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Abstract: The chalcone synthase (CHS) gene family catalyzes the first committed step in the biosyn-
thesis of flavonoids and plays key roles in various biological processes in plants. However, sys-
tematic studies of the CHS gene family in chrysanthemum remain unknown to date. In this study,
16 CnCHS genes were identified by searching the complete genome sequence of Chrysanthemum nankin-
gense. Most contained two exons and one intron with Chal-sti-synt_N and Chal-sti-synt_C domains.
A phylogenetic tree of CnCHSs indicated divergence into three major groups, including I, II, and III.
Analyses of the genes and promoters of these genes indicated that there are many cis-acting elements
that respond to light, phytohormones, stress, and developmental stages. The CnCHS genes have
extensive patterns of expression in various tissues and stages of flower development. Tandemly
repeated and segmental repeat genes were expressed at higher levels in different tissues than most of
the CnCHS genes that have been identified. CnCHS10 is expressed at higher levels in various flower
organs than in vegetative tissues, particularly in disc floret petals and pistils. Our study provides
valuable information for the systematic analysis of the CnCHS gene family, which also contributes to
further research on flavonoid synthesis and petal colors of chrysanthemum.

Keywords: chalcone synthase; Chrysanthemum nankingense; genome-wide analysis; pattern of
expression

1. Introduction

Flavonoids are important active components that contain a C6-C3-C6 carbon skeleton
that is derived from phenylalanine, and they play essential roles in many biological pro-
cesses and responses to biotic and abiotic stress in plants [1]. Flavonoids are also known as
natural antioxidants. They have antibacterial, anti-inflammatory, analgesic, and antipyretic
properties. Extensive studies on flavonoid biosynthesis have been conducted in several
plants, including Arabidopsis thaliana [2], maize (Zea mays) [3], and petunia (Petunia hy-
brida) [4], and a number of structural and regulatory genes involved in this process have
been identified. CHS is the first dedicated enzyme that catalyzes the initial committed step
of the flavonoid biosynthetic pathway. CHS catalyzes the condensation of three malonyl-
CoA molecules with one 4-coumaroyl-CoA to produce the precursor of different flavonoids,
designated naringenin chalcone with a C13 carbon skeleton [5,6].

The CHS enzyme is known as a type III polyketide synthase (PKS) superfamily with
stilbene synthases (STS) and 2-pyrone synthase (2PS), which has been found in all plants [7].
CHS consists of two conserved structural domains and has highly conserved amino acid
sequences. The upper domain is located in the buried active site with four amino acids
(Cys164, Phe215, His303, and Asn336), which are defined as the catalytic machinery, while
the lower domain is adjacent to the upper domain and has a large active site that is required
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for chalcone formation [5,6]. Only a few amino acid modifiers can significantly alter
the three-dimensional arrangement of the catalytic center that enables them to efficiently
bind and modify the substrate, which can also result in decreasing activities or redirected
functions of CHS [8]. CHS enzymes have also been demonstrated to be components of
a multigene family with a different number of copies in various plants owing to gene
duplication events and subsequent positive selection [9–11]. At least 3 gerbera CHS genes
had been found in Gerbera hybrid [12]; 8 or more CHS genes have been found in petunia [13],
and 14 CHS genes have been identified in the genome of maize [14]. Different copies of CHS
have evolved to be functionally divergent in varying tissues or developmental stages [12].
Thus, a systematic study of the CHS gene family is crucially important to understand the
synthesis of flavonoids and petal pigments in plants.

Chrysanthemums are economically important cut flowers and pot plants and are
widely prized in the world flower market. The dry capitulum and leaves of chrysanthe-
mums are also a form of traditional Chinese medicine and herbal tea, and their use has
been well-documented in TCM to minimize heat and toxic materials. They are used to
treat headaches, dizziness, the common cold, and dim eyesight. Modern pharmacological
studies have proven that chrysanthemums have various pharmacological activities, such
as antioxidative [15], anti-inflammatory [16], cardiovascular protective [17], antibacterial
and antiviral [18], and immunoregulatory activity [19], because they contain high amounts
of flavonoids, such as linarin, diosmetin-7-glucoside, and tilianin; phenolic acids, such as
isochlorogenic acid C, isochlorogenic acid A, and 1,3-dicaffeoylquinic acid; and volatile
oils, such as juniper camphor, borneol, and cis-caryophyllene [18,20–22]. Furthermore,
flavonoids are not just the primary active components in chrysanthemums; as active sub-
stances, they also serve as the major pigments for flowers, as well as having a role in stress
tolerance [23,24].

