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Abstract: The salmon family is one of the most iconic and economically important fish families,
primarily possessing meat of excellent taste as well as irreplaceable nutritional and biological value.
One of the most common and, therefore, highly significant members of this family, the Atlantic salmon
(Salmo salar L.), was not without reason one of the first fish species for which a high-quality reference
genome assembly was produced and published. Genomic advancements are becoming increasingly
essential in both the genetic enhancement of farmed salmon and the conservation of wild salmon
stocks. The salmon genome has also played a significant role in influencing our comprehension of the
evolutionary and functional ramifications of the ancestral whole-genome duplication event shared by
all Salmonidae species. Here we provide an overview of the current state of research on the genomics
and phylogeny of the various most studied subfamilies, genera, and individual salmonid species,
focusing on those studies that aim to advance our understanding of salmonid ecology, physiology,
and evolution, particularly for the purpose of improving aquaculture production. This review should
make potential researchers pay attention to the current state of research on the salmonid genome,
which should potentially attract interest in this important problem, and hence the application of
new technologies (such as genome editing) in uncovering the genetic and evolutionary features of
salmoniforms that underlie functional variation in traits of commercial and scientific importance.

Keywords: family Salmonidae; rediploidization; whole genome duplication; phylogeny

1. Introduction

Due to their great diversity, morphology, ecology, genetics, and genomics, as well
as their higher economic value, biology, and culture, fish are a very interesting group
of animals. In this regard, more and more intensive efforts are now being devoted to
the development of aquaculture. Efficient fish farming makes it possible to produce
large volumes of high-quality products, which contribute to the conservation of natural
populations of valuable fish species [1,2]. One of these interesting species of fish is the
Salmonidae family, consisting of salmon, trout, char, grayling, whitefish, and their relatives,
which has a scientific, social, and economic value that is unique among fish [3]. They are
mainly known for performing some specific key functions in ecology, such as bringing
marine nutrients to freshwater ecosystems [4].

Combined with their tetraploid origin, life history diversity, and rate of diversification,
they have generated significant interest from the research community. Equally important,
salmon is considered an excellent source of nutrients such as amino acids, lipids, vitamins,
and minerals [5–13]. The problem remains that many salmon populations are declining, and
great efforts are directed toward their conservation, especially in relation to anthropogenic
factors [14]. Salmonids include 70 to 200 species with a wide variety of adaptations and
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life cycle strategies [15]. Salmon aquaculture and fisheries (mainly Atlantic salmon Salmo
salar L. and Oncorhynchus spp.) play an important role in the economic and/or food
security of several countries, accounting for 7.2/16.6% of all fish traded in terms of weight
ratio/price [16].

Fortunately, genomics has given us new tools for addressing fundamental fishery
management concerns, including stock recognition, population structure, and adaptive
responses to ecological change [17–19]. The application of comparative genomics, molecular
cell biology, and in situ hybridization of sequences and chromosomes using model and
non-model fish species considerably helps our understanding of gene function, evolution,
speciation, selection and adaptation, and species diversity [17]. The identifying of SNP
markers by NGS has expanded the capacity to trace fishing resources or products back
to the original site, allowing regulations for some industrially useful fish species to be
enforced [20]. The Japanese pufferfish Fugu rubripes was the first to have its whole genome
sequenced [21]. Since the first main commercial species, the Atlantic cod, was sequenced
in 2011, aquaculture and fisheries genomics have made substantial progress [22]. Over
200 fish genomes have been sequenced and made accessible in public repositories since the
invention and enhancement of massively parallel sequencing technology began in about
2005 [23]. Population genomic analysis using RAD sequencing or genome resequencing has
been implemented for a few commercially important species, such as Asian sea bass [24],
European sea bass [25], and Atlantic cod [22,26], revealing the genetic basis of fisheries-
driven evolution and the possible repercussions of changes in the environment. High-
quality genomes for numerous fish species have recently been released, providing insights
into the molecular basis of evolution and biology [27–30]. A large amount of knowledge
has been gained by sequencing the teleost fish genome. For example, the spotted gar
(Lepisosteus oculatus) genome has shown how immunity evolution, mineralization, and
development can be mediated by Hox, ParaHox, and microRNA genes [24]. The genetic
foundation of polyploidy and parallelism between basal and fish-derived lineages to
acquire duplications has been shown by genome sequencing of ancient fish lineages such as
the starfish (Acipenser ruthenus) [31]. The Genome 10 k project, for instance, was established
in 2009 by a partnership of biologists and genomic researchers to sequence the full genomes
of 10,000 vertebrate species, including around 4000 fish species, in order to comprehend
vertebrates evolution and conserve many endangered species [32–34].

Returning to the specific object of our discussion, the fish of the salmon family, we
flesh out this discussion regarding them. The NCBI database currently provides data on
41 genomic assemblages of salmoniforms, which may indicate a dynamic trend in their
study [35]. The high phenotypic diversity among salmonids has provided an excellent
research framework for understanding adaptive divergence and ecological speciation [36,37]
and potentially contributed to the WGD in their common ancestor, an event known as
Ss4R [38], about 95 Ma ago [39,40]. Thus, one of the most remarkable features of the
evolutionary history of salmonids is their autopolyploid origin [41,42]. This makes salmon
an ideal organism for studying the consequences of the genome and gene duplications [43],
which are thought to have played a key role in creating the gene diversity and functional
specialization found in modern vertebrates [44,45]. In this regard, the genome of the
Atlantic salmon (Salmo salar) was chosen as the reference sequence for all salmonids due to
its importance in the aquaculture industry and because so much research on this species had
previously been undertaken at the genomic level [46]. Significant progress in understanding
salmon biology has been made by sequencing two salmon genomes, as well as the genome
of the northern pike Esox lucius, a sister line that has not undergone salmon-specific whole
genome duplication [47]. By taking into account these discoveries, it can be concluded
that genome reconstruction and comparative genomic analysis of various fish species have
become a successful approach to understanding their evolution. In this regard, in our work,
we present an updated and comprehensive review of recent achievements in the genomics
of salmonids and highlight the key results of various comparative genomic approaches for
their study.
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2. Characterization of the Salmon Genome
2.1. WGD

As noted above, one of the most notable features of the evolutionary history of
salmonids is their autopoliploid origin [48]. It has been suggested that whole genome
duplication (WGD), which characterizes all inherited salmonids [48], occurred, according
to various estimates, from 58–63 to 88–103 million years ago [40], resulting in a single
tetraploid ancestor in salmonids, whose autotetraploidization has been termed an ‘au-
topolyploidization’ (Ss4R) event [38,49]. Rediploidization occurs after all WGD occurrences,
resulting in additional genomic diversity [50].

After WGD in the same species (autopolyploidization), rediploidization entails a
change during meiosis from polyvalent (tetraploid inheritance) to bivalent chromosomal
mating (diploid inheritance) [38,51]. As a result, recombination between the four alleles
stops, causing sequence divergence between duplicated genes on distinct chromosomes
(ohnologues) [50,51]. This, in turn, creates new pathways of functional evolution, un-
like before WGD [50,52,53]. However, genetic studies of organisms with relatively recent
WGD can be hampered by the inability to distinguish alleles and sequences from the
same chromosome from alleles and sequences from a duplicated chromosome [42]. Fortu-
nately, approaches using gamete manipulation, whole-genome sequencing, and long-read
sequencing have improved the ability of researchers to characterize duplicated regions.
Linkage mapping to haploid and double haploid has facilitated the analysis of duplicated
regions in salmonids [54,55]. Furthermore, long-read sequencing methods have enabled
the assembly of large genomes with complicated duplication histories [56]. These technical
developments have improved our understanding of the genomic architecture of species
that have dynamically extended to multiple species after ancestral WGD in lineages such
as salmonids [38,57,58].

Mutations that promote preferred bivalent mating during meiosis, such as structural
rearrangements and mobile element insertions, are required for rediploidization [38,59].
The same rediploidization process does not occur in allopolyploids, where WGD emerges
after hybridization between different species, proving immediate preferential bivalent mat-
ing of subgenomes originating from each parental species [60,61], but it can possibly occur
whenever sequence similarity is sufficient to generate polyvalent pairs, as in segmental
allopolyploids [62]. It is widely believed that WGD promotes evolutionary diversification
through mechanisms that are still not fully understood [63]. Some authors have suggested
that WGD, which is salmonid-specific, is followed by radiation exposure [64,65]. Autote-
traploidization involves the spontaneous doubling of all chromosomes distinct from the
other major WGD classes, allotetraploidization, which involves hybridization between
different species.

It has been observed that interspecific hybridization in salmonids is a frequent phe-
nomenon. Some publications describe hybrids between Arctic char S. alpinus and
S. malma [66], Dolly Varden and brook trout S. confluentus [67], S. confluentus and S. fonti-
nalis [68], Arctic char and river trout [69], mottled char S. leucomaenis and S. levanidovi [70],
mallow and white-spotted char [71]. As a rule, hybrids might be identified accordingly to
their external morphology [72–74]. Some researchers consider interspecific hybridization in
loaches as a consequence of the formation and existence of so-called contact zones between
species during post-glacial colonization [69]. Other authors attribute cases of interspecific
hybridization to the anthropogenic transformation of fish habitats or the invasion of alien
species [75–79]. Here, there is no reason to say that the system is practically in a pristine
state [80]. More recently, Gruzdeva et al. (2018) used genetic marker analysis to find hybrids
formed by female white-spotted char and male northern Dolly Varden [81].

