quite sensitive. Some of them are Bowtie2 [117], used 
by MetaPhlAn, and HMMER [118], used by Phylosift [119] and mOTU [120]. The 
GOTTCHA tool [121] generates a database with unique genomic signatures based on 
unique fragments of 24 base pairs, which are indexed by bwa-mem [122]. This strategy 
should be accurate in abundance estimation, although problems arise in incomplete ge-
nomes where it is impossible to know the copy number. Other interesting tools are Mash 
[123] and sourmash [124], which use MinHash signature overlap. These tools allow 
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estimating the similarity of datasets, so fast analysis at low computational cost is possible, 
leveraging the entire GenBank database. Among the tools for marker gene analysis, we 
must highlight QIIME 2 [69], as this software, together with its previous version, add up 
to 29 thousand citations. It provides an analysis platform based on ribosomal gene data-
bases: 16S for bacteria, 18S for eukaryotes, and ITS for fungi. It is an open-source plug-in 
system where most of the programs to filter, trim, denoise and classify are included as 
“external” plugins. Some of these plugins, such as DADA2 [125] and Deblur [126], are 
designed for sequence quality control from different sequencing platforms, as well as for 
taxonomy assignment [127] and for phylogenetic classification [128]. Another reason for 
its success is that by working only with marker genes, the number of sequences needed 
to perform a reliable classification is very low, so the costs for sequencing samples that 
will later be analysed with QIIME 2 can be reduced [69]. 

Taxonomic Profiling Based on Whole Genomes and Transcriptomes 
As mentioned above, read assignment is an important first step in taxonomic analy-

sis, as it provides the basis for species identification and quantification. Therefore, here 
we elaborate on the assignment of metagenomic reads and transcript quantification from 
shotgun and transcriptomic data, in order to achieve rapid and accurate quantification of 
metagenomic strains [113,129–132]. 

There are many parallelisms between the analysis of transcriptomic data and the 
identification of microorganisms. For example, ambiguous genomic reads that are diffi-
cult to resolve at the strain level are analogous to the assignment of isoforms in RNA-Seq. 
The statistical issues at the heart of “comparative metagenomics’’ [133–135] are also simi-
lar to the challenges in differential expression analysis. In fact, the only relevant difference 
between metagenomics and RNA-Seq is that the sizes of the reference genomes are much 
larger than the transcriptomes. Another concept derived from RNA-Seq is the pseudo-
alignment, which was developed to take advantage of the fact that most of the statistics 
for RNA-Seq quantification are assignments of sequences to transcripts, rather than their 
alignments. Transcriptomic samples can be analysed using pseudoalignment techniques 
in the metagenomics setting [113]. In the context of metagenomics, as in RNA-Seq, the 
application of the expectation maximisation (EM) algorithm to “equivalence classes’’ al-
lows accurate statistical resolution of mapping ambiguities. Furthermore, when combined 
with the EM algorithm, reads can be mapped much more accurately and quickly, allowing 
accurate statistical resolution of mapping ambiguities [136]. 

There are a number of tools for the identification of taxonomic profiles based on the 
taxonomic classification and quantification of nucleotides (see Table 1). The MEGAN soft-
ware [137] was one of the first reference-based read mapping programs. This program 
provided phylogenetic context to mapped reads by assigning reads to the lowest taxo-
nomic level that they could be uniquely aligned to. One of the disadvantages of MEGAN 
was that its approach to assigning ambiguous mapping reads limited its application to the 
quantification of individual strains. This strain identification not achieved by MEGAN 
was solved by the programs GRAMMy [138] and GASiC [139], which were the first to 
statistically assign ambiguous mapping reads to individual strains. However, these ap-
proaches relied on read alignment, demanding very high computational costs due to the 
huge size of the databases. ConStrains is another tool that identifies conspecific strains 
and reconstructs their phylogeny in microbial communities. This software uses single-
nucleotide polymorphism patterns in a set of universal genes to infer within-species struc-
tures that represent strains [140]. Finally, the tool Taxonomic Analysis by Elimination and 
Correction (TAEC) uses the similarity in the genomic sequence in addition to the result of 
an alignment tool [141]. 

In 2014, it was demonstrated that it is possible to greatly accelerate read assignment 
using a fast k-mer hash, to avoid the need for read alignment [142]. Kraken and its im-
proved version, Kraken2, employ this strategy for achieving the fast identification of all 
reads in a genomic sample. This algorithm is based on exact k-mer matches, so it replaces 
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the alignment step by a simple search in a database containing every k-mer of every ge-
nome with the species identifier. If a k-mer appears in two or more taxa, the lowest com-
mon ancestor is stored. Kraken2 also provides direct support for 16S rRNA classification 
with any of the three standard 16S rRNA databases: Greengenes, SILVA, and RDP. In this 
manuscript, we used this feature to compare Kraken2 to the current software for 16S 
rRNA classification made by QIIME2 [143]. In addition, there is another tool called 
Bracken (Bayesian Reestimation of Abundance after Classification with Kraken2), which 
uses the taxonomic assignments made by Kraken2, along with information about the ge-
nomes, to estimate abundance at the species and/or the genus level. Bracken is able to 
adjust the abundance of identified organisms more precisely based on a Bayesian proba-
bility algorithm [144]. CLARK is another tool similar to Kraken2, which discards k-mers 
above genus. Both tools provide very sensitive results (i.e., very low false negative rate), 
although it will depend on the k-mers selected. We also found extensions of Kraken2 and 
CLARK that employ spaced or adaptive seeds that encode patterns for which only a sub-
set of bases must match perfectly [145–147]. However, they have limitations in assigning 
different taxonomic levels. The Kallisto software [114] infers strain abundances by em-
ploying an expectation maximisation (EM) algorithm [148]. k-SLAM [149] is also a novel 
k-mer-based approach that uses local sequence alignments and pseudo-assembly, which 
generates contigs that can lead to more specific assignments. 

Another interesting approach employs fast searches in amino acid databases. This 
may be the most sensitive classification of reads because amino acid sequences are con-
served at much greater evolutionary distances than DNA. These tools require a higher 
computational cost. The two main tools based on this approach are DIAMOND [150] and 
Kaiju [151], which compare six-frame translations of reads with protein databases. 

To sum up, direct taxonomic classification is very useful for quantitative profiling 
and identification of organisms with close relatives in the database. Furthermore, through 
this type of single-copy gene identification, in addition to classifying organisms, genome 
integrity and sample contamination can be measured [95,152]. 

Table 1. Bioinformatic tools for metagenome and metatranscriptome analysis. 