There is a remarkably significant positive correlation between the activity of CHS
and contents of flavonoid pigments, as well as those of other flavonoids in plants [25].
The levels of expression of CHS became much higher in dark-purple ray florets compared
with the light-purple ray florets at the later stages of capitulum development [23]. The
expression of CHS first increased and then decreased with the increase in flowering degree
in Chrysanthemum morifolium cv. ‘Hangju.’ However, there was no significant correlation
among anthocyanins and the CHS gene [26]. CHS was expressed in both pink and white
flowers, hence Wang et al. et al. [27] suggested that the lack of anthocyanin in white flower-
ing cultivars cannot be due to the blockage of CHS expression. In contrast, GCHS1 is the
major CHS enzyme in gerbera petals, which is expressed more highly during pigmentation,
and the silencing of GhCHS1 expression resulted in petals that turned white; all the major
flavonoid products decreased in the white petals [12]. A distinct phenotype has been
attributed to different copies of CHS, but to our knowledge, no systematic studies on the
CHS family in chrysanthemums have been conducted to date.

Recently, the whole-genome assembly of C. nankingense has been completed, which
has provided more scope for the genome-wide identification of CHS gene family to an-
alyze their evolutionary processes and functional diversification [28]. In this study, the
CnCHS genes were identified from C. nankingense. We then investigated their sequence
information, phylogenetic relationships, conserved motifs, and divergence information,
and the patterns of expression of these CnCHS genes in different organs were also evaluated
based on transcriptome analyses. The results of this study will provide the foundation for
a comprehensive analysis of the CHS genes family in chrysanthemums.

2. Materials and Methods
2.1. Identification of CnCHS Family Members in the Chrysanthemum Genome

The complete gene and protein sequences of C. nankingense were downloaded from
the Chrysanthemum genome database (http://www.amwayabrc.com/index.html (ac-
cessed on 10 August 2022)) [28]. The Hidden Markov Model (HMM) profiles of the
Chal_sti_synt_C (PF00195) and Chal_sti_synt_N (PF02797) domains were downloaded
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from the Pfam protein family database (http://pfam.xfam.org/ (accessed on 15 August
2022)) [29]. The conserved domain sequences of the CHS family were obtained based
on a BLAST program with a maximum threshold e-value of 10−5 using the CHS pro-
files as queries [30]. All the predicted sequences were aligned based on Cluster W [31],
and these redundant sequences were discarded. The sequences were predicted using the
Pfam database [29], NCBI Conserved Domain Search Service (http://forestry.fafu.edu.
cn/db/PhePacBio/blast/blast_cs.php (accessed on 17 August 2022)) [32] and SMART
(http://smart.embl-heidelberg.de/ (accessed on 17 August 2022)) [33] to confirm the pres-
ence of both the Chal_sti_synt_C and Chal_sti_synt_N domains in the predicted sequences,
which was crucial for the identification of valid CHS proteins. In addition, we estimated the
molecular weight (MW), isoelectric point (pI), instability index, and hydrophilicity of each
protein using ExPASy (http://www.expasy.org/tools/ (accessed on 18 August 2022)) [34],
while the subcellular localization information was predicted using the WoLF PSORT pro-
gram (https://www.genscript.com/wolf-psort.html (accessed on 18 August 2022)) [35].

2.2. Analysis of Gene Structure, Conserved Motifs, and Sequence Alignment

The exon–intron structures of each CnCHS were illustrated by comparing their cDNAs
with genome sequences using Gene Structure Display Server (GSDS 2.0) (http://gsds.gao-
lab.org/ (accessed on 22 August 2022)) [36]. The conserved motifs in each putative CnCHS
protein were identified using the MEME program (http://meme-suite.org (accessed on
25 August 2022)) [37] with the following parameters: the minimum width of motif was 6; the
maximum width was 200; the maximum number of motifs was 10; and the e-value < 1× 10−20.