Although the impact of WGDs on long-term processes such as organism diversifi-
cation is unknown [82,83], findings demonstrate that WGDs cause numerous problems
during mitosis and meiosis [84]. These concerns are reflected in the fact that most neopoly-
ploid species revert to diploidy rapidly following duplication [85]. Campbell et al. (2019)
reported that gene conservation is a prominent result of WGD in salmonids. Although ap-
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proximately 10% of the rainbow trout genome is inherited tetrasomally, ~28% of conserved
ohnologue pairs are found in tetrasomal regions, suggesting that tetrasomal inheritance
inhibits neofunctionalization and molecular adaptation. Furthermore, both the function
and expression of tetrasomal ohnologues are preserved [57].

Early research has revealed that the most common outcome of a duplicated gene is
for it to become dysfunctional and lost [86]. Although most ohnologists’ ultimate fate is
gene loss following WGD, some ohnologists remain [87,88]. Genes predisposed to haploin-
sufficiency may be more likely to be conserved as functional duplicates to counteract the
potential negative consequences of mutations in a single copy, i.e., the dangerous duplicate
hypothesis [89,90]. However, it has been suggested that the selection for duplicate conserva-
tion and prevention of haploinsufficiency is weak, limiting the potential of this explanation
for duplicate conservation [91,92]. Nevertheless, duplicates involved in immune function,
cell cycle regulation, transcriptional control, and cell signaling pathways are conserved
during vertebrate evolution [93–95]. However, the enriched GO term analysis presented by
Campbell et al. (2019) found limited evidence for genes associated with such functions in
tetrasomal regions of the genome [57].

The underlying determinants of delayed rediploidization remain a mystery. Rediploidiza-
tion may be severely inhibited in places with delayed rediploidization due to negative
implications for specific genes or favorable benefits of keeping genes as tetraploid. Gene set
enrichment and gene expression analysis, for example, may not resolve such possibilities
but can give hints for comprehending what appears to be a complicated process. Conse-
quently, selection for conservation and loss of duplicated genes is probably multifaceted
when delayed rediploidization is involved [96]. For Ss4R, it is assumed that selection has
maintained tetraploidy in SSR regions for tens of millions of years [97]. It’s also worth
wondering why a second round of rediploidization was permitted. Because it is inextricably
linked to the evolutionary origin of salmonid subfamilies, it is possible that the events
leading to speciation coincided with a reduction in effective population size, reducing the ef-
ficiency of selection while also introducing the adverse effects of rediploidization [38,39,64].
Perhaps novel selected forces linked with early species diversification (e.g., related to the
earliest formation of anadromy) affected selection during rediploidization and anthro-
pogenic divergence in other ways owing to impacts on individual genes [98]. Long-read
assemblages containing all salmonid species will provide a mechanistic understanding
of the relationship between mobile element evolution, speciation, and lineage-specific
rediploidization [99].

2.2. LORe and AORe

Previous research on salmonid fish has revealed that rediploidization happened at
various stages of development for distinct parts of the genome following Ss4R, which
dates back 88–103 million years [61]. After previous occurrences at the root of verte-
brate [31] and bony fish evolution, Ss4R is the fourth WGD in salmonid evolutionary
history [31,39,58,59,61]. Variable degrees of sequence divergence among large synthetic
ohnologue blocks reflect the different times of rediploidization for duplicated regions
left from Ss4R [38]. Although rediploidization occurred in the ancestors of all modern
salmonids in large genomic regions, including several complete chromosomes, speciation
occurred before rediploidization was completed in several large genomic segments [70].
Consequently, some duplicated chromosomal arms have very high sequence similarity
(>95%) in all salmonid species [38,100–102] and experience anthropological divergence
independently in three subfamilies of salmonids that diverged about 50 million years
ago [70]. This process has been termed “lineage-specific ohnological resolution” (“LORe”)
and is thought to be possible whenever an evolutionary transition from multivalent to
bivalent mating [61,70].

Late rediploidization and LORe are crucial for phylogenetic reconstruction [70,100].
If global WGD expectations are not taken into account, LORe can easily be mistaken
for lineage-specific (e.g., tandem) gene duplication during phylogenetic analyses [70].
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In terms of the evolutionary significance of WGD events, it has been hypothesized that
LORe promotes lineage-specific adaptation [70] and provides a viable explanation for
the commonly observed temporal delays between a WGD event and subsequent species
or phenotypic diversification regimes [103–105]. Many authors have noted the potential
relevance of late rediploidization and LORe in divergent species after the discovery of these
events in salmonids [40,64,104–106]. Despite the fact that salmonids are a well-established
research system, many researchers’ understanding of rediploidization discoveries in this
group of fishes remains fragmented as a result of whole genome sequence data and/or
insufficient phylogenetic resolution in prior reconstructions.

Delayed rediploidization and LORe have yet to be unequivocally demonstrated be-
yond salmonids but have been proposed to track WGD events specific to bony fish (Ts3R)
and WGD events at the base of vertebrates [70,71,106,107]. Several writers have shown
that delayed and nested models of species diversity in the aftermath of WGD accord with
LORe [64,104,105,107,108]. Given the large and growing number of high-quality genomic
sequences in various eukaryotic lineages with a history of WGD, Gundappa et al. (2022)
adapted their phylogenomic approach to rediploidization results for WGD events of com-
parable or earlier age for Ss4R, using synteny/collinearity to distinguish ohnologues from
other duplicate genes. Because of the large evolutionary distances involved, genome align-
ment approaches would be inappropriate for studying earlier WGD events like Ts3R. The
complex LORe patterns characteristic of large sections of the salmonid genome strongly
violate the usual assumption for such methods that ohnologue divergence begins at a
particular branch of the species tree [39].

To enhance the ability to reconstruct rediploidization dynamics during salmonid
evolution, Gundappa et al. set out to reconstruct the rediploidization process after Ss4R
and its results with significantly increased genomic and phylogenetic resolution compared
with earlier studies, for which they created a high-quality genome sequence of Danube
salmon (Hucho hucho) and developed a genome alignment approach to capture Ss4R-
matched regions in several species. They sequenced the genome of a salmonid species
with a highly interesting phylogenetic position and devised a whole-genome alignment
method to catch ethnographic areas in genome assemblies previously released for many
salmonid species. Using phylogenetic approaches, they were able to recreate whole-
genome rediploidization dynamics, capturing two major waves of rediploidization as well
as intricate histories of lineage-specific ohnologue divergence, the complexity of which rises
with speciation history. The authors created multispecies alignments for a priori defined
blocks of syntenic ohnologues left over from Ss4R [38] in two regions of the Hucho hucho
genome where rediploidization was either ancestral to all salmonids (AORe regions with
ancestral resolution [70]) or occurred after the separation of Salmoninae and Thymallinae.
The alignments they obtained included species from Salmoninae and Thymallinae as well as
a representative of Esociformes, a sister lineage of salmonids that diverged to Ss4R [38,40,70].
Their predecessor studies showed that about 25% of the Salmoninae genome underwent
rediploidization after separation from Thymallinae [70,108].

Lien et al. (2016) showed that both tissue expression bias [38] and rediploidization
time are important factors in ohnologue regulatory divergence in Ss4R ohnologues, with
duplicates in SSR regions showing a higher correlation in tissue expression than AORe
regions [70]. The results obtained by Gundappa et al. support these findings and show
that expression level is an additional factor to be considered in the evolution of ohnologue
regulation, thereby capturing differences in functional enrichment between ohnologues
and singletons, which is consistent with past studies [109–112] but, in contrast to previous
work [57,70], indicate general deviations in functional enrichment between Ss4R ohno-
logues with different rediploidization ages and suggest enrichment of a small number of
unique functions in ohnologues from regions with different rediploidization ages [39].

In an earlier Ss4R study, all rainbow trout ohnologues classified as belonging to SSR
regions were considered tetrasomic [113,114]. Gundappa et al. (2022) emphasize that their
results require caution when confusing delayed rediploidization with no rediploidiza-
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tion [39]. As a result, tetrasomal heredity across many millions of years in rainbow trout
areas designated as tetrasomal seems implausible [57]. Sequence similarity analysis using
reference genomes by Blumstein et al. (2020) showed that all species possessed traits of
residual tetrasomal heritability in seven homeologous pairs. By using linkage maps, the
same seven homeologous pairs were found to be tetrasomal in Oncorhynchus [115,116],
Salvelinus [117,118], Salmo [70], and probably Coregonus [119], which strongly suggests that
tetravalent meiosis can and do form between these homeologs in all species examined to
date. For several karyotypes, the evidence for residual tetrasomy differed between the
linkage map and genome methods in Blumstein et al. (2020), with one categorized as
tetrasomal in linkage mapping studies but not in genome analysis, and another categorized
as tetrasomal in genome analysis but not in linkage maps [101]. This finding suggests
that the frequency of diploidization in Salvelinus differs compared to other salmonids for
this homeologous pair. A study of Arctic char found numerous duplicate markers in this
karyotype [97]. The discovery that the karyotype is not tetrasomic, on the other hand, is
most likely owing to differences in determining the level of residual tetraploidy between
linkage mapping and genome assembly techniques. Linkage mapping in Oncorhynchus and
Salvelinus consistently reveals the presence of tetrasomal inheritance [118,120], but genome
analysis by Blumstein et al. (2020) and by Campbell et al. (2019) for rainbow trout found
that this karyotype exhibits similarity to intermediate sequences consistent with disomic
homeologs [59,101].