Preprocessing Tools 
Step Tools Description Ref 

Quality report 
- FastQC Reads quality, seq length distribution and GC% [86] 
- MultiQC Summarise results [87] 
- FastQ Screen Match a library with libraries expectation DB [90] 

Trimming 

- Cutadapt 
Find and remove adapters, primers, poly-A tails and 
others 

[88] 

- Bbtools Trims and filters by k-mers and entropy and 
downsampling reads 

[153] 

- Khmer k-mer error trimming [154] 
- Diginorm Downsampling reads [155] 
- Trimmomatic Trimming tool for Illumina [89] 

Host removal 
- kneadData Host sequences removal [92] 
- miARma Quality, trimming and host sequences removal [93] 

Assembly for taxonomic classification 

Assembly 

- MetaVelvet Single k-mer Bruijn-graph-based assemblers [100] 
- Ray meta Single k-mer Bruijn-graph-based assemblers [101] 
- IDBA-UD Multiple k-mers with preassembled at each interaction [103] 

- Meta SPAdes 
Multiple k-mers better assemblies with different abun-
dances 

[105] 

- MEGAHIT 
Iterative k-mer fast and co-assembly robust meta-
genomic tool 

[107] 
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- CheckM Evaluate quality of assemblies and contamination [152] 

- BUSCO Assess genome assembly and gene set completeness 
based on single-copy orthologs 

[156] 

Taxonomic classification 

Based on marker genes 

- MetaPhlAn Marker-gene-based taxonomic profiler [157] 

- mOTU 
Taxonomic profiler based on a set of 40 prokaryotic 
marker genes 

[120] 

- GOTTCHA Reads against unique subsequences at multiple taxo-
nomic ranks 

[121] 

- Mash MinHash-based taxonomic profiler enabling super-fast 
overlap estimations 

[123] 

- Sourmash 
Dast searches with sequence bloom trees for taxonomic 
profiling 

[124] 

- QIIME2 
Completely re-engineered microbiome platform based 
on QIIME 

[69] 

Based on whole genomes 
and transcriptomes 

- ConStrains Uses single-nucleotide polymorphism patterns [140] 

- TAEC Uses the similarity in the genomic sequence and align-
ment tool 

[141] 

- MEGAN 
Uses BLAST or DIAMOND to match sequences and as-
signs LCA of matches 

[137] 

- GRAMMy 
Genome Relative Abundance using Mixture Model 
theory  

[138] 

- GASiC Genome Relative Abundance in a non-negative LASSO 
approach  

[139] 

- Kraken2 k-mer search of reads against a DB built from multiple 
genomes 

[142] 

- Braken 
k-mer search of reads against a DB built from com-
pleted genomes 

[144] 

- CLARK Pseudo-assembled using k-mers using DB of nonover-
lapping 

[158] 

- Kallisto Pseudo-assembled using k-mers using DB of nonover-
lapping 

[148] 

- k-SLAM 
k-mer-based technique validated using the Smith–Wa-
terman algorithm 

[149] 

- DIAMOND 
Spaced seeds with a reduced amino acid using protein 
homology search 

[150] 

- Kaiju FM index using classifier against protein sequences 
with reduced amino acid 

[151] 

1.4. Pipelines for Metagenomics and Metatranscriptomics Analysis 
Microbiota analysis is a very complex and demanding task that requires the re-

searcher to make a series of fundamental decisions in order to obtain accurate and repro-
ducible results. Once the right tools have been selected and the parameters are defined, 
performing all the steps involved in the analysis in an optimal way can be complex and 
tedious. To avoid errors, an interesting approach is to create pipelines. These allow all the 
steps to be performed automatically, while being adaptable to the dataset of interest and 
the objectives of the study. Moreover, more than one tool is usually needed in the whole 
process, and it will be very often necessary to adapt the input and output formats to the 
requirements of each of the programs. The pipelines will then avoid the frequent errors 
when executing each of the steps and programs manually, in addition to the possibility of 
standardising and controlling each of the steps performed in a simple and detailed way. 
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Among the published pipelines for metagenomics and metatranscriptomics studies, 
it is worth mentioning Mothur as a pipeline which focuses on gene marks analysis. 
Mothur is an open-source software package which offers a list of commands to pre-pro-
cess raw data for OTU-based analysis such as max length determination and removal of 
certain lineages [159–161]. It also provides a screen, pre-cluster and OTU-based analysis 
for taxonomic classification (k-mers). The standard global sequence alignment is com-
puted using the Needleman–Wunsch algorithm. Mothur performs a taxonomic classifica-
tion, OTU clustering, diversity analysis and visualisation of taxonomic levels (Krona and 
Phinch). In addition, for metatranscriptomic analysis, SAMSA has demonstrated a good 
performance. SAMSA is a pipeline designed for aligning metatranscriptomic sequences, 
which greatly increases its speed compared to BLAST [162]. It uses well-known tools such 
as PEAR and Trimmomatic for pre-processing and read trimming, SortMeRNA for filter-
ing of ribosomal RNAs, DIAMOND for annotation, and R language for statistics tests and 
plots (DESeq). It also has an accurate prediction of organisms at the species level (~95%), 
and can predict both organism and function, which provides a complete picture of micro-
bial gene expression.  

We propose here two pipelines: one for metagenomic analysis, based on QIIME 2, 
and another for shotgun and metatranscriptomic analysis, based on Kraken2 and Bracken. 
Both are running under Nextflow [163], which allows parallel execution and for the soft-
ware requirements to be tailored. The fundamental programs in both pipelines are, ac-
cording to the literature, the best for these kinds of analyses if they are parameterised 
correctly, which is why our pipelines are adapted according to the available data (see Sec-
tion 2.2.4.). Moreover, we provide the code to verify the results generated by both pipe-
lines, which will also help us to compare both techniques with each other. The details of 
both pipelines are discussed in Section 2.2. 

2. Materials and Methods 
2.1. Description of Three Datasets Used 

Metagenomic reads provide a realistic test of performance; therefore, we analysed a 
case study of endometrial cancer that provides 16S and RNA-Seq data. However, these 
data do not allow an assessment of classification accuracy. This is the reason why two 
simulated metagenome datasets were also used. 

2.1.1. 10/100/400 Species Next Generation Sequencing Datasets 
Mende and collaborators [164] generated a simulation of metagenomic sequences in 

order to test the performance of existing data analysis tools and methods. These data were 
generated with the iMESS-illumina metagenomic simulator software, for which three dif-
ferent genomic communities were created. These datasets are very useful for testing our 
Kraken/Bracken Pipeline, in order to identify the degree of accuracy in taxonomic identi-
fication at species level. Moreover, they also allow accuracy measurement through simu-
lated genomes of microbial communities, which increase their complexity (10, 100 and 400 
genomes). Three datasets are available in the following repository 
(http://www.bork.embl.de/~mende/simulated_data/). The three communities have an av-
erage of 26.66 million paired-reads and 75 bp of length. Further information regarding the 
dataset generation is described in the “Methods’’ section of Mende et al. [164]. Reference 
species reassigned to another taxon have been modified so that they can be compared 
with the database generated for taxonomic identification in the Kraken/Bracken Pipeline. 
Quality control was also conducted for all synthetic samples, showing low quality reads 
for every sample. Even so, our Kraken/Bracken pipeline managed to identify species quite 
precisely. 

2.1.2. Gut Microbiota Test Datasets 
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An adequate dataset for our purpose was the synthetic microbiome samples from the 
human gut generated by Almeida and collaborators (available at 
http://ftp.ebi.ac.uk/pub/databases/metagenomics/taxon_benchmarking). Two datasets, 
A100 and A500, were generated from 100 and 500 species, respectively, among the 66 most 
abundant genera across publicly available metagenomes from the human gut. The origi-
nal datasets were constituted by fastq files from different hypervariable regions of 16S 
rRNA (V4, V12, V34, V45). The paired files obtained after concatenation of the different 
hypervariable regions contained 784,000 × 250 nt paired-end reads. Further information 
about this dataset is described in the “Methods” section of Lu and Salzberg and Almeida 
and collaborators [143,165]. We also performed quality control to verify that no trim pro-
cess (adapters/primers/poly-A tails removal) was needed in our subsequent analysis. 