Currently, the crystal structure of alfalfa (Medicago sativa) CHS (MsCHS) has revealed
the architecture function of the active site on the cyclization reaction that leads to the
synthesis of chalcone in plants. We used the secondary structure of MsCHS as a template
to analyze the secondary structures of chrysanthemums CHSs. An alignment of MsCHS
and all the CnCHS proteins was performed using the ClustalW 2.0.10 software. After
that, highly conserved residues were marked using GeneDoc 2.7 software. Moreover,
promoters were obtained from 2000 bp of the upstream sequences of the putative CnCHS
genes based on the Chrysanthemum genome, which were used to predict the cis-regulatory
elements within the promoter regions using Plant CARE (http://bioinformatics.psb.ugent.
be/webtools/plantcare/html/ (accessed on 2 September 2022)) [38].

2.3. Phylogenetic Tree Construction of the CnCHS Genes

All the selected CHS protein sequences from chrysanthemums and A. thaliana, gerbera,
common morning glory (Ipomoea purpurea), petunia, tomato (Solanum lycopersicon), maize,
and tobacco (Nicotiana tabacum) were used for the phylogenetic analysis. The sequences
were aligned using the ClustalX 1.83 software with default parameters [31]. The phy-
logenetic tree was then constructed with MEGA X [39] with a bootstrap of 1000 times
to study the systemic evolution of CnCHS members in detail. These selected sequences
were classified into different subfamilies based on the topological relations of the phyloge-
netic tree obtained. Subsequently, the online tool EvolView v3 (http://www.evolgenius.
info/evolview/ (accessed on 7 September 2022)) [40] was used to edit the phylogenetic tree.

2.4. Scaffold Localization and the Calculation of Ka/Ks Values

The physical map was drawn to show the distribution of CnCHS genes on different
scaffolds of chrysanthemum using MapChart 2.32 software [41] based on their positions
on the chrysanthemum scaffold. Duplicate gene pairs were obtained by aligning the par-
alogs of chrysanthemum CHS using BLAST-v2.9.0+ program. Pairwise alignment of the
identified duplication gene pairs of CDS sequences was performed using ClustalW 2.1. Po-
tential gene duplications were analyzed based on the following major criteria: (a) the length
of alignable sequence covered >75% of the longer genes; and (b) the similarity of aligned
regions >75% [42]. Duplicated genes on a single scaffold with no more than one intervening
were defined as tandem duplications. Otherwise, they were defined as segmental repeats
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in this study. The Ka_Ks calculator Toolbox 2.0 software [43] was used to calculate the
synonymous substitution rate (Ks) and nonsynonymous substitution rate (Ka) values based
on the coding sequence alignments to estimate the selective pressure that the protein has
been subjected to. The genes were considered to have experienced positive directional
selection with values >1 or purifying selection <1 and as neutral nonadditive gene with
values equal to one. The time of divergence was further calculated using the formula
T = Ks/2r [44], and r was considered to be 1.5 × 10−8 synonymous substitutions per
site per year for the CnCHSs of dicotyledonous plants based on the fossil pollen data
analyses [45].

2.5. Analysis of the Profile of Expression of Identified CnCHS Genes

Published raw RNA-seq data from different tissues or developmental phases of
Chrysanthemum were downloaded from the NCBI SRA database (PRJNA548460) for
the analysis of expression of the CnCHS genes [46]. In addition, the PRJNA548460 dataset
contained all the vegetative tissues, various flower organs, and flower buds of different
stages of the chrysanthemum cultivar ‘Jinba.’ The clean reads were used to map the
C. nankingense reference genome using BWA-MEM2 [47] and Bowtie2-2.5.0 software [48].
The levels of gene expression were estimated using the fragments per kilobase of tran-
script per million mapped reads (FPKM) values with TopHat 2.0.14 and Cufflinks 2.2.1
based on the read count data of the gene expression in each sample obtained [49]. Each
sample was tested with three replications, and an FPKM > 1.0 in at least one sample of
putative CnCHS genes was utilized to calculate the mean average. The average value of
the expression of each sample was showed in a heatmap using the Heatmapper program
(http://www.heatmapper.ca (accessed on 27 September 2022)) [50].