The last two genomes in the cell are usually different enough to split into two sets
of bivalents during meiosis, which removes the incompatibility in mating between the
hybridizing species before WGD [121]. Conversely, autotetraploidization results in four
sets of chromosomes that initially diverge randomly during meiosis after WGD; bivalent
mating must be restored before duplicate genes created by WGD can go beyond the allelic
state [38,70,122]. In lake whitefish, aneuploidy has been documented across populations
and historical circumstances [123,124]. Results from Blumstein et al. (2020) show that
ambiguity in homologous relationships persists for at least five chromosome arms in all
three coregonins [101]. This degree of ambiguity was much higher than that documented
by Sutherland et al. (2017) in Salmo, Oncorhynchus, and Salvelinus, where there were only
two ambiguities in these groups [117]. Whitefish appears to have many relatively small
acrocentric chromosomes [125], some of which contain large numbers of duplicated loci,
making it difficult to construct linkage maps compared with other salmonids [102,126].

Sutherland et al. (2017) investigated the history of fusions in various Oncorhynchus
species and discovered that most species have numerous species-specific fusions (e.g., 17
species-specific fusions in pink salmon). Sutherland et al. (2017), on the other hand,
researched only one species from the genera Coregonus and Salvelinus since that was
all that was available at the time of publishing, and none from Thymallus [117]. The
physiological consequence of proposed fusion histories is yet unknown, although it is
a significant problem in distinguishing Thymallus, Salvelinus, and Coregonus spp. from
many other salmonids. When high-quality genomes for a growing amount of salmon
species become available, the accuracy with which it is possible to uncover changes in
genome content and structure after whole genome duplication increases significantly. Ad-
ditional data from genome sequencing studies, such as the European whitefish genome of
De-Kayne et al. (2020), should allow for crucial additional research assessing genomic
events and organization in species with distinct merging histories [127]. Using the northern
pike’s chromosome numbering, these authors identified pairs of homeologous whitefish
scaffolds and their associated ancestral chromosome. This should make future comparisons
across the salmon family easier (as Blumstein et al. (2020) did) to examine the separate
process of rediploidization in distinct salmon lineages. They also discovered a number
of whitefish scaffolds with no known homeologs and demonstrated that some of these
areas formed through the fusion of sequentially identical regions [128]. Diversity studies in
salmoniforms are of essential scientific importance in order to comprehend the processes
that produce and support such diversification, as well as to assist the conservation of this
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varied group. It will especially help to understand the genetic basis of their adaptability,
including determining the degree of parallelism. In this regard, Table 1 reflects key data on
the previously studied salmonid genomes (Table 1).

Many salmonid species have documented instances of residual tetrasomy and en-
hanced sequence similarity between homeologous chromosomes, implying that certain
rediploidization might remain [38]. Although some species-specific differences in residual
tetrasomal regions have been reported, tetraploidy appears to persist among salmonid
species in the 7–8 homeologous pairs of chromosomes [117]. Although the evolution of
the European grayling karyotype is otherwise comparable to that of most salmonids, such
evolution is also observed in the European grayling genome assembly based on common
linkage maps in the case of residual tetrasomal regions [129]. The evolutionary importance
of persistent residual tetrasomy is unknown, but its existence in the European grayling
ancestral genome demonstrates that tetrasomy is autonomous of the chromosomal fusions
seen in other salmonids [38,125] rather than favors another cause. Therefore, we have
elucidated the key characteristics of salmonid karyotypic evolution.

2.3. Mobile Elements in the Genome

Mobile elements could also play a key role in genome evolutionary processes [128].
Furthermore, these components may be significant in the processes of rediploidization,
causing sequence divergence that would split homologs. Mechanistically, rediploidiza-
tion involves the proliferation of mobile elements in the genome, which cause rearrange-
ments that terminate polyvalent meiotic pairs, limiting anthropologic divergence [130].
Because bursts of mobile element activity are known throughout salmonid evolution [38],
lineage-specific mobile element proliferation may be causally related to delayed lineage-
specific rediploidization.

Unfortunately, the current generation of salmonid genomes does not allow such ideas
to be tested because of their poor representation of mobile elements and genomic regions
showing very recent rediploidization. In particular, it may be of interest to compare classes
of mobile elements between organisms with very different genomic rearrangements, for
example, between European grayling and Atlantic salmon. For example, Sävilammi et al.
(2019) found that retrotransposons (class I mobile elements) are more abundant com-
pared to DNA transposons (class II mobile elements) with a higher abundance of 1.7 and
1.3 times in the genomes of the European grayling and Atlantic salmon, respectively [129].
Differential accumulation of mobile elements between lineages may play a significant role
in genome evolutionary processes, but the complexity of the underlying reasons for such
differences must be explored to determine it. Elements specific to Atlantic salmon include
DNA transposons, which together encompass 3.57% of the Atlantic salmon genome but
are completely absent in European grayling. These mobile elements are one of the most
prevalent types of mobile elements in salmonids, and they are thought to play a significant
role in Atlantic salmon rediploidization [38]. The Copia-12 retrotransposon, which belongs
to the Copia retrotransposon superfamily and has recently been proposed to have a role
in chromosomal diversity and speciation in other bony fish, is one example of an Atlantic
salmon-specific element [128].

Tc1-Mariner transposons, for example, DNA hAT transposons, are cut-and-insert ele-
ments with transposition processes that may actively drive genomic alternations as well
as indirect pathways to make homologous recombination copies of elements [131]. The
concentration of a specific mobile element in one of the two species could be interpreted as
evidence of lineage-specific mobile element functioning. Understanding of mobile elements
in the genome can give unique information to inspire future studies into the molecular
mechanisms of these various genome evolutionary changes. More sensitive techniques,
including such recurrent sequence grouping, may be employed to detect them since they
may allow for a more accurate assessment of repeating element content [132]. Moreover,
they may allow for a better understanding of repeat community structure and identification
of key elements using network approaches [133], allowing for a more detailed investigation
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of repeat distribution dynamics among salmonids. It has been suggested that periods of
impaired-purifying selection occurring in bottlenose populations is necessary to perpetuate
the deleterious effects of chromosomal rearrangements [134]. Although chromosomal
evolution may be initially chaotic, the impact of chromosome evolution on mutation and
recombination frequencies might result in directed evolution [135] and phenotypic changes.
Additionally, lineage-specific loss of duplicated gene copies after gene duplication [136]
or possibly evolutionary divergence of expression, as observed in European grayling and
Atlantic salmon [137], may contribute to the formation of new species.

The activity of mobile elements with lineage-specific changes, such as those observed
between Atlantic salmon and European grayling, is a primary driver of genome evolu-
tion [138] and could have also been engaged in numerous genome evolutionary changes.
Furthermore, it has been claimed that chromosomal inversions, such as those often seen in
the European grayling genome, have a significant impact on the processes of adaptation
and speciation [139]. For instance, they enhance genome sequence divergence between
saltwater and freshwater clades of the stickleback Pungitius pungitius [140], as well as
non-migratory and migratory Atlantic cod ecotypes (Gadus morhua) [141,142]. Computer
models supported these findings and demonstrated how chromosomal inversions could
hasten speciation, particularly if adaptability includes several genes with tiny individual
adaption effects [143]. A study on domestic mice (Mus musculus domesticus) revealed the
possibility of fast differentiation driven by Robbertson fusions [144].

2.4. Local Genome Features of Different Salmonids

The literature found makes it clear that the genome of many salmonids has been
studied in fish inhabiting specific local water bodies and rivers, therefore possessing their
own uniqueness. Typically, one study will focus on a single population inhabiting a
particular water body. However, this tends to reveal both the distinctive characteristics
of individual salmonid populations and their relatedness. This section, therefore, focuses
on examples from studies of some of the local groups that inhabit local watercourses
and rivers.