2.1.3. Description of Experimental Samples 
This study from Li C et al. was conducted at the Shanghai First Maternity and Infant 

Hospital affiliated with Tongji University, from March 2018 to July 2020 [166]. A total of 
40 women, including 30 endometrial cancer (EC) patients and 10 healthy controls (HCs), 
were enrolled. Endometrial tissue samples were obtained from these 40 women, who had 
undergone hysterectomy. Tissue samples from the 10 healthy patients, along with tumour 
samples from the 30 women, were studied using 16S. In addition, for these women with 
EC, adjacent non-tumour tissues were also obtained and studied in a paired RNA-Seq, 
together with the tumour tissue of the patients. All sequences can be obtained through the 
SRA portal: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA750303. 

The RNA-Seq sequences provided by the authors were processed for adapter re-
moval, so that the size ranges between 50 and 150 nt. The average size of the 60 paired-
end libraries was 24,242,948. However, once the human sequences were removed with 
miARma-Seq, we obtained 1,027,228 of average size for the identification of possible mi-
croorganisms. In the case of the 40 16S samples, they displayed an average depth of 80,360 
paired-reads and a length of 250 nt. 

2.2. Software and Databases Used in the Analysis 
2.2.1. Kraken/Bracken/Krona 

The tools used were Kraken2 (v2.2.1), Bracken (v2.7) and Krona (v2.7) (see Figure 3). 
For the analysis of the three datasets, Kraken and Bracken used two different databases, 
one from SILVA132 and the other from RefSeq. The database from SILVA was generated 
using the script named 16S_silva_installation.sh and provided by Kraken2 for that purpose, 
which uses the small subunit NR99 sequence set. This program was slightly modified to 
download version 132, instead of the latest v138, since the taxonomic abundance values 
in the Almeida et al. dataset, which our results will be compared with, were obtained with 
version 132. According to the kraken2-inspect utility, 73% of this database contains mini-
misers that map to a taxon in the clade rooted at Bacteria, 22.30% map to the Eukaryota 
domain and the remaining 4.7% to Archaea.  

In the case of the RefSeq database, we used the kraken-build script to download the 
taxonomy and the datasets from Bacteria, Archaea, fungi, plant, protozoa and human. 
Moreover, to remove contaminant reads from sequencing projects, assemblies, linkers or 
primers, amongst, we also included vector databases from NCBI, such as UniVec and Uni-
vec_Core. The content of this database provided by the kraken-inspect tools is the follow-
ing: 39.8% of this database contains minimisers that map to a taxon in the clade rooted at 
Bacteria, 58.7% to the Eukaryota domain, 1.13% to Archaea and 0.37% to viruses. 

Once the databases were downloaded and indexed, Kraken2 assigned reads to the 
best location in a taxonomic tree contained in the reference database by invoking the fol-
lowing command: kraken-db database Non-host.seqs.fq. After this step, a report file was gen-
erated for subsequent analysis.  
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To facilitate the visualisation of the results, the Krona-tools software is used to gen-
erate interactive graphs of the taxonomic classification from the Kraken2 output. These 
graphs cover all taxonomic levels of the classification, from kingdom to subspecies. To 
generate them, we used the krona_import_taxonomy.py script from the Krona-tools soft-
ware.  

For abundance quantification, we used Bracken (Bayesian Reestimation of Abun-
dance with Kraken), which derives probabilities describing how much of each sequence 
of a genome is identical to other genomes in the database. This tool is also capable of 
making assignments from a given sample to estimate abundance at the species and genus 
level, or even higher. This software also requires the building of a database adapted to the 
length of the reads, which is done by the bracken-build utility, by using the kraken data-
base. In this work, three specific databases were built, adapted to 250, 75 and 50 nt, re-
spectively. There are many parameters along this process, which can change the result of 
the analysis and can be modified in our pipeline (see Table 2). 

Table 2. Modifiable parameters of our Kraken/Bracken pipeline. 

Parameter Function Command 
Confidence score threshold kraken - confidence 
Read length of the input data bracken-build - l 
kmer length of the reference database bracken-build - k 
Read length of the input data bracken - r 
Taxonomic level to filter by  bracken - l 
Threshold for bracken filter bracken - t 

2.2.2. QIIME2 
For the analysis of marker genes, we have incorporated QIIME2, as it is one of the 

most widely used software for this purpose. The QIIME2 part of our pipeline (see Figure 
3) starts by importing the input data (fastq files) into a qza object, and demultiplexing if 
necessary. After this, DADA2 is used to denoise the samples, finally obtaining the repre-
sentative features of the sequences. These features are mainly used for the taxonomic clas-
sification, generating the abundances of the microorganisms in each of the samples. For 
the conversion of these abundances to a readable content outside of the QIIME2 environ-
ment, biom functions are used. 

Alternatively, other diversity analyses are also performed from the representative 
features of the sequences, such as α and β diversity, α rarefaction curve and taxa barplot, 
which are generated in qzv format (a specific file format for visualisation within the 
QIIME2 viewer). 
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Figure 3. Overall summary of the Nextflow and QIIME 2 pipeline. The pipeline works in two 
stages: (1) Pre-processing stage: importing sequences, quality control, different sequences removal, 
host sequences removal; (2) Nextflow analysis: QIIME2 or Kraken2 relative abundance analysis and 
differential abundance and statistics analysis using the metagenomeSeq package in R. The main 
inputs of the Nextflow pipeline are fastq files from RNASeq pre-processing or 16S fastq files. The 
box marked with ‘*’ is not included in the Nextflow code. Green boxes show other alternative tools 
not included in these pipelines. 

There are many parameters along this process, which can change the result of the 
analysis and can be modified in our analysis pipeline (see Table 3). 

Table 3. Modifiable parameters of our QIIME2 pipeline. 

Parameter Function Command 
Format of the input data (casava format, sin-
gled/paired, demultiplexed) 

import - input-format 

Position to trim reads dada2 denoise - p-trim-left 
Position to truncate reads  dada2 denoise - p-trunc-len 
Method used to remove chimeras dada2 denoise - p-chimera-method 
Frequency that each sample should be rarefied diversity - p-sampling-depth 
Taxonomic level to filter by collapse - p-level 

2.2.3. MetagenomeSeq 
MetagenomeSeq (v1.36.0) is an R-package supporting statistical analysis that takes 

into account sparsity in OTU tables [167]. MetagenomeSeq has been developed to account 
for additional zero counts defining a zero-inflated Gaussian mixture model. The EM algo-
rithm is used for the estimation of the fold change. Finally, significance assessment is per-
formed by applying a moderated t-test, using the estimated fold change parameter in the 
mean model. This software has been selected because it outperforms other traditional 
methods [168]. This tool normalises the input data generated by the previous steps, cor-
rects for the relevant covariates, and finally calculates the differential abundance between 
the experimental conditions. 
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2.2.4. Nextflow 
Nextflow is a reactive workflow framework and a programming domain-specific lan-

guage (DSL) that eases the writing of data-intensive computational pipelines [164]. It pro-
vides a high-level parallel computational environment based on the dataflow program-
ming model. An important advantage of this framework is its compatibility with diverse 
programming languages and different executing platforms, such as Simple Linux Utility 
for Resource Management (SLURM) [169], Amazon Web Service (AWS) [170], and docker 
container technology. These features make the developed pipelines reproducible, portable 
and easily parallelisable. 