3. Results
3.1. Identification of the CHS Genes in Chrysanthemums

Based on the C. nankingense reference genome, 16 nonredundant CHS genes were
identified using the Chal_sti_synt_C and Chal_sti_synt_N domains by querying the C.
nankingense genome database using the HMMER search. The details of gene name, chromo-
somal position, location coordinates, protein information, and cell location are described in
Table S1. This demonstrated that all the CnCHS identified were mapped on 15 scaffolds,
and CnCHS6 and CnCHS7 were located on the same scaffold (utg31268_pilon_pilon). In
addition, the lengths of CHS proteins ranged from 197 to 401 amino acids. The molec-
ular weights ranged from 21,773.13 to 43,864.65 Da, and the pI ranged from 5.17 to 9.46
in chrysanthemums. The prediction of protein subcellular location indicated that only
CnCHS3 was localized in the nucleus. Five CnCHS genes were targeted to the chloro-
plast, and 10 CnCHS genes were targeted to the cytoplasm by calculating the increment of
diversity and finite coefficient of diversity using amino acids.

3.2. Sequence Alignment of Alfalfa MsCHS2 and the CnCHS Identified

Alignment of the amino acids in the alfalfa MsCHS2 and CnCHS revealed that most of
the CnCHS identified contained all previously reported active-site amino acids with four
amino acids, including Cys164, Phe215, His303 and Asn336, and inactive active catalytic
sites of the CHS enzymes (Figure 1). Several active amino acids, including Cys164, Phe215,
or Asn303, were absent in CnCHS2, CnCHS9, and CnCHS12. In contrast, Cys164 and
Phe215 were replaced with other amino acids in CnCHS10. In addition, most CnCHS
sequences also contained malonyl-CoA binding sites and other signature sequences of
CHS enzymes, which are required for the formation of chalcones. These results suggested
that all the CnCHS genes identified have important conserved sequences of the CHS
enzyme, while the amino acid substitutions in different CnCHS genes could lead to their
functional diversity.

http://www.heatmapper.ca
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Figure 1. A comparison of amino acid sequences between alfalfa MsCHS2 and CnCHS. Functionally
important conserved residues are marked with differently colored backgrounds. The four catalytic
residues are highlighted with red. Inactive active catalytic sites are highlighted with yellow. Important
residues that affect the binding pocket volume and the cyclization pocket are highlighted with green.
Malonyl-CoA binding sites and signature sequences are highlighted with blue and gray, respectively.
The amino acids are numbered based on those of alfalfa MsCHS2.

3.3. Phylogenetic Analysis and Classification of CnCHS

To investigate the phylogenetic relationships among the CnCHS genes identified,
we used a neighbor-joining method to construct a phylogenetic tree with 57 amino acid
sequences retrieved from different plants. Based on domains and the features, all these
selected amino acid sequences could be classified into five major groups, namely Groups
I–IV (Figure 2). All the CHS sequences retrieved from A. thaliana, gerbera, petunia, common
morning glory, tomato, and tobacco, but not maize, were distributed in three groups.
Group III contained the largest number of 13 CnCHS genes; Group I contained CnCHS2
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and CnCHS11, and the remaining gene, CnCHS10, was distributed separately in Group II.
A further phylogenetic analysis indicated that CnCHS6, CnCHS7, CnCHS12, CnCHS13,
and CnCHS14 were closely related to GhCHS1 and GhCHS3 that originated from the same
branch, which demonstrated that C. nankingense is the closest relative to gerbera rather than
several other plants.
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Figure 2. Phylogeny of selected CHS genes based on their neighbor-joining distance. AtCHS = Arabidopsis
chalcone synthase, GhCHS = G. hybrid chalcone synthase, PehCHS = petunia chalcone syn-
thase, IpCHS = common morning glory chalcone synthase, SlyCHS = tomato chalcone synthase,
NtCHS = tobacco chalcone synthase, ZmCHS = maize chalcone synthase.