Kanjuh et al. (2020) set out to map coho populations in poorly studied and unexplored
rivers in the Danube basin in Croatia and to study their molecular diversity, gaining
insight into phylogeographic haplotype patterns using different molecular markers [145].
Kalayci et al. (2018) suggested that all brown trout populations belonging to the Danube
lineage should have nominate species status [146]. This is consistent with the estimate
that diversification (i.e., genetic differentiation) between lineages should be high enough
for absolute reproductive isolation between them [147–149]. Conservative morphology
and low levels of diversity between trout taxa from different phylogeographic lineages on
continuous morphological traits also confirm their close evolutionary relationships [150].
Initially, low genetic variability was observed within the Danube lineage [151], but thanks
to numerous studies covering many populations, records now show higher values of
genetic diversity [152–154]. Simonovic et al. (2017) found that Da1 is the most widely
distributed local haplotype of coho salmon [155]. However, an anthropogenic factor is
also considered important for their spread beyond their natural range, primarily because
of the long tradition of the stocking with factory fish of AT origin that exists in many
countries [156]. Similarly, mainly due to the activities of fishermen, wild trout of the AT
line has been introduced in suitable conditions in Croatia [157]. Thus, the stocking of AT
line trout outside the territory of the Republic of Croatia has been recognised as the main
reason for the loss of native genetic diversity of the genus Salmo spp. [150]. A disjunctive
distribution of haplotype Da22 allowed Simonovic et al. (2017) to hypothesize that the
coho salmon populations still possessing this haplotype are remnants of a once widely
distributed population, probably of Late Miocene and Early Pliocene Ponto-Messinian
age [155]. The same authors believe that the recent/modern molecular diversity of coho
salmon in the area is the result of their dynamic evolution. In the middle section of the
Una River, the Da22 haplotype was accompanied by the Da2 and At1 haplotypes, both of
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which were considered non-native and were probably introduced into the population by
the stocking of factory-grown coho salmon [158].

The mixing of these home-run trout with local populations has caused introgressive
hybridization and reduced the genetic integrity of local trout so that in some geograph-
ical areas, the original populations have been almost completely mixed or replaced by
non-native trout [159,160]. This context of phenotypic plasticity and ecological adapta-
tion has contributed to a confusing nomenclatural pattern of Italian native trout with
many morphs described as species (or subspecies) whose validity is questionable [161].
Rossi et al. (2019) previously carried out work to identify and assess the genetic composi-
tion of residual local populations of Mediterranean trout from different sampling locations
in the Italian Lazio region, for which they applied two molecular markers for the diagnostic
origin and geographic origin of trout. The main similarity of Italian trout is that they are
part of the Salmo trutta complex, defined on a molecular basis [156]. The results obtained
by Rossi et al. confirm the harmful effects of the mass introduction of domestic trout
into Italian rivers already observed in other geographical regions of Italy [159–161] or
Latium [162], with some exceptions specific to some island territories [163,164]. The most
frequent AT haplotype (At18) corresponds to the haplotype originally identified in samples
from Norway, Denmark, and Spain [165,166]. These data show that the practice of stocking
domestic trout has some effect, spreading among allochthonous genotypes [160]. Atlantic
trout have almost completely displaced native Mediterranean trout at some sites or at least
mixed with them [167].

Interesting results were also found in some regions of Russia. Gordeeva et al. (2018)
analyzed sequence variability of the mtDNA control region (537–547 bp) in 25 populations
of European Russia and Siberia [168]. Currently, the Siberian part of the C. Albula–C. sar-
dinella range is relatively isolated from the European part; however, none of the studied
genetic markers (allozymes and different mtDNA sequences) show interspecific differences
between grouse and grouse populations. The introgression of northern Dolly Varden haplo-
types (Bering phylogenetic group) in the Arctic char genome has been found in both North
America [169,170] and Asia [171–174]. Furthermore, analysis of the nuclear sequences of
rag1 did not reveal any substitutions strictly specific to C. albula or C. sardinella. Moreover,
populations in which some fish have morphological and genetic features of C. vandesius,
and others have features of cisco occur in a wide area covering water bodies of the Pechora
River basin and adjacent regions of Eastern Europe [175]. The authors also discovered
the haplotype BER10 in the lower Anabar River; this finding shifts the boundary of its
distribution along the Siberian Arctic coast further westward. It should be noted that many
other species native to northern ecosystems with a wide range were originally described in
different parts of the range as separate taxonomic units [176,177]. However, a thorough
examination of these animals’ morphological, ecological, and genetic characteristics, partic-
ularly those occupying overlapping subspecies/species ranges, frequently finds species
with intermediary morphological and genetic characteristics, raising questions about their
authenticity [178–181]. The presence of the SIB25 haplotype in Lake Siysk from the same
area indicates that the ranges of Eurasian and Beringian phylogenetic groups overlap there,
as in the lower Lena and Olenek. The introgressive hybridization with Dolly Varden could
have occurred in the Pacific basin during one of the glacial maxima; from there, the Arctic
loach with the Bering group haplotype dispersed along the Arctic Ocean coast during the
subsequent climate warming. One can also acknowledge the former westward expansion
of the chrysalis itself and its hybridization with the Arctic char in the Arctic regions of
Siberia, with its subsequent disappearance. Either way, the evidence suggests that the
Beringian cutthroat participated in the colonization of the eastern Arctic coast of Siberia,
and the presence of only one haplotype over a vast area from Anabar to the Indigirka delta
indicates that their ancestors passed through a narrow neck [168,182].

Thus, we have reviewed the main questions and points that have been asked in
salmonid genome research to date (Table 1).



Genes 2022, 13, 2221 10 of 35

Table 1. Data on salmon genomes ever obtained. As we can assess, the great majority of studies focus
on the mitochondrial genome.

View Genome Genome Data
Acquisition Approach

Characteristics and Features of
the Genome Reference

S. alpinus erythrinus Mitochondrial

Sanger sequencing and
annotation by comparison
with other sequences using

Geneious R11
Genome structure

determined using MEGA X

Size: 16,652 bp; two ribosomal
RNA (rRNA) genes,

13 protein-coding genes, 22 tRNA
genes; the overall base

composition was 28.0% A, 26.4% T,
17.0% G, and 28.6% C, and the

mitogenome GC content
was 45.6%

[183]

S. alpinus alpinus Mitochondrial

Primers were designed using
the mitoPrimer_V1
program; sequences

annotated by comparison
with published charr

mitogenome sequences using
Geneious R11

Size: 16,655 and 16,657 bp; GC
content: 45.6%; 24 SNPs. The
highest was the variability of

NADH dehydrogenase subunit
genes (42.6%Table

of all variable sites).

[184]

Salvelinus taranetzi Mitochondrial

The sequenced fragments
were de novo assembled into

a complete mitochondrial
genome and annotated by
comparing with published
genome sequences of charr

using Geneious R11

Size: 16,654 b.p.
The overall base composition was

28.0% A, 26.4% T, 28.6% C, and
17.0% G, with a slight

A + T bias (54.5%).
Two substitutions were found in
the control region and 12S rRNA.

Other single nucleotide
substitutions were found in

common protein-coding sequences
The total sequence discrepancy

(D xy) was 0.0011 ± 0.0002

[185]

Salvelinus sp. Mitochondrial

Size 16,654 b.p.
The organization of the genome
was identical to that of typical

salmon genomes, including
2 rRNA genes, 13 protein-coding

genes, 22 tRNA genes, a light
chain origin of replication (OL),
and a control region (CR). The
overall base composition was

28.0% A, 26.4% T, 17.0% G, and
28.6% C, and the GC content

was 45.6%.

[186]

Salvelinus boganidae and
Salvelinus elgyticus Mitochondrial

Libraries were prepared
using an Ion Plus Fragment

Library Kit and unique
adapters (Ion Xpress), and

preliminary fragmentation of
PCR products was

performed on a Covaris
M220 ultrasonicator.

Libraries were sequenced on
the Ion S5 platform (Thermo

Fisher Scientific). Clean
reads were assembled into

contig with the Bowtie2
algorithm in Geneious R11
Mitogenome of S. taranezi

was used as a reference for
correct contig position

and orientation

16,654 b.p. for s. elgyticus and
16,655 b.p. for s. boganidae. The
gene arrangement, composition,
and size are similar to s. Taranezi

The genomic organization is
identical to typical salmon

mitogenomes, including two
rRNA genes, 13 protein-coding
genes, 22 tRNA genes, a light

chain origin of replication (OL),
and a control region (CR).

[187]
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Table 1. Cont.

View Genome Genome Data
Acquisition Approach

Characteristics and Features of
the Genome Reference

Salvelinus levanidovi Mitochondrial

Using Geneious R11, the
sequenced fragments were

combined into a full
mitogenome and described

by reference to previous
char mitogenomes.

The complete mitogenome of
native S. levanidovi was

16,624 bp long.
the overall base composition was
28.1% A, 26.4% T, 28.6% C, and

16.9% G, with a slight
A + T bias (54.5%)

[188]

T. thymallus Mitochondrial
The consensus sequence was

controlled and annotated
using MitoAnnotator.

Mitogenome has a total length of
16,660 bp and includes

13 protein-coding genes,
22 transfer RNA genes including
2 tRNA-Leu and 2 tRNA-Ser, two

ribosomal RNA genes, and a
control region following the

standard vertebrate order.
Intergenic spaces and overlapping

sequences were found.
Six coding genes have an

incomplete codon stop: NADH2,
COII, ATP6, NADH3, NADH4,

and cytb. The base composition of
the entire genome was 27.5% for A,

27.9% for T, 17.5% for G
and 27.1% for C.