In this project, two pipelines based on Kraken2 and QIIME2 have been implemented 
using this framework (see Figure 3). Both pipelines generate a matrix with the microor-
ganism abundance detected in each of the samples, which can be used for differential 
abundance analysis using MetagenomeSeq. Finally, to meet individual needs, our pipe-
lines include different execution profiles with varying computational resources termed (1) 
“low”, which is intended to simulate an average laptop with 6 Central Processing Units 
(CPUs, 6 concurrent processes at maximum) and 24 GB of Random Access Memory 
(RAM), and (2) “high”, which represents a computational cluster with 36 CPUs and 156 
GB of RAM. Execution times were compared in order to measure the improvement by the 
pipeline parallelisation capability, in terms of computational time (see Section 3.3). The 
command-line tool, documentation and Nextflow source code are available at the GitHub 
repository https://github.com/BioinfoIPBLN/16S-Metatranscriptomic-Analysis. 

2.3. Dataset Processing 
For each of the datasets described in Section 2.1, different analyses, pre-processing 

and filtering steps were carried out based on the characteristics of each study. In the case 
of the 10/100/400 species NGS data (Section 2.1.1), only a species-level abundance analysis 
was performed because abundance information was available for each species in each 
sample. For this reason, the only possible combination for achieving the detection of spe-
cies in the different samples was the use of the Kraken2 pipeline and the RefSeq database. 
In addition, this study was not conducted with our QIIME2 Nextflow tool because the 
reads do not come from rRNA. However, the large number of reads in the samples meant 
that QIIME2 could not provide any result within a reasonable period of time. Due to the 
large number of paired-end reads (>26 million), it was also decided to set a confidence 
value of 0.5 for Kraken2, as the non-assignment of reads would not be a problem in the 
subsequent analysis. In addition, this parameter also ensures very reliable results for the 
most abundant microorganisms. This is of great interest in this study, since the objective 
is to compare against a reference abundance of a known number of organisms. These da-
tasets had reads of 75 nt size, so a Bracken database adapted to this length was also used. 
Moreover, we had to review (NCBI taxonomic database; 
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi) the assignment of the 
apparently undetected microorganisms and check whether they had not been detected or 
had undergone a taxonomic reassignment. In the latter situation, taxonomic reassign-
ments were manually performed on the reference data, in order to generate comparable 
results. The taxa with these modifications are included in Supplementary Table S1.  

Regarding the gut microbiota test dataset, the same reads were used to perform anal-
yses with both the QIIME2 and the Kraken2 pipelines, using both the SILVA and RefSeq 
databases for the second. At the species level, only a comparison of the number of species 
detected by each software was performed, as we did not have absolute abundance infor-
mation from the reference dataset at this level. As for the genus level, since we had refer-
ence abundance data [143], an analysis was carried out with both the QIIME2 and the 
Kraken2 pipelines, comparing their detection levels, as well as the correlation between the 
abundance results obtained and the real ones. In this case, the confidence value chosen for 
Kraken2 was 0 despite the probability of false positives, due to the low number of starting 
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reads. Since this parameter reduces the number of successfully classified reads, a higher 
value would have caused a drastic impact on the results, which would hinder the objec-
tives for this dataset. Since these data had reads of 250 nt size, a Bracken database adapted 
to this length was used. For the QIIME2 pipeline, it was necessary to select those lines that 
contained the taxonomic level analysed (D__5 for genus or D__6 for species), and to re-
move OTUs referring to uncultured or unidentified strains. 

For the two analyses described above, the counts of the different OTUs belonging to 
the same species or genus were summed. Finally, the results were merged by selecting the 
OTUs present in the reference data from the output of each software. Concerning the 
OTUs not detected by our tools, the abundance value was set to 0. On the contrary, OTUs 
detected by our tools but not present in the reference data (false positives) were assigned 
to an additional category named “other”. Further information is available in Supplemen-
tary Table S2. 

For the case study, with no reference to compare to, we processed 40 samples from 
16S and 60 paired samples from RNA-Seq at the genus and species level. The QIIME2 
pipeline was performed using the SILVA132 database. Once the abundance of each taxon 
per sample was obtained, we filtered to obtain the genus (D__5) and the species (D__6), 
removing OTUS in higher clades and uncultured/unidentified OTUS. In the case of the 
RNA-Seq samples, they were aligned by HISAT2 from the miARma-Seq pipeline, against 
the GRCh38.p13 human reference genome. By default, this tool generates paired-end fastq 
files containing the reads that do not align against this reference, forming the input of the 
Kraken/Bracken pipeline. In order to obtain the microorganisms in these samples, we used 
the RefSeq reference database, due to the fact that the Kraken/Bracken pipeline using the 
SILVA database did not yield any results at the species level. As previously mentioned, 
we used Kraken/Bracken to generate an abundance matrix of the microorganisms present 
in each of the 60 samples, for obtaining genus and then species. These data do not require 
any further post-processing.  

The three studies in this manuscript have been carried out using the default param-
eters of our pipelines, unless indicated otherwise. 

2.4. Correlation Analysis 
A correlation analysis for the two reference datasets was implemented. First, abun-

dance values of the OTUs present in the reference data (real composition) were selected 
from the results by the different pipelines (if not detected, OTU abundance was set to 0). 
The Shapiro test was then applied to all datasets to assess the normality and select the 
most adequate correlation test. The Shapiro test showed that all datasets were non-nor-
mally distributed, so a Spearman test was selected to analyse the correlation between re-
sults and reference data. Correlation plots were also generated using the “ggscatter” func-
tion from the ggpubr R package [171]. 

3. Results 
To standardise and optimise metagenomics and metatranscriptomics studies, we 

have created two pipelines that employ the up-to-date software that is considered to pro-
vide the best results. As an example, we used those pipelines in three different datasets, 
two of them considered to be the gold standard for validation of taxonomy classification. 
In these two cases, results were compared to the reference in order to determine the level 
of accuracy and their advantages/disadvantages. The third dataset was a case study using 
samples for endometrial cancer. 

3.1. Simulated Samples 
3.1.1. 10/100/400 Species Next Generation Sequencing Datasets 

The first dataset in this study contained 10 species with different abundances. After 
the reassignment of the reference taxa (see Section 2.3), we finally observed the detection 
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of the 10 species with an abundance very similar to that expected (see Figure 4). Only one 
more species was detected by Kraken2 that was not present in the real data. However, this 
false positive OTU (Methanococcus vannielii) belongs to a genus that is present in the real 
data: Methanococcus. Furthermore, only 32 counts out of 16,818,916 (0.00019%) were as-
signed to this OTU, which is a negligible value compared to the other abundance values 
detected. We then reported a correlation coefficient of 0.97 between the abundance of the 
detected and expected species. 