3.4. Gene Structure and Motif Analysis of CnCHS

The conserved motifs of CnCHS proteins were analyzed using MEME program. Ten
conserved motifs (Motif 1–10) were identified in the CnCHS proteins, and each CnCHS
protein contained different numbers of motifs that ranged from 2 to 6. The conserved
motifs 1, 4–7, and 10 were located in the Chal-sti-synt-N domain, while motifs 2, 3, 8, and
9 were located in the Chal-sti-synt-C domain (Figure 3b). Although none of the CnCHS
contained all 10 motifs, all the CnCHS proteins contained the Chal-sti-synt-N and Chal-sti-
synt-C domains. Interestingly, unique motif 10 was only found in CnCHS2 and CnCHS11
that are members of Group I, and the repeated motif was only identified in CnCHS10,
which is a member of Group II (Figure 3a,b). To further investigate the structures, the
intron/exon structures of the CnCHS genes were predicted by an alignment of cDNA
to genomic sequences, and the results were visualized using the Gene Structure Display
Server (GSDS). The number of exons ranged from 1 to 3 among these CnCHS genes, and the
same subfamilies shared similar conserved motifs and intron/exon structures (Figure 3a,c).
Most CnCHS genes had two exons, except for CnCHS3 and CnCHS10, which only had
one exon. CnCHS5 and CnCHS12 had three exons. This suggests that these three CnCHS
genes could have experienced a unique evolutionary process that resulted in them having
different functions.
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3.5. Chromosomal Location and Gene Duplication

To determine the genomic distribution of the CnCHS genes, these CnCHS genes
that were identified were mapped on their corresponding scaffold by searching the re-
leased database of C. nankingense. The results showed that all the CnCHS genes iden-
tified mapped to 15 C. nankingense scaffolds (Figure 4). Segmental duplication analy-
ses of the CnCHS genes indicated that two CnCHS genes were identified as tandemly
repeated, which was attributed to the location of CnCHS6 and CnCHS7 on the same
scaffold utg_31268_pilon_pilon genes with highly homologous amino acid sequences.
In addition, five gene pairs (CnCHS1/CnCHS3, CnCHS6/CnCHS13, CnCHS7/CnCHS13,
CnCHS7/CnCHS14 and CnCHS13/CnCHS14) were found to be involved in segmental re-
peats. They are generally more closely related to each other, with a high similarity, and
shared a similar evolutionary process (Figure 2).

The duplication events over the past several million years are considered as a driving
force for the expansion of many gene families during the evolutionary process. To under-
stand the selective constraints among the CnCHS genes, the Ka and Ks values of five seg-
mental duplications and one tandem duplication were calculated using the KaKs_calculator.
In our study, the Ka/Ks ratios of six CnCHS gene pairs <1, indicating that these genes had
undergone purifying selection at a low evolutionary rate rather than positive selection,
and this selection would eliminate deleterious mutations in chrysanthemums (Table 1).
Moreover, the Ks values were used to calculate the time of divergence of eight gene pairs,
which ranged from 6.06 to 206.14 million years ago (Mya).

Table 1. Calculation of Ka, Ks, and Ka/Ks and the time of divergence of CnCHS gene pairs.

Duplicated Gene Pairs Ka Ks Ka/Ks Duplicated Type Time (Mya)

CnCHS1\CnCHS3 0.03 0.10 0.29 Segmental 7.82
CnCHS6\CnCHS7 0.01 0.10 0.09 Tandem 7.68
CnCHS6\CnCHS13 0.05 2.39 0.02 Segmental 179.24
CnCHS7\CnCHS14 0.01 0.08 0.12 Segmental 6.06
CnCHS7\CnCHS13 0.06 2.73 0.02 Segmental 204.72
CnCHS13\CnCHS14 0.06 2.75 0.02 Segmental 206.14
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3.6. Promoter Region Analysis of CnCHS Genes