[189]

Sl. Svetovidov Mitochondrial

Genomes were matched
using the MAFFT algorithm
in Geneious, and maximum
likelihood (ML) analysis was

performed based on
Tamura-Nei (TrN93) plus a

nucleotide substitution
gamma model.

The machine learning tree
was built using the MEGA X

software and validated by
bootstrap analysis.

Genome length 16,655 bp. The
overall base composition was

28.0% A, 26.4% T, 28.7% C, and
16.9% G with a slight A + T bias

(54.5%) 18 single nucleotide
differences and no difference in

length between sequences
MK695627, MK695628 and

MK695629; only 13 substitutions
were found in all sequences

encoding the protein and five were
found in the control region.

[190]

O. masou Mitochondrial

Genome length 16,648 bp, with 13
protein-coding genes, two rRNA
genes, 22 tRNA genes, a putative
control region (CR), and one light

chain origin of replication.
The overall base composition is
28.6% A, 26.8% T, 28.1% C, and

16.4% G, respectively, with a slight
AT bias (55.4%).

[191]
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Table 1. Cont.

View Genome Genome Data
Acquisition Approach

Characteristics and Features of
the Genome Reference

S. fontinalis × S. malma
sp. hybrid Mitochondrial

Genome length 16,623 bp.
The overall base composition was

28.3% A, 26.5% T, 28.4% C and
16.8% G, with a slight

A + T bias (54.8%)
two non-coding regions, the

L-chain origin of replication was
located between tRNA-Asn and

tRNA-Cys, and the control region
was located within tRNA-Pro and
tRNA-Phe. Eight tRNAs and the
ND6 gene were encoded on the

L-chain, the rest were encoded on
the H-chain

The complete mitogenome
sequence contained 16s RNA and

12s RNA, which were located
between tRNA-Phe and tRNA-Leu

and were separated by the
tRNA-Val gene.

[192]

S. malma Mitochondrial

Genome length 16,652 bp.
The overall base composition was

28.1% A, 26.4% T, 28.5% C,
and 17.0% G.

The 13 protein-coding genes code
for 3808 amino acids in

their entirety.

[193]

S. trutta General

Sequencing with
Illumina HiSeqX;

Assembly of the genome
using a software package;

Gene annotation
with Ensembl

Size: 2.37 Gbp-p; most of the
assembly consists of

40 chromosomal pseudomolecules;
43,935 protein-coding and 4441

non-protein-coding genes

[194]

3. Phylogenetic Characteristics of Salmon

The number of teleost species far outnumbers any other group of fish or any other
vertebrate, and this has been associated with a whole genome duplication prior to their
emission during the Cretaceous [27,195–198]. Salmonids present a unique opportunity
to explore a range of evolutionary and ecological concepts, including the mechanisms of
speciation [199,200], the evolution of complex life cycles [197,201–204], patterns of chromo-
somal evolution [101], and genome duplication [40], as well as the role of hybridization in
evolution [205]. The WGD mentioned above has played an important role in the long-term
evolutionary success of salmonids by providing lineage-specific physiological adaptations
such as anadromy, therefore potentially promoting evolutionary diversification and spe-
ciation [70]. According to the same authors, most of the salmon genome has returned to
a state of diploid inheritance before subfamily divergence [70]. In this regard, salmonids
occupy a unique phylogenetic position compared to fish species whose genomes have
been or are in the process of being sequenced since they belong to the Protacanthopterygii,
the most primitive group of teleosts [206]. Thus, salmonids provide a key phylogenetic
link between the evolution of teleost fish and the evolution of non-bony fish, as well as
other vertebrates. Salmonid evolutionary connections have been the focus of considerable
systematic and phylogenetic investigations for several decades [207–223]. The derivation
of a reliable phylogeny for this group is important for comparative analysis of salmon
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adaptation [224–226], comparative genomics [227,228], and for assessing conservation
priorities [38,47,215,229]. Population genomics is now commonly applied to salmonids
without genome sequencing by using conserved synteny with rainbow trout or Atlantic
salmon, for example [38,47,48,229–231].

Salmonidae is a phylogenetically distinct family that arose, according to the latest
data, from 50.8 to 64 million years ago [40,232–235], and this is confirmed by morphological
comparison data of 11 genera belonging to three subfamilies: Coregoninae (ciscoes, white-
fish, and inconnu), Thymallinae (grayling) and Salmoninae (huchen, lenok, trout, char, and
salmon) [211,236–238]. The most numerous of these, Salmoninae, includes seven genera
distributed throughout the world: Brachymystax (flax), Hucho (huchen and taimen), On-
corhynchus (Pacific trout and salmon), Salmo (Atlantic salmon and trout), Parahucho, Salvethy-
mus and Salvelinus [43,140,217]. There is strong evidence that each is a monophyletic clade,
a natural group that includes all the descendants of its last common ancestor [75,239,240].
Coregoninae is divided into Coregonus, Prosopium, and Stenodus. The Thymallinae has one
genus, Thymallus. Three of these genera (Parahucho, Salvethymus, and Stenodus) are mono-
typic, and their precise location in their respective subfamilies is being debated. Originally,
Salmoninae phylogenetic rebuilding has permitted Parahucho perryi to also be found in a
variety of positions within the group, including sibling Salvelinus [218,241], Salmo [158,223],
and the rest of Salmoninae [232,242,243]. Based on these data, it has been suggested that Core-
goninae is a sister group to the rest of the Salmonidae [217,244]. Recent genetic investigations
of the subfamily Thymallinae utilizing genome-wide mitochondrial genome sequencing
confirmed the relatedness of the three subfamilies Coregoninae, Thymallinae, and Salmoninae
but left confusion regarding the evolutionary connections between the long-recognized
subfamilies [244,245]. Other monotypic genera, such as Salvethymus in the Salmoninae and
Stenodus in the Coregoninae, have distinct morphologies and karyotypes that set them apart
from other genera in their respective subfamilies, although certain molecular data show
that they possess not justify genus classification [185,218,236,241,243,246–248]. Compar-
ison of currently obtained mitogenomes with 27 related-group mitogenomes available
from GenBank, including the genera Salvelinus, Parahucho, and Salmo, indicates a close
relationship of S. alpinus erythrinus to related species, S. taranetzi (and closely related taxa).
The study of chromosome patterns served to decipher the pathways of evolution [249,250]
and genome duplication [251,252]. A theory of tetraplodization of salmon as a result of
exposure to radiation exposure between 25 and 100 million years ago was proposed; this
period is a distinctive feature of the family [48,253].

Unclear issues concerning Salmonidae interactions could be clarified by expanding the
sample size of both taxa and characteristics. So, Crête-Lafrenière et al. (2012) produced one
of the most significant contributions to the study of salmon phylogeny, choosing 63 species,
more than twice the amount in use by Stearley and Smith [217], and completing a complete
morphological investigation to present. They hypothesized that increasing the sample of
taxa could separate long branches and that this would allow for a more precise establish-
ment of phylogenetic relationships [232]. Also, in their opinion, an increase in the sample of
taxa could be useful in estimating parameters for models of molecular evolution [254,255]
and various types of phylogenetic tests, including rooting analysis [256] estimating the time
of divergence [257]. According to their results, Parahucho perryi is a sister group (Salvelinus,
Oncorhynchus), which was confirmed later [100], and Stenodus and Salvethymus cannot be
highlighted as independent genera [246,248,258]. Crête-Lafrenière et al. (2012) employed a
variety of genes to infer salmon phylogeny, in addition to expanding the number of species
studied. Single gene phylogenies are intrinsically restricted in their capacity to reliably
establish taxonomic relationships and are prone to random mistakes. As a result, they
integrated gene sequences into a “supermatrix” to boost phylogenetic signal and node
support. However, simultaneous analysis of linked gene sequences should be treated with
caution, as biases can interfere with phylogenetic inferences due to strongly supportive
clades erroneously grouped based on multiple substitution artifacts (e.g., heterogeneity
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of nucleotide composition [259,260], change in speed at different sites [261,262] and an
increase in the sample of taxa [254,255,263,264].

3.1. Subfamily Salmoninae

Salmoninae became a sister subfamily of the Coregonidae, some 35.6 mya. Hucho and
Brachymystax were found to be sister genera with a common evolutionary lineage that
diverged earlier than other members of the subfamily [265]. Another example is the po-
sitioning of the monotypic genus Parahucho as a sister genus of Salmo with an average
divergence time of 21.9 Ma. This placement also appeared in Crespi and Fulton (2004) [223]
as well as Alexandrou et al. (2013) [266] but in contrast to several other studies that
have either grouped Parahucho with Salvelinus or simply as a sister group to the On-
corhynchus/Salvelinus clade or Oncorhynchus/Salmo clade [230,232,233,267]. Parahucho and
Salvelinus share an evolutionary lineage with a common ancestor with Oncorhynchus,
with the genus Salmo placed between these latter three genera (Oncorhynchus, Salveli-
nus, Parahucho) and others (Hucho, Brachymistax). In Gong et al. (2017), within each
genus Salmoninae, the phylogenetic relationships between species differed slightly from
those previously published [191,265]. Within the genus Salvelinus, for example, the phy-
logenetic relationships of Salvelinus fontinalis and S. leucomaensis appeared similar in
Ma et al. (2016) [268], where both belong to different evolutionary lineages, but various in
Sahoo et al. (2016) [269] and Balakirev et al. (2016) [270], where they shared an evolutionary
lineage. To further verify the newly-defined sequences and establish their taxonomic status
in Salmoninae, phylogenetic trees, including all Salmoninae species available in databases
such as GenBank, were constructed based on maximum likelihood analysis [271].