 
Figure 4. Stacked barplot depicting relative abundance between Reference abundance and Kra-
ken/Bracken pipeline in the 10 species data from Mendo and collaborators. Each vertical bar de-
picts the relative abundance according to Reference data and Kraken/Bracken pipeline analysis 
(Kraken bar). Counts associated with false positive OTUs are coloured in grey. Species names from 
the legend along with the associated counts are available in Supplementary Table S2. 

The second dataset from 100 species contained a number of strains, so after aggregat-
ing their abundance, the reference was reduced to 84 OTUs. The Kraken/Bracken pipeline, 
after filtering, detected 114 OTUs, 81 of which belonged to the reference data (three species 
were not detected; see Figure 5). Additionally, 33 false positive OTUs were detected, with 
640,005 counts out of 17,632,395 total reads (3.63%, i.e., 19,394 on average per species). The 
correlation between the expected and estimated abundance of the detected species was 
0.73.  
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Figure 5. Stacked barplot depicting relative abundance between Reference abundance and Kra-
ken/Bracken pipeline in the 100 species data from Mendo and collaborators. Each vertical bar 
depicts the relative abundance according to Reference data and Kraken/Bracken pipeline analysis 
(Kraken bar). Counts associated with false positive OTUs are coloured in grey. A different colour 
palette was used to represent the reference species not detected by the pipeline. The list of OTUs in 
the legend is included in Supplementary Table S3. 

Finally, in the 400 species dataset, we expected to find 398 after aggregation. The 
Kraken/Bracken pipeline detected 464 species, 361 of which corresponded to the OTUs in 
the reference data, and 103 additional to false positive OTUs (see Figure 6). These false 
positives included 1,221,726 out of 17,643,183 counts (6.92%). In addition, 37 species con-
tained in the reference data were not detected by the pipeline. The correlation between 
the expected and estimated abundance of the detected species in this case was 0.86 (see 
Figure 7).  
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Figure 6. Stacked barplot depicting relative abundance between Reference abundance and Kra-
ken/Bracken pipeline in the 400 species data from Mendo and collaborators. Each vertical bar 
depicts the relative abundance according to Reference data and Kraken/Bracken pipeline analysis 
(Kraken bar). Counts associated with false positive OTUs are coloured in grey. A different colour 
palette was used to represent the reference species not detected by the pipeline. The list of OTUs in 
the legend is included in Supplementary Table S4. 

 
(A) (B) (C) 

Figure 7. Correlation plots between the relative abundance of microorganisms detected by Kra-
ken/Bracken pipeline and Reference. Each plot represents the Spearman correlation between the 
relative abundance in the 10 species (A), 100 species (B) and 400 species (C) datasets from Mendo 
and collaborators, along with the obtained correlation coefficient. 

As a summary, for a study based on genomic sequences, as in this case of shotgun 
sequencing, the pipeline by Kraken2 leveraging the RefSeq database generates very good 
results, with correlation coefficients of 0.97–0.73. Out of the total number of sequences, 
only 3–6% are associated with species that are known to be not present in the samples, 
although they come from included genera. In addition, if deep sequencing is performed, 
there are parameters, such as --confident, that allow a clear separation between contained 
species and false positives. In these cases, it was only possible to use the Kraken2 pipeline 
because the datasets did not contain rRNA reads. 

3.1.2. Gut Microbiota Test Datasets 
Almeida and collaborators [165] generated a dataset that has allowed several authors 

to test different metagenomics and metatranscriptomics tools, since these data are 
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prepared to be analysed with a variety of software, including programs for 16S data anal-
ysis. Additionally, Lu and collaborators [144] provided data of high interest to identify 
the number of absolute reads associated with each of the identified genera for the 500 
species dataset, and thanks to this, we can assess the quality of our analyses. Out of the 66 
genera mentioned in the original paper, this last work only included the abundance of 58 
of these genera, and they are the ones we will compare with the results of our pipeline. 

After filtering and aggregating the results, the QIIME pipeline detected 88 genera. 
Alternatively, Kraken pipeline detected 175 genera using the SILVA database, whereas 
193 genera were detected using the RefSeq database. 

Out of the 58 genera in the reference (see Figure 8), QIIME was able to detect all, plus 
30 additional genera, which represents 9.25% of the total counts (57,231 reads out of 
618,860). Regarding the Kraken/Bracken pipeline using the SILVA132 database, 57 of the 
reference genera were detected, plus 84 additional genera with 57,234 out of 765,055 reads 
(7.48%). Regarding the Kraken/Bracken pipeline with the RefSeq database, we were able 
to detect 51 out of 58 reference genus, and 141 additional OTUs with 57,234 reads out of 
780,133 (7.34%). 

 
Figure 8. Stacked barplot depicting relative abundance between Reference abundance, QIIME2, 
Kraken/Bracken pipeline with SILVA database and Kraken/Bracken pipeline with GenBank re-
pository in gut data from Almeida and collaborators dataset containing 58 genera and 500 species. 
Each vertical bar depicts the relative abundance according to Reference data, QIIME2 and Kra-
ken/Bracken pipeline analysis (Kraken bar). Counts associated with false positive OTUs are col-
oured in grey. A different colour palette was used to represent the reference species not detected by 
any pipeline. The list of OTUs in the legend is included in Supplementary Table S5. 

The correlation coefficient of the abundance of microorganisms between the sample 
and the reference was 0.67 using the QIIME 2 pipeline and the SILVA132 database, 0.82 
with Kraken2 and SILVA132, and 0.65 with Kraken/Bracken when using the RefSeq data-
base (see Figure 9; Supplementary Table S5). 



Genes 2022, 13, 2280 21 of 36 
 

 

 
(A) (B) (C) 

Figure 9. Correlation plots between the relative abundance of genus detected in Reference and 
QIIME2 or Kraken/Bracken pipeline with SILVA database and RefSeq repository. Each plot rep-
resents the Spearman correlation between the relative abundance of gut species from Almeida and 
collaborators detected by QIIME2 (A), Kraken/Bracken pipeline with SILVA database (B) and Kra-
ken/Bracken pipeline with RefSeq repository (C) with its own value of correlation coefficient. 

Focusing on the species identified, we can highlight that the QIIME pipeline was able 
to detect 39 species in the A100 dataset and 213 in the A500 dataset (see Figure 10), which 
is far below the number of species contained in the reference datasets. Alternatively, the 
Kraken/Bracken pipeline using the RefSeq database was able to detect 143 and 419 species 
in the A100 and A500 datasets, respectively. Nevertheless, the Kraken/Bracken pipeline 
using SILVA132 did not manage to detect any species. 

 
Figure 10. Number of species identified by Kraken/Bracken pipeline and QIIME2. Barplot show-
ing the number of microorganisms species detected by Kraken/Bracken pipeline (using RefSeq da-
tabase) and QIIME2 in gut data from Almeida and collaborators. 