Multiple cis-acting elements in the promoters of CnCHS genes are described (Figure 5).
In addition to the core promoter elements, the well-characterized TATA and CAAT boxes,
four categories of cis-regulatory elements, including light responses, hormone responsive,
stress response, and developmental-related elements, were found to be highly represented
in the promoter region of CnCHS genes. A total of 22 types of elements of light-related
responses were abundant in the CnCHS genes (Figure 5a,b). Each CnCHS promoter had
4–10 light-responsiveness elements, while CnCHS2 and CnCHS15 contained more light-
responsiveness elements (Figure 5a), which suggested that they differentially responded
under light compared with the other CnCHS genes. The G-box was commonly found
in the CnCHS genes in greater numbers than any other elements (Figure 5b), which is
a general regulatory element of the responses of plants to environmental stimuli. Mutation
of the G-box had been reported to result in COX5B-2 without the function of responding to
UV-B induction in A. thaliana [47]. A total of 12 types of hormone response elements were
involved in various hormones, such as ABRE, ABRE3a and ABRE4, which were found to
be involved in the response to abscisic acid (ABA). AuxRR-core and TGA-elements were
involved in the response to auxin (AUX). CGTCA and TGACG motifs were involved in
the response to methyl jasmonate (MeJA). The GARE-motif, P-box, and TATC-box were
involved in the response to gibberellin (GA), and the TCA-element was involved in the
response to salicylic acid (SA) (Figure 5a,b). Most CnCHS genes contained ABRE, the
CGTCA motif, TCA element, and TGACG motif, which suggested that AUX, MeJA, and
SA facilitate the expression of CnCHS genes. In addition, ARE responded to anaerobic
induction, and the LTR element responded to low temperature and was ubiquitous in most
of the CnCHS genes promoters. The fourth class of development-related elements consisted
of the CAT-box, Circadian, GCN4_motif, MAS-like, O2-site, and RY-element, which were
involved in meristem expression, cell cycle regulation, zein metabolism regulation, seed-
specific regulation, and cell cycle regulation. In conclusion, these CnCHS genes could be
related to light, hormones, stress responses, and growth pathways, which is inconsistent
with the functions of flavonoids.
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3.7. Analysis of the Expression of CnCHS Genes

To explore the patterns of gene expression of the CnCHS genes in different tissues,
we comprehensively performed the previously reported transcriptome profiling of all the
vegetative tissues, various flower organs, and flower buds of different stages of chrysan-
themum ‘Jinba.’ Among these CnCHS genes, most were minimally expressed in diverse
organs of chrysanthemum ‘Jinba’ (Figure 6). It is notable that CnCHS1, CnCHS2, and CHS15
were expressed at low levels with FPKM values < 1. CnCHS16 was usually silent and was
not expressed in the vegetative tissue and floral organs of chrysanthemum ‘Jinba’. The
FPKM values are shown in Supplementary Table S2. In contrast, several other CnCHS
genes, including CnCHS6, CnCHS7, CnCHS13, and CnCHS14, were expressed at higher
levels in each sample (Figure 6). These four CnCHS genes were identified as tandemly
repeated genes or segmental repeats (Figure 4), which had a close evolutionary relationship
with the GhCHS1 of gerbera (Figure 2). Moreover, CnCHS4 and CnCHS8 were more highly
expressed in the roots than in other tissues. Interestingly, CnCHS10 was expressed at
higher levels in various flower organs and flower buds of different stages than in vegetative
tissues, particularly in the disc floret petals and ray floret pistils. The pattern of expression
suggested that the CnCHS genes play diverse biological functions in different tissues and
developmental phases.
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4. Discussion