Identifying the evolutionary relationships of monotypic genera of the subfamily
Salmoninae is rather complicated and identifying the relationship between Salvelinus, On-
corhynchus and Salmo has been a source of debate. Monotypic genera are simply one source
of ambiguity in determining evolutionary connections inside the Salmonidae subfam-
ily. As a result of genetic investigations, the lengthy classification of Oncorhynchus and
Salmo as sister species has indeed been substituted by the group Oncorhynchus and Salveli-
nus [220,223,272]. The greatest issues with phylogenetic reconstructing inside the genera
are centered on three more species-specific taxa, Oncorhynchus, Salvelinus, and Coregonus.
In molecular investigations of Oncorhynchus, uncertain and contentious [223,273,274], and
many issues emerge concerning the connection between Pacific trout, which is disguised by
repeated hybridization [238]. Likewise, Salvelinus species frequently hybridize, resulting in
discrepancies in phylogenetic analyses [217,275,276].

The long-standing definition of Oncorhynchus and Salmo as related species was divided
into the Oncorhynchus and Salvelinus groups based on genetic studies [220,223,238,272,277].
Ninua et al. (2018) studied the morphology and mitochondrial phylogeny of five nominate
trout species from the Western Caucasus. According to their data, trout from the Black
Sea and Caspian Sea basins represent a monophyletic evolutionary lineage (matrilineal
clade) distinct from trout from other parts of western Eurasia, including those from the
Atlantic, Mediterranean, and Indian Ocean basins [278]. Earlier, Mari et al. (2014) analyzed
grayling from the Kama and Ural basins and discovered previously documented haplo-
types that form a sister clade with Scandinavian haplotypes when compared to accessible
published studies [279–282]. Analysis of the data they presented implies that the Caspian
and Scandinavian clades separated 0.33–0.92 million years ago, based on a replacement rate
of 0.5% every million years. Despite the short number of examined populations and the
small sample size, the Caspian haplotype polymorphism is equivalent to that of European
groups [280,283]. Individuals from the Bugurla and Barangulovka sample sites had con-
siderable genetic similarities, indicating extensive gene flow between these two proximal
streams, giving rise to a single population [282]. The basal diversification within Salmo that
separated S. salar from the bull-trout lineage occurred, according to different authors, from
9.6 to 15.4 Ma [232,234,266,267,284]. The separation between the widespread European
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S. trutta and the recently described species S. ohridanus and S. obtusirostris occurred between
3 and 9 Ma, in the Late Miocene or Pliocene [40,232,267,285].

Salvelinus

All populations of Arctic char, including Taranian char, form a monophyletic group.
Thus, until a recent study, several forms of char were described as separate
species [222,286,287]. It was established that three species of loaches of the genus Salveli-
nus inhabit Lake Elgygytgyn, two of which are considered endemics of this water body.
The first species is the long-finned loach S. svetovidovi, originally described in a separate
genus Salvethymus; moreover, it was assumed that its age is comparable to that of the
lake itself [233,258,287–289]. Another endemic species of this lake is the smallmouth char
S. elgyticus. A third species of charr, S. boganidae charr, was thought to be identical to
the form of the same name from Taimyr [289]. Although there is very little data on nu-
clear gene comparisons between Taimyr and Chukotka boganidae, mtDNA data suggest a
polyphyletic origin [290–292].

Gonen et al. (2015) presented the first phylogenetic relationships of salmonids based
on a RAD sequencing dataset, including five salmonid species and 3050 loci in the analysis,
and found that the number of identified orthologous Sbf I RAD loci decreased as the
evolutionary distance between species increased: several thousand loci were preserved in
five salmonid species (~50 million year divergence), and several hundred were preserved
in more distantly related bony species (~100–100 million year divergence). Most (>70%)
of the loci identified between more distantly related species were of genetic origin [293].
Later, Lecaudey et al. (2018) presented the first phylogeny of salmonid fishes based on a
large RAD sequencing dataset with an extensive sample of family taxa [233].

The use of molecular genetic approaches enabled us to transcend the restrictions
placed by S’s parallel diversity in the morphological features of S. alpinus [294]. Current
ideas about the phylogenetic and phylogeographic structure of Arctic char are based on
studies by Brunner et al. (2001) of the diversity of the mtDNA regulatory region in different
populations across its range, as well as in Dolly Varden (S. malma), a similarly-related
species from the North Pacific. Five phylogenetic haplotype groups were revealed, one
(Beringian) associated to the northern form of Dolly Varden and four (Arctic, Atlantic,
Siberian, and Acadian) associated with Arctic char. Extensive research into charr mtDNA
has substantially extended our understanding of their genetic diversity and evolutionary
linkages in the Pacific basin [70,184,246,294–308], in Eastern Siberia [171,173], and in the
North American Arctic [170]. A revision of the systematics of the genus has been proposed,
involving consideration of monophyletic groups identified by mtDNA analysis as separate
species, in particular, S. taranetzi [300], which includes Asian and North American loach
with Arctic group haplotypes [288,291,300].

Brunner et al. (2007) recognized loach phylogenetic haplotype groups as clusters
with strong initial support in their phylogenetic haplotype trees [291]. Loaches from
North America’s Arctic regions, the Canadian Arctic Archipelago, Greenland, and the
Asian Taranian loach were included in the Arctic group; loaches from Quebec and Maine
were included in the Acadian group; loaches from Siberia, Finland, and Spitsbergen were
included in the Siberian group; and loaches from Northern Europe, the Alps, the British
Isles, Iceland, Greenland, Newfoundland, and Labrador were included in the Atlantic. The
latter two groups were discovered as being the most closely linked, and they were joined
with the Acadian group to form the Atlantic-Siberian-Acadian supergroup. Haplotypes
from the fifth (Beringian) group were discovered in Arctic char after being discovered
in the northern Varden river, which is thought to be the consequence of the previous
hybridization between the two species [169–171,173,294,296]. As new data accumulated,
the differences between the Atlantic and Siberian groups became increasingly blurred. The
insertion of additional Siberian haplotypes caused the latter to disintegrate, and bootstrap
analysis revealed no strong support for Siberian haplotypes or their big combinations [171].
Moore et al. (2015) achieved a similar finding for both the Siberian and Atlantic groups [170].
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Also, Yamamoto et al.’s (2014) tree, which includes just Siberian haplotypes released by
Brunner et al. (2001) [291,301], is divided into two clusters. One cluster combines with the
Atlantic group cluster, although with poor bootstrapping support. The discreteness of the
Atlantic and Siberian clusters seen by Brunner et al. (2001) might be attributable to both a
paucity of Siberian material and sequencing errors [170,287].

Some of the forms that originated in this region are reproductively isolated [287,309,310].
Boganidae (S. boganidae) and Dryagina’s loach (S. drjagini) are described as different
species [222]. Thanks to this study, boganids from lakes Elgygygytgyn and Lama are
attributed to different phylogenetic groups of the Arctic char lineage and are not considered
as a single species, S. boganidae [70,287,288]. These forms are now strictly separated, just like
the Boganidae S. boganidae and the smallmouth S. elgyticus [286]. The results of the RAG1
gene analysis also unambiguously point to the belonging of Lake Cherechenskii char to the
Arctic char lineage. However, the two species of loaches did not form a supported clade
on the phyloo graph; S. boganidae grouped with S. taranetzi from Chukotka, as previously
suggested by some authors [287]. Oleinik et al. (2020) tested two alternative hypotheses
about the origin of loaches in Lake Elgygygytgyn. The data presented are most consistent
with the conclusion that two different in-time colonization events by ancestral lineages
of Taranec shiners occurred in Lake Elgygytgyn during the postglacial periods. Despite
the stability of the topology, contradictory signals or alternative phylogenetic histories
were found within the Arctic phylogenetic group. Taking into account the previous genetic
work of these species based on microsatellites [287], they suggested that the reticulations
detected by the Neighbor-Net revealed several signals of hybridization events. The phy-
logenetic network showed that past hybridization between S. boganidae and S. elgyticus is
possible, although no hybrids were observed between them [287]. S. boganidae also shows
potential hybridization in the past with S. taranetzi. Among loaches of the genus Salvelinus,
phylogenetic relationships and taxonomy are most problematic within the group that in-
cludes the Arctic loach S. alpinus, the trout S. malma, and closely related forms and species
of loaches [284,288,311,312]. These two groups of char are often considered within two
species complexes (S. alpinus complex and S. malma complex) [312] or one supercomplex
S. alpinus-S. malma complex [243].