In this analysis, sequences from 16S hypervariable regions were used, so we can test 
both QIIME2 and Kraken2 pipelines. Based on the results, at the genus level the best op-
tion is to use Kraken2 with the SILVA database (see Figure 9) as it detects the majority of 
the genera with a low percentage of false positives. In this case, it is clear that using a 
whole genome database, such as RefSeq, against marker-gene sequencing data is not the 
best option. And after using SILVA as a reference database, the Kraken2 provides better 
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results than those obtained by QIIME, since it identifies fewer false positives (7% vs. 9%) 
and the correlation of genera abundances are also better (0.82 vs. 0.67). It is worth noting 
than QIIME is quite good identifying the genera (58 from the 58) but not quantifying them 
(Figure 9). At the species level, where very similar organisms can be found, a large data-
base containing the complete genomes is necessary to make a good classification. There-
fore, Kraken’s results using RefSeq are much better than those of QIIME (see Figure 10). 

3.2. Case Study—Microorganisms Detected in Endometrial Cancer Samples 
The article by Li C. and collaborators [167] provided a suitable dataset for a compar-

ative study among 16S and metatranscriptomic data samples from RNA-Seq. 

3.2.1. 16S Study 
For this analysis, the 40 samples (30 from endometrial tumour tissue and 10 from 

endometrial tissue of healthy patients) were processed using our QIIME pipeline. We 
used different parameters to obtain both the genera (level 6) and the species (level 7). As 
for the genera, a total of 640 genus were obtained in the 30 tumour samples. In the samples 
from healthy patients, a total of 408 different genera were obtained (for more details see 
Supplementary Table S6). 

Of these, 340 were shared between both types of samples. Due to their abundance, 
we can highlight microorganisms that are known to be typical of the endometrium, such 
as Bacteroides, Prevotella, Pelomonas or Lactobacillus [172]. We also obtained 300 genera that 
appeared to be present only in the cancer samples, as well as 68 from healthy patients. 
Among the most represented genera in the tumour samples, examples include Anaerorhab-
dus, Spiroplasma and Gemmatirosa. In addition, within the most abundant genera of the 
healthy samples we reported Providencia, Lentibacter, Chelatococcus and Kineococcus. 

Beyond genus, at the level of species, 214 were obtained in the tumour samples, and 
114 in the healthy tissue samples. Of these, 72 species were common (including Strepto-
coccus thermophilus, Rodentibacter pneumotropicus, Bacteroides plebeius and Lactobacillus iners 
AB-1, and 142 were only present in cancer samples, such as Nitrospirae bacterium, bacte-
rium NE3005, Chitinophaga rupis and Catellicococcus marimammalium M35/04/3. Finally, we 
reported 41 species abundant in the non-tumour tissue, including Lachnospiraceae bacte-
rium 2_1_46FAA, Pseudoxanthomonas helianthi and Prevotella intermedia. 

3.2.2. RNASeq Samples 
In the selected article, in addition to the 16S study, they carried out a paired tran-

scriptome study of 30 women with endometrial cancer. To obtain those microorganisms 
present (at genus and species level), we removed all host sequences. Then, we used the 
Kraken/Bracken pipeline using the RefSeq reference database (see Methods), since 
SILVA132 did not provide species-level results. 

In the case of the genus-level analysis, we found a total of 215 genera in the tumour 
samples, compared to 253 in the healthy tissue samples (see Supplementary Table S6 for 
details). Of these, 188 are common genera, such as Mycoplasma, Bacillus, Pseudomonas, 
Streptomyces and Acinetobacter bacteria. In addition, viridiplantae genera (such as Triticum, 
Gossypium or Chlamydomonas) were very common. We also found 27 genera that only ap-
pear in the cancer samples, among the most abundant being Rheinheimera. Rickettsia and 
Aquabacterium were also present in lower abundance. Finally, among the 65 genera that 
appear only in healthy tissue, we found Skermanella, followed by Janthinobacterium and 
Oxalobacter (see Figure 11). 
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Figure 11. Number of genera identified for tumour/healthy samples by the Kraken/Bracken (in 
RNA-Seq) and the QIIME2 (in 16S) pipelines. Barplot showing the number of microorganism genera 
detected by the Kraken/Bracken pipeline (using RefSeq database) and the QIIME2 pipeline (using 
SILVA) in an endometrial cancer study by Li C. et al. The list of OTUs in the legend is included in 
Supplementary Table S6. 

At the species level, we obtained a total of 224 in tumour tissue and 298 in healthy 
tissue. The 182 most abundant species shared between the samples included Triticum aes-
tivum, Mycoplasma yeatsii and Bacillus cereus. Tumour tissue contained a total of 42 spe-
cies, including Acinetobacter baumannii and A. schindleri, Pseudomonas alcaligenes and 
P. mendocina, or Ralstonia pickettii. Finally, there were 116 species present in the non-
tumour tissue, and examples include Pseudomonas luteola, Massilia plicata or Escherichia 
coli (see Figure 12). 

 
Figure 12. Number of species identified for tumour/healthy samples by the Kraken/Bracken (in 
RNA-Seq) and the QIIME2 (in 16S) pipelines. Barplot showing the number of microorganism species 
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detected by the Kraken/Bracken pipeline (using RefSeq database) and the QIIME2 pipeline (using 
SILVA) in an endometrial cancer study by Li C. et al. The list of OTUs in the legend is included in 
Supplementary Table S6. 

For the analysis of these data, we considered the most abundant genera and species 
from both 16S and transcriptomic data. In the case of 16S, we did not obtain results using 
Kraken2 with the SILVA database, mainly due to the small number of reads in the data 
(~80,500). Therefore, provided that the number of reads in a 16S study was very low, the 
best results would be obtained with QIIME2 rather than Kraken2, since it is able to identify 
genera and species with a very low number of sequences. With deep sequencing, as we 
show with the dataset by Almeida et al., it is advisable to use Kraken2 with SILVA. In the 
case of the RNA-Seq samples, the results above with the Mende et al. samples indicate 
that the use of Kraken2 with RefSeq is the best option (see Discussion for more details). 

3.3. Computational Times 
An important aspect to mention is the computational times required by each pipeline 

and study above. Overall, a better performance of the Kraken/Bracken pipeline could be 
observed, even when handling larger data, both in terms of sequencing reads and refer-
ence database. 

In the case of the Almeida et al. data, all the pipelines proposed in this paper (Kra-
ken/RefSeq, Kraken/SILVA and QIIME) were used to analyse the same dataset (A500 da-
taset) and therefore the run times are comparable with each other (see Figure 13a,b). We 
reported that the best results were obtained with the Kraken/SILVA pipeline, followed by 
Kraken/RefSeq and QIIME. The latter was approximately 7 times slower than Kraken/Ref-
Seq and 70 times slower than Kraken/SILVA. However, the runtime improvement with 
parallelisation was not apparent in this case due to the low number of reads of this dataset. 

The endometrial cancer dataset, however, contains a more reasonable number of 
reads, so this benchmarking is closer to reality. In this case, the computational times ob-
tained by the Kraken2 pipelines, for both profiles, were lower than those by the QIIME 
pipeline (see Figure 13c,d). Within these, the use of the SILVA database v132 achieved 
much shorter times, mainly due to the large difference in size between the RefSeq and 
SILVA databases (120 Gb vs 500 Mb, respectively). Taking the QIIME pipeline run times 
with the high profile as a reference, Kraken/RefSeq was 5.4 times faster, while Kra-
ken/SILVA was 344.5 times faster. 

It is worth noting in this case that the total number of reads analysed by QIIME and 
Kraken were quite different (4,821,600 vs 62,199,120, respectively), so taking this variable 
into account, Kraken/RefSeq and Kraken/SILVA were 70.3 and 4,444.2 times faster than 
QIIME, respectively. 