A total of 4950 types of CHS belong to a supergene family, and the copy number
of the CHS gene varies substantially among different plants, resulting in diverse func-
tions [51]. CHS is pivotal for the biosynthesis of flavonoid antimicrobial phytoalexins and
anthocyanin pigments. Given the versatility of the CHS genes, a comprehensive identi-
fication and functional validation of the CHS family are expected to enrich databases in
the field of chrysanthemum flower development and pigment metabolism. In this study,
16 chrysanthemum CHS genes were identified with the Chal_sti_synt_C (PF00195) and
Chal_sti_synt_N (PF02797) domains (Figure 1), and their sequences were highly homolo-
gous to the well-characterized CHS from alfalfa. Although the CHS enzyme is encoded
as a single copy in A. thaliana and nearly all taxa [20], it is considered that gene duplica-
tions and segmental repeats have led to the wide expansion of the gene family during
the evolutionary process [52,53]. In general, the CHS enzyme is typically encoded by
a gene family in plants. For example, a family of 3 GCHS genes has been found in gerbera,
6 CHS genes were identified in common morning glory [51], and at least 8 or 10 complete
CHS genes were cloned and sequenced from petunia [13]. The genome of C. nankingense
has gone through multiple evolutionary mechanisms, such as whole-genome duplication
(WGD) or polyploidization and locally repetitive genome expansion [28]. As a result,
1 tandemly repeated gene and 5 gene pairs of segmental duplication events were found
among the 16 CnCHS genes (Figure 4). That suggested that segmental duplication could be
the dominating contributor for a gene family of 16 CHS genes in C. nankingense.

All the CnCHS genes identified could be broadly classified into three major classes
based on sequence alignment and an analysis of phylogenetic relationships (Figures 1 and 2).
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Furthermore, the motif distribution and gene structure of the CnCHS genes were similar
in the same subgroup, which resulted in a conserved evolution shared in some CnCHS
genes (Figure 3). Moreover, the conserved motifs 1, 4–7, and 10 represented the Chal-sti-
synt-N domain, while motifs 2, 3, 8, and 9 comprised the Chal-sti-synt-C domain. The
catalytic triad of CHN is considered to be very important for the catalytic function and was
distributed in each CnCHS gene identified. That indicated that the catalytic triad inherited
from the KAS III ancestor is highly conserved in all the CnCHS genes. All the CnCHS genes
contain the CHS family-specific Pro375 (Figure 3), which also indicates their conserved
evolution, although there are several substitutions at positions Phe215 and Phe265, which
probably resulted in a different choice of the substrate. These substrates are connected with
CoA binding. Importantly, the sequence alignment of these identified CnCHS genes with
those of MsCHS were highly similar, which suggests that the CHS family is conserved in
different species. In addition, the analysis of gene structure further proved the phylogenetic
analysis. It also supported the hypothesis that the CnCHS genes were highly conserved
during the evolutionary process. In addition, most CnCHS genes contain two exons and
one intron, which is consistent with the previously proposed structure that is composed
of two exons and one intron in maize [14]. It also proved the conservation of CHS among
different plants.

In our study, CnCHS6 and CnCHS7 were identified as tandemly repeated, as well as
five gene pairs that were found to be involved in segmental repeats (Figure 4). A previous
study suggested that a whole-genome triplication (WGT1) occurred ~57 Mya, and the most
recent WGD occurred ~5.8 Mya in the genome of C. nankingense, except for the ancestral
palaeohexaploidy (WGT-γ) event that occurred 122–164 Mya in all eudicots [27]. In general,
tandem duplications contribute to generate new genes and diverse functions, such as
the WGD event, which led to an enhancement in photosynthetic capacity, improved the
productivity with respect to biomass, and resulted in differentially transcribed genes in
chrysanthemums based on a comparison between the diploid and tetraploid forms of C.
nankingense [15]. However, segmental duplications tend to disperse gene copies that result
in the slow evolution of genes. In this study, the presence of segmental duplications among
these CnCHS genes indicates that the chrysanthemum CHS gene family is conserved and
slowly evolving.