Gordeeva et al. (2018) found Holts with Atlantic subgroup haplotypes in Karelia, the
Kola Peninsula, Novaya Zemlya, Polar Urals, and Taimyr. Their finds indicate a wide
distribution of several Atlantic haplotypes. The Siberian subgroup borders the Arctic
subgroup to the east of the Indigirka river basin; however, the location of this boundary
and the extent to which their ranges overlap is uncertain. The Siberian subgroup is
almost entirely represented by sedentary continental populations; anadromous and insular
populations have not been noted so far, except for one anadromous population from the
Novaya River, Khatanga Bay basin. Different sets of haplotypes are detected in different
isolated regions of the Siberian group range. However, these locations are not used to
categorize the haplotypes in the phylogenetic trees. Earlier, common haplotypes SIB8 and
SIB10 were found in Transbaikalia and the Yana basin [171]. These findings support the
shared origin and tight evolutionary relationships of the Siberian subgroup’s Arctic loaches
from various parts of Siberia, as well as putative migrations between these locations during
the Pleistocene glacial maximum, but not as extensive as in the Atlantic subgroup [168].

As can be seen, current ideas about the phylogeny of loaches are based on studying the
variability of the mtDNA control region [171,291,301]. Oleinik et al. (2015) identified several
phylogenetic groups uniting closely related species of loaches (Arctic, Atlantic, Siberian,
Acadian, Beringian, Western Pacific, and Eastern Pacific). Their results show that specimens
of S. boganidae and S. elgyticus belong to the aforementioned Arctic group, S. taranetzi.
Originally described as a separate species, it later became synonymous with the Arctic char
S. alpinus taranetzi [312]. There is still a lack of molecular data to support this view [313].
Most previous studies of S. taranetzi, along with other loaches, are limited to analyzing
only short fragments of a few mitochondrial and nuclear genes [173]. Molecular data based
on ten microsatellite loci and sequences of the mtDNA control region and cytochrome b



Genes 2022, 13, 2221 17 of 35

gene [287], cytochrome b and cytochrome c oxidase I genes [232], and RAD sequencing
support the assignment of Salvethymus to the genus Salvelinus [233]. In a phylogeny based
on the mitogenomes of the loaches, Sl. svetovidov represents the latest branch that diverged
after the main group of species (S. fontinalis, S. leucomaenis, S. levanidovi, S. namaycush).
The authors in this study sequenced and described two complete mitochondrial genomes
of S. taranetzi for further study and more precise phylogenetic analysis. S. levanidovi was
phylogenetically placed alongside other loaches but showed substantial divergence from
them. S. fontinalis, S. levanidovi, S. leucomaensis, and S. namaycus represent a basal group of
species in terms of mitogenome diversity, each corresponding to a separate evolutionary
lineage. As a result, Oleinik et al. (2020) revealed that S. levanidovi is highly correlated to
the single origin of the genus Salvelinus [184].

To determine the taxonomic status of hybrid salmon, Zhang et al. (2019) reconstructed
the phylogeny of this salmon stock with other natural salmon populations based on com-
plete mitogenome sequences. The phylogenetic tree showed that hybrid salmon are related
to Salvelinus and are more closely related to S. fontinalis, distinct from S. malma sp. The
complete mitochondrial genome sequence of the S. fontinalis × S. malma hybrid provided
an important data set for a better understanding of mitogenomic diversity and evolution
of salmonid fishes, as well as new genetic markers for studying population genetics and
species identification [192].

Analysis of the nucleotide sequences of the control region and the cytb mtDNA gene
indicates that the “boganids” and smallmouth characters from Elgygygytgyn are young
species whose origin is most likely related to the events of the last ice age [287]. Both
species have Arctic haplogroup mtDNA haplotypes and are sister species that may have
formed in the lake during the postglacial time. The results of the phylogenetic analysis of
the nucleotide data of the mtDNA site ATPase6-NADH4L indicate an allopatric origin of
the smallmouth and “richnid” loaches of Lake Elgygytgyn. This contradicts the results of
the analysis of the CR and cytb genes, according to which their sympatric origin is more
likely [287]. Despite the inconsistency in the available mtDNA data, data on the mtDNA
control region [170,258,287,313] suggest that the level of nucleotide and haplotype diversity
in the Taranec shin population in North America and Greenland is much lower than
previously assumed [280] and slightly lower than in some Asian populations. Previously,
based on an analysis of their own and published mtDNA data, the difference between the
two studies is that the authors included smallmouth and "richnid" char from Elgygytgyn in
the first subgroup [258], and in contrast, the ATPase6-NADH4L mtDNA site data divided
the two species into different subgroups [289].

Introgressive hybridization across distinct lineages or taxa has been widely established
for Salvelinus species as a result of previous secondary interactions [71,233,314,315], such as
between S. malma and S. alpinus, which recently diverged from each other, about 1.5 million
years ago, and have overlapping current distributions [315]. The presence of parallel edges
in the network, on the other hand, does not guarantee hybridization, simply the probability
of hybridization [316]. The results of the phylogenetic analysis by Oleinik et al. (2021) are
consistent with earlier studies based on mtDNA fragments [232,246,287,301]. In comparison
to earlier studies’ phylogenetic trees, their phylogenetic tree based on the mitogenomes of
the char species grew more strong and more trustworthy. Longer DNA sequences have
previously been proven to give an acceptable resolution of relatively high connections
in fish [317]. A study by Oleinik et al. (2021) additionally showed that mitogenomes
could make up a reliable phylogenetic tree and resolve relationships between closely
related species of loaches [318]. On the basis of morphological similarity, the boganids
of Chukotka and Taimyr were attributed to the same species [286,306]. However, the
results of mtDNA analysis indicate a probable polyphyletic origin of allopatric populations
of Boganidae [287,308]. Boganida charr’s morphological resemblance in this example
might be a symptom of parallelism, which is defined as the autonomous development of
shared traits among closely linked taxa during evolution [287]. Data on the RAG1 gene
confirm the monophyletic origin of Arctic charr and Dolly Varden complexes [242]. Results
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from Lecaudey et al. (2018) specifically show hybridization signals between S. malma
from the Bering clade and S. alpinus. An earlier study showed S. alpinus individuals with
introgressed haplotypes from the Bering clade of S. malma along the eastern coast of Siberia
to be parapatric [171]. In a very recent study, mtDNA introgression from S. malma malma
to S. taranetzi near the Sea of Okhotsk, due to which representatives of the first species
did not remain in this location completely [318]. In addition, postglacial hybridization
between different glacial lineages of S. alpinus has been demonstrated to survive in separate
refugia [170].

The mitochondrial gene relationship between S. confluentus and the rest of the
S. alpinus group has not been revealed by nuclear genome data, confirming lots of ev-
idence referring to introgression of the Arctic char’s mitochondrial genome in this species
that might conceal the sister taxon’s affection with S. leucomaenis [319]. With the emphasis
on the subfamily Salmoninae and the extensive coverage of taxa of the genus Salvelinus, the
topology recovered from >28,000 loci is well-defined and well-supported by all methods
used, providing clear answers to several phylogenetic uncertainties revealed by conflicting
results of previous studies.

3.2. The Subfamily Coregoninae
Coregonus

In whitefish, species identification in phylogenetic studies is complicated by parallel
evolution [237,320–322], phenotypic plasticity [323], trophic population variability [324,325],
and hybridization [326,327]. The greatest difficulty in identifying stems from the variability
of the two phenotypes that distinguish whitefish and grayling, each of which was formerly
thought to be a monophyletic subgenus [238]. Thus, within the subfamily Coregonidae
about 33.1 million years ago, the genus Prosopium showed an evolutionary lineage that had
previously deviated from the Stenodus/Coregonus lineage. Coregonus nasus and C. chadary
had a common ancestor in the same evolutionary lineage that previously diverged from
the other species [328,329]. After them, C. clupeaformes and C. autumnalis also showed
a common and divergent evolutionary lineage [269,330]. Phylogenetic analysis using a
maximum likelihood tree among 42 complete mitogenomes of the Salmonidae family and
one Danio rerio sequence showed 99% sequence similarity to the S. trutta genome [269].
Nevertheless, Baikal omul, C. migratorius, possesses morphological characteristics that
suggest it is whitefish, although it is more strongly linked to whitefish based on molecular
similarities [331,332]. S. trutta fario L. has been phylogenetically placed with other S.
trutta species, with obvious divergence [330]. Hence, the whitefish could be classed as a
paraphyletic clade based on morphological categorization.