More information about run times is available in Supplementary Table S7. 
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Figure 13. Computational times. (a,c) Total execution time, in minutes, for each pipeline (Kraken, 
QIIME), database (RefSeq, SILVA132) and computational profile described (low, high), for both the 
endometrial cancer dataset (a) and the gut microbiota test dataset (c). These two figures also show, 
with a grey line, the acceleration values obtained when switching from the low to the high profile. 
(b,d) Average processing time per read used by each pipeline. This was calculated by dividing the 
total time by the number of reads analysed in each run. (e) Time used to classify the reads in the 
database. The times referring to Kraken refer to the average classification time for each sample, as 
this processing can be parallelised. However, in the case of QIIME, the time spent for all samples is 
represented, since, as mentioned above, this process is executed in a linear way in Nextflow. 

4. Discussion 
When considering a metagenomics or metatranscriptomics project, the first thing to 

do is to set out the objectives to be achieved. Therefore, we must first consider the best 
sequencing technology. This choice is dependent on multiple conditions, but the available 
funding is likely to be a major determining factor. If the budget is low, performing meta-
genomics with 16S, 28S, ITS can be an interesting option. In this case, the selection of hy-
pervariable regions (V-regions), which are unique for each bacteria, archaea or fungus, is 
very important. Depending on the sample to be studied, one region or another will be 
more appropriate, so it is strongly recommended to take this variable into account and 
make an informed selection of primers. Abellan-Schneyder et al. did an analysis for the 
gut flora, and their conclusions were that the most appropriate region was V3-V4, using 
the SILVA or RDP database. On the other hand, if the budget is higher, designing an ex-
periment based on shotgun technology can be considered. This technology is capable of 
detecting many more microbial taxa, also including well-characterised viruses and vi-
roids. However, there are still some limitations, because living microorganisms cannot be 
distinguished. If this is a relevant point in an experimental design, then metatranscriptom-
ics may be preferable, as it overcomes the limitations of shotgun metagenomics sequenc-
ing [66]. On the one hand, it is able to perform microorganism identification, and on the 
other hand, it allows the study of spatiotemporal patterns of gene expression that occur 
in response to environmental stimuli. Therefore, metatranscriptomics would allow us to 
infer the functional or enzymatic capabilities of metabolically active microorganisms, as 
well as to obtain a picture of the relative abundance of the genes expressed in the host 
[173]. 

Once the technology and the appropriate experimental design have been selected, a 
set of bioinformatics tools that provide reliable and reproducible results must be chosen. 
After an exhaustive and deep literature search, we recommend the two software used in 
our two pipelines. For 16S analysis, we recommend using the QIIME 2 tool when a low 
number of reads exists, and Kraken2 when the library is large enough. It is worth noting 
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that QIIME 2 is able to detect taxa with a low amount of biomass per sample, whereas 
other protocols such as shotgun or transcriptomic identify fewer taxa than expected [69].   

When possible, an RNA-Seq providing transcriptome data will bring unique infor-
mation by detecting expressed genes in the host, as well as biologically active microor-
ganisms. In this case, we have based our pipeline in Kraken2 and Bracken. The choice of 
these programs is based on the precision efficiency provided by employing k-mer for 
read-level classification [143,174]. In that regard, the problem of ambiguous read-level 
classification is solved with Bracken, which generates more accurate estimates for species 
abundance in datasets already processed by Kraken2. Ye and co-workers did an extensive 
tool review of 20 metagenomic classifiers using simulated and experimental datasets. 
Their first conclusion was that DNA-based classifiers, such as Kraken2, provide better 
estimates than protein-based classifiers, such as Kaiju, DIAMOND and MMseqs2, when 
using a uniform database for these whole genome datasets. 

Computationally, when a server with large amounts of RAM memory (>100 Gb) is 
available, Kraken2 provides good performance metrics and is very fast on large numbers 
of samples, as long as the database load time is amortised. It also allows the creation and 
use of custom databases. Moreover, our pipelines confirm these statements, as the pipe-
line based on Kraken/Bracken was 344 times faster than the one based on the QIIME2 
platform, using the same database and achieving more accurate results (correlation coef-
ficient from 0.82 versus 0.67). Moreover, QIIME2 requires a high amount of computing 
resources, so it is almost unachievable to analyse datasets with more than 50 million reads. 
CLARK is a good alternative, but the combination of Kraken2 and Bracken tends to have 
slightly more accurate abundance profiles. MetaPhlAn2 and Centrifuge may be also use-
ful, despite the shortcomings of the default compressed database [175]. Tools such as ME-
GAN, GRAMMy or GASiC were discarded due to certain drawbacks such as poorer re-
sults in assigning low taxa. They also require high computational costs without a signifi-
cant impact on the results. However, they do seem to work better with long reads, which 
is not the objective of this pipeline. The ConStrains tool was not applicable for our target 
due to its high specificity. 

The biggest problem, no matter the technology and the pipeline selected, is the num-
ber of the false positives, a problem that is reflected in other works such as those of Ye and 
collaborators and Li [144,175]. The most recommended approach is to filter out false pos-
itives of low abundance, using a given abundance threshold, as we have seen work per-
fectly in the i10 dataset by Mende. Another approach could be to filter by reads according 
to the alignment score. However, it is complex to set these thresholds as they vary de-
pending on the classifier and experimental design. To decrease the number of false posi-
tives, we recommend, in the pre-processing phase of the samples, to remove host-derived 
reads [176]. It is also recommended to include contaminant genomes in reference data-
bases to reduce misclassification errors due to a lack of reference sequences. Clean labor-
atory practices, as well as recent innovations to experimentally remove routine contami-
nants [177], or the use of artificial sequences to quantify contamination [178], may reduce 
this problem, but it is unlikely that they can eliminate it completely. Another interesting 
option is the use of specific databases to decrease the number of false positives. In that 
regard, the rapid growth and taxonomic reassignments in reference databases pose a chal-
lenge for microbiome analysis, as there are frequent changes in the taxonomy database of 
NCBI such as renaming, deletion and merges between taxa of different levels. Therefore, 
when comparing our generated data with updated databases, some reads were assigned 
to unexpected taxa (false positives), which are not. All this leads us to the reflection made 
by many other authors, of the complexity that exists when trying to compare experiments 
performed with different bioinformatics tools and databases. Another possible explana-
tion why these false positives may occur is the discrepancies in the concept of hierarchical 
taxonomy when applied to microorganisms, as it was initially formulated for organisms 
with sexual reproduction and no horizontal gene transfer. Therefore, microorganisms 
may violate well-established assumptions, which may result in sequences being assigned 
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to erroneous identifiers [66]. For example, the same taxonomic level may contain different 
levels of sequence similarity [179,180]. The consequence of this variability for computa-
tional classifiers is that, at the species or genus level, different levels of sequence similarity 
in different parts of the taxonomic tree have different meaning, making it impossible, for 
some taxa, to design consistent rules that assign reads or contigs to a species, and there is 
clearly no fixed percentage identity threshold that can be used to group sequences into 
the same species or genus. Furthermore, in fungal taxonomy there is a multiplicity of 
names for the same organism and, consequently, metagenomic classifiers could assign the 
sequences to either taxon, and both would be correct, even though they appear to be dif-
ferent species [181,182]. Another issue is taxonomic changes, as there are no versions and 
this makes comparison of analyses over time complex [164]. In addition to the above, vi-
ruses have their own specific problems to be studied. They do not have universally con-
served genes, in addition to presenting a greater diversity than in bacteria [183] and a high 
mutation rate. Faced with this rapid growth in the variety of viral species, a scientific con-
sortium proposed a new framework for incorporating viruses discovered by meta-
genomic sequencing into the official taxonomy of the International Committee on Taxon-
omy of Viruses [184]. It is recommended to adapt alignment algorithms to allow the iden-
tification of more mismatches [185].  