The patterns of gene expression are an important reflection of gene function, and genes
with common features that possess a common origin are likely to possess a similar pattern
of expression [54,55]. Along with multiple functions of CHS genes, the expression of these
genes can change under specific environments or is specific to an organ or developmental
stage. In this study, the transcription profiles of chrysanthemums revealed that the levels
of gene expression were highly diverse among tissues and in different developmental
periods. Most of the CnCHS gene family members were poorly expressed in most tissues;
in contrast, several CnCHS genes, designated CnCHS6, CnCHS7, CnCHS13, and CnCHS14,
had a higher level of expression in various tissues (Figure 6). Several CnCHS genes
exhibited variable patterns of expression that suggest that functional diversification took
place among these CnCHS genes. The result of separately knocking down GhCHS1 and
GhCHS4 in gerbera inflorescences by virus-induced gene silencing (VIGS) showed that only
GhCHS1 was contributing to flavonoid biosynthesis [12]. A phylogenetic analysis showed
that these four CnCHS genes had a close evolutionary relationship with the GhCHS1 of
gerbera (Figure 2). Moreover, flavonoids were isolated and identified in the roots, stems,
leaves, and flowers of chrysanthemum [56]. It has been deduced that CnCHS6, CnCHS7,
CnCHS13, and CnCHS14 are involved in flavonoid biosynthesis in chrysanthemum but
were irrelevant to the synthesis of anthocyanidins. Our analysis of the pattern of expression
indicated that CnCHS4 and CnCHS8 had a higher level of expression in roots that could play
a role in biological processes related to the roots. In addition, CnCH10 is expressed at
higher levels in various flower organs, particularly in disc floret petals and pistils than
in vegetative tissue. Due to CHS genes expressed in both ray florets of a pink flowering
(cv. H5) and two white flowering (cvs. Keikai and Jinba) Chrysanthemum grandiflorum
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cultivars, Chen et al. [57] suggested that the higher expression of CHS did not contribute to
anthocyanin accumulation. Jo et al. [23] also suggested that the transcriptional regulation
of the flavonoid biosynthetic pathway did not cause flavonoid accumulation. However,
GCHS1 is an essential gene for pigmentation formed in gerbera petals, and silencing of
GCHS1 expression resulted in petals turning to white [12]. In Asiatic hybrid lily (Lilium
spp.) cultivar Lollypop, which develops bicolor tepals with pigmented tips and white
bases, the expression of CHS genes expressed higher in pigmented tepal parts than those in
nonpigmented parts [58]. The expression of CHS genes was similar in two Asiatic hybrid
lily cultivars, ‘Montreux’ (pink tepals with spots) and ‘Connecticut King’ (yellow tepals
without spots). The expression of three CHS genes was not detected in unpigmented leaves,
stems, and white bulb scales, but it was detected in bulb scales in which anthocyanin
pigmentation had been induced [59]. Moreover, in flower organs, three CHS genes were
expressed in the anthocyanin-pigmented tepals, filaments, and pistils of ‘Montreux.’ In
unpigmented filaments and pistils of ‘Connecticut King,’ the pigmented anthers only
accumulated LhCHSC mRNA in both cultivars. It was concluded that the expression
of CnCH10 is involved in the distinct pigmentation pattern in flower organs. Moreover,
many genes exhibited similar patterns of expression, which could in turn catalyze similar
substrates in the same biochemical pathway. Although our expression-profiling analyses
provide important information to study the function of the CnCHS gene family in flavonoid
biosynthesis and the anthocyanidin synthesis of chrysanthemum, further experiments are
required to confirm the function of these CnCHS genes that have been identified.

5. Conclusions

CHS is a key enzyme in the synthetic process of flavonoids. We identified and analyzed
the features of expression of 16 CnCHS genes (CnCHS1–16) from C. nankingense to explore
their potential functions. The result of gene structures, evolutionary patterns, and the
profiles of expression of these CnCHS genes identified suggest that the CnCHS gene is
conserved and slowly evolving, but the specific genes function differently during evolution.
According to our systematic analysis, CnCHS6, CnCHS7, CnCHS13, and CnCHS14 are
probably involved in flavonoid biosynthesis in chrysanthemum rather than anthocyanidin
synthesis. In contrast, CnCH10 is likely to be involved in a distinct pattern of pigmentation.
Our study extends the knowledge of CnCHS genes and will contribute to research about the
molecular evolution, expression, and regulation of these genes. More functional analysis
will need to be conducted to further characterize the exact functions of these CnCHS genes
identified in C. nankingense.
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