Graylings are also a paraphyletic group, according to molecular evidence [333], with
the smallest grayling, C. sardinella, becoming more strongly linked to whitefish than other
graylings. Previous research has demonstrated that C. huntsmani has a unique evolutionary
lineage [334,335], although it does not keep this status in the genus. Various research studies
have found parallels between Stenodus and Coregonus [232,336,337]. Crête-Lafrenière et al.
(2012) found slightly different and reversing results. First, C. huntsmani was recognized as a
sister species to the other Coregonus species; second, Stenodus is probably a separate genus
rather than a subgenus within Coregonus. Species such as Coregonus artedi, Coregonus hoyi,
Coregonus kiyi, Coregonus nigripinnis, and Coregonus zenethicus, according to their data, are
not related as previously thought [338–341], while Coregonus pollan and Coregonus fallalis,
by contrast, tend to be more conspecific [232].

The only species of another distinct lineage that have not left the lake after separat-
ing from the aforementioned two are Baikal indigenous whitefish, lake omul (Coregonus
migratorius), and bottom lake whitefish (Coregonus baicalensis). In contrast to Europe and
America, where morphologically similar species pairs are the consequence of postglacial
secondary contacts between glacial isolates, sympatric limnetic-benthic divergence was
repeated here several times within the same body of water over a long geological period
due to Pleistocene fluctuations. According to cytb mtDNA, phylogenetic analyses indicated
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the interspecific linkages described for Baikal whitefish [342]. Comparative genetic ranges
across the three lines of responsibility: Baikal endemics, North American lake whitefish,
and European whitefish, imply comparable ages [343].

Another interesting representative of whitefish is muksun. The revealed low level
of genetic differentiation of muksun and whitefish, along with the available literature
data, indicates that they belong to the same species, C. lavaretus. Borovikova and Budin’s
(2020) analysis of the genetic variability of muksun from the Khatanga River points to its
polyphyletic origin. The presence of common haplotypes, on the one hand, indicates their
divergence from a common ancestor within the region under study; on the other hand,
each form includes representatives of phylogenetic lines originating outside it. However,
analysis of the haplotype network suggests the presence of several large mtDNA phylo-
genetic lineages. The molecular genetic analysis clarifies the phylogenetic relationships
of high-tip and low-tip muksun of the Khatanga River, as well as with other Coregonus
species. It also allowed us to clarify the origin of these forms in the basin of this river. It
turned out that the degree of genetic differentiation between the forms is low and does
not exceed the intraspecific level. It is important that the intrapopulation differentiation
of muksun is comparable to the level of differences between it and whitefish: 0.2–0.3 and
0.2–0.5%, respectively. It should be noted that the differentiation level of 0.5% is also typical
for different whitefish populations. Besides, it should be noted that the polyphyletic origin
of low stamen and high stamen density forms of muksun does not allow us to refer them
to different taxa and raise their status even to the subspecies level. Obviously, muksun
is characterized by independent morphogenesis in different water systems, as in the case
of European whitefish [344,345]. The phylogenetic kinship of whitefish and muksun is
evidenced by the presence of the same common sequence variants of all three genetic
polymorphism markers used in this study (ND1, COI, and ITS1) [346].

The species of roach (C. peled) is genetically similar to the aforementioned vendace.
Peled differs from C. albula and C. sardinella, first of all, by the number of chromosomes.
Differences in the number and chromosomal arrangement of the nucleus organizer re-
gions between the vendace and the peled confirm that they are separate species [347].
C. peled’s emergence as a species may be an instance of recent chromosomal differentiation
that enabled reproductive isolation from C. albula and C. sardinella. The most compelling
evidence that C. peled is a distinct species is the qualitative difference between its nuclear
genome and that of C. albula/C. sardinella [348]. Nevertheless, for the sea bass (genus
Sebastes), a similar scenario exists: S. mentella Travin, 1951 and S. marinus (Linnaeus, 1758)
(S. norvegicus (Ascanius, 1772)) might be separated from each other [349]. As previously
stated, the specimen discovered in Lake Sobachye was classified as C. sardinella morpholog-
ically but carried the C. peled haplotype N42 [350].

Individual phylogenetic lineages might well be readily identified using median con-
nective networks that indicate the taxon’s evolutionary history, although cladograms
(dendrograms) are frequently useless. These species, like C. peled, C. albula, and C. sardinella,
were not distinguishable by barcoding; nonetheless, haplotype analysis of another mtDNA
sequence, D-loop, revealed that they were separate species [351]. The nd1 sequence dis-
tinguishes C. peled from C. albula and C. sardinella, but its nd1 haplotypes form a single
unique branch, unlike the nd1 haplotypes of both cisco and lesser cisco. Furthermore, we
cannot rule out the possibility that this species is a descendent of hybridization between
C. sardinella and C. peled, which might have taken place in the past because hybridization
is prevalent in whitefish even in natural reservoirs [352,353]. Therefore, Borovikova and
Artamonova (2021) observe that in the instance of mtDNA sequences that do not generally
recombine, the most significant criteria is their monophyletic or polyphyletic origin rather
than the difference between haplotype sets [180].

3.3. The Subfamily Tymallinae

The subfamily Tymallinae originated about 29.5 Ma [265]. The T. burejensis / T. tugari-
nae clade was the first to diverge, next by T. yaluensis, another that included T. thymallus,
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and the last one that included all other species of the genus. Despite these topological
variations, T. arcticus and were sister species, as recently proposed by Liu et al. (2016) and
Balakirev, Romanov, and Ayala (2017) [354,355]. Ma et al. (2016) showed that mitochondrial
genomes could be a powerful marker for determining phylogeny within Thymallinae. Their
study confirmed that Yalu grayling should be synonymous with Amur grayling (Thymallus
grubii) at the whole mitogenome level [268]. Other studies addressing both the nuclear
mitogenome [61] and the salmonid nuclear genome [232,268] proposed that Thymallinae
and Coregoninae are sister subfamilies, while others studying mitochondrial [245,267] and
mitonuclear DNA [230] have proposed Thymallinae and Salmoninae as sister subfamilies.
Horreo’s (2017) study with the mitogenome of 46 different salmonid species contributed
much to the aspect of phylogeny construction by mitogenome, asserts Coregoninae and
Salmoninae as sister groups in the family Salmonidae, and provides new insight into the
phylogenetic relationships between genera and species in this family, including the molecu-
lar nodes [265]. The Thymallus sequences are divided into two monophyletic groups. The
first (including the newly sequenced mitogen) includes four nominal species: T. thymallus,
T. brevirostris, T. Arcticus, and T. baicalolenensis. The second includes three nominal species
T. tugarinae, T. grubii, and T. yaluensis [189].

Despite a significant amount of effort acknowledging various elements of salmonid
phylogeny, several of their phylogenetic connections and evolutionary history remain
unknown. The degree of resolution of these concerns varies at different levels of biological
organization, from the proper position of the salmonid tree root to the significance of
introgression in species or subspecies classifications [218] and systematic constraints (which
include completely inadequate taxon or gene sampling) [223–225]. In future studies, the
focus of this study on the genus Salvelinus should also be on the genera Salmo and Thymallus.
In the case of Salmo, there is still considerable uncertainty regarding the evolutionary history
of several known taxa, such as Salmo marmoratus (marbled trout) and S. obtusirostris (soft-
snout trout), as well as S. carpio (carpione) [356] and other larger phenotypes over the entire
range of the S. trutta species complex, all of which may have been involved in important
hybridization events. The genus Thymallus requires a comprehensive molecular study in
both East and Central Asia. This is due to the comparatively high species diversity in East
Asia and the somewhat exceptional link between contemporary taxonomy and phenotypic
diversity in Central Asia. More thorough full-genome investigations of individual taxa like
Salvelinus, Salmo, and Coregonus could give highly helpful information on both evolutionary
radiation processes and the distinguishing features of individual taxa for all salmonids.

Thus, observing trends in salmonid genetics and genomics research, we can notice
that molecular genetic and phylogenetic studies reveal an understanding of the history of
salmonids as a family. This allows us to identify salmonid ancestors and establish intervals
of genetic variation in Salmonidae. The complexity of the duplicated salmonid genome
causes difficulties in its study but, on the other hand, increases the duplicability and genetic
diversity of this family. The use of genomic techniques in commercial fisheries is mainly
viable and cost-effective; nevertheless, the conversion of genomic data into management
strategies has halted [17,357].

4. Conclusions

Thus, by observing trends in salmonid genetics and genomics research, we can con-
clude that molecular genetic and phylogenetic studies reveal an understanding of the
evolutionary history of salmonids as a family. This allows us to identify salmonid ancestors
and establish intervals of genetic variation in Salmonidae. The complex duplicated genome
of salmonids poses a challenge to study, but on the other hand, it increases the plasticity
and genetic diversity of this family. Applying genomic approaches to fisheries management
is mainly feasible and cost-effective [17]. Salmonid species provide exciting possibilities
to research speciation and adaptation mechanisms within an ecological and evolutionary
context. In particular, it provides an opportunity to study the effect of hybridization and
genome duplication on the evolution of species. Thus, Thompson et al. (2020) discovered
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that the complicated migratory phenotype is the product of a single gene area, which will
aid in the conservation and recovery of Chinook salmon [358]. In formulating fisheries
management rules and recommendations, genomic technologies and their capacities for
recognizing species, establishing management units, and monitoring natural resources
should be thoroughly explored [359–361].
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