Considering all of the above, we can clearly see the importance of database selection 
and its relation to the appearance of false positives. This is helped by the fact that uncul-
turable bacteria are classified by receiving the name “candidatus” followed by the puta-
tive name and species, or are named only informally without being covered by the stand-
ard nomenclature [151,164,183]. The NCBI taxon “Unclassified Bacteria”, which contains 
several candidate divisions, is placed directly under the “Bacteria” taxon node, thus fall-
ing outside the taxonomic hierarchy. In addition, GenBank and the BLAST nr/nt database 
[186] contain thousands of “unclassified” sequences, especially from metagenomes as-
signed to a taxonomic ID. The shared sequences of such correctly placed taxa and organ-
isms can pose a challenge to metagenomic methods that attempt to cluster sequences or 
calculate the lowest common ancestor. Especially when using BLAST nr/nt or nr data-
bases, it may be useful to filter out unclassified sequences, or to include only microbial 
taxa, as the kaiju classifier [151] does by including non-redundant eukaryotes. 

In this work we have developed two pipelines based on Nextflow technology, which 
incorporate widely used software. Subsequently, we have applied them to three different 
datasets, to be a guide for inexperienced users. In the first dataset, which can only be an-
alysed by Kraken/Bracken because it does not contain rRNA sequences, we observed that 
this pipeline is quite accurate when the abundance of organisms is relatively high (at least 
2–4%) and the number of possible false positives is marginal. However, as sample com-
plexity increases, raising the number of species and decreasing species abundance, this 
pipeline tends to produce a higher number of false positives (see Figures 4–6). In the sec-
ond study, we could use both pipelines since we include a set of rRNA sequences. There-
fore, the use of a specific rRNA database, such as SILVA or RDP, is recommended. How-
ever, we have also used a database of whole genomes, RefSeq, to evaluate the degree of 
accuracy and the computational performance by Kraken2 with this large database. It is 
interesting to reflect on GenBank-based databases compared to those based on RefSeq-
based information. Databases based on GenBank rely on the correct taxonomic identifica-
tion and annotation provided by the submitter, so if there is an error, e.g., in labelling, the 
researcher himself is responsible for correcting it; GenBank can only delete the entry or 
flag it. In addition, many of these entries are drafts [182]. To avoid such errors, NCBI now 
performs a series of quality checks when genomes are submitted to ensure that the sub-
mitted genomes are not assigned to the wrong species [115]. Another major problem is 
that the vast majority of GenBank genomes are drafts, in which the chromosomes are frag-
mented into several contigs and sometimes some of them are contaminants, i.e., they may 
not belong to the species supposedly sequenced, even though all contigs are assigned to 
the same species. GenBank itself performs contaminant screening on all assemblies, and 
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contigs that appear to be contaminants are reported to the submitter, who is encouraged 
to remove and resubmit them. However, despite the efforts of GenBank curators, thou-
sands of contaminants have already crept into the draft genome data causing problems 
that are difficult to detect when reanalysed [65]. To remedy all these errors, the RefSeq 
database is attempting to filter GenBank sequences, including viruses, and run them 
through additional automated filters to produce a more curated genomic resource [187]. 
Some of the reasons for genome exclusion are overly fragmented assemblies or infor-
mation derived from a metagenome. 

At the genus level, we observe that QIIME2 using SILVA was able to obtain the total 
of the represented in the sample plus 9% false positives, while Kraken2, together with the 
same database, was not able to detect one of the genera and included ~7% false positives. 
Finally, using Kraken with RefSeq as a reference, it was able to detect 51 of the 58 genera, 
including a false positive rate close to 7%. If instead of taking into account the taxonomic 
identification, we look at the abundance obtained by these programs with respect to the 
organisms present (see Figure 9), we observe that the combination of Kraken2 with the 
SILVA database provided the best results, as well as being the least computationally ex-
pensive (see Figure 13). 

At the species level (see Figure 10), we found some interesting results given that the 
Kraken pipeline together with the SILVA database did not provide any results. In the case 
of QIIME2, using this database, the results showed values very far from the real ones, 
while Kraken2 with RefSeq was the one that provided the results more in line with reality. 

Finally, we processed 16S and RNASeq data from a set of endometrial cancer samples 
as well as healthy tissue samples. The first thing to note is that, at species level, Kraken2 
together with SILVA does not provide any results. To obtain results with this database, 
we have to process 16S samples with QIIME2. 

On the other hand, we did get results from all three types of analysis at the genus 
level. It is noteworthy that QIIME always provided higher numbers of genera in tumour 
samples compared to healthy samples, which partly contradicts the assertion of other au-
thors that reduced microbial diversity is often associated with chronic diseases such as 
cancer [188,189]. 

Considering the literature, we note that at the genus level, both obtained results in 
line with other authors, given that the abundant genera in endometrium and/or endome-
trial cancer are Bacteroides, Prevotella, Pseudomonas, Acinetobacter and Rheinheimera 
[172,190] (see Figure 11). In terms of species, those provided by QIIME2 do not appear to 
be related to this tissue, nor to this disease. However, the species provided by Kraken 
using Refseq as a reference do resemble some known species, such as E coli as well as 
various Acinetobacters and Pseudomonas [172,190] (see Figure 12). 

Consequently, after the results obtained, we can assert that at the genus level, the use 
of SILVA provides the best results, and if this is combined with Kraken2 we will have a 
better correlation with reality and with less computational cost and computational time. 
In the case of species, we conclude that the combination of Kraken2 with a whole genome 
database such as RefSeq generates the most accurate results. 

5. Conclusions 
The knowledge of microbiomes has been made possible thanks to the research of 

many groups during recent years, associated in many cases with the creation of consortia. 
All of this has led to the growth of the available databases and bioinformatics tools to 
analyse all types of samples in an increasingly accurate way. However, the decisions to be 
considered in each project are very complex, ranging from how to analyse the data ac-
cording to specific objectives, computational environment, target taxa and other prefer-
ences, to the appropriate experimental design and the tools to be used to obtain reproduc-
ible and quality data. Nevertheless, many taxonomic classifiers are still burdened by a 
high number of false positives, or taxonomic misclassification of microorganisms with low 
abundance, and identification below the species level must be addressed, in addition to 
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database cleaning and correct taxonomic assignment of the microorganisms that are in-
cluded. The issues raised throughout this manuscript may be resolved over time, but 
while the data are in a constant state of flux, users should be aware of these issues so that 
potential pitfalls can be avoided when analysing large and complex metagenomic da-
tasets. 
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