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Abstract: Systems genetics is key for integrating a large number of variants associated with diseases.
Vitamin K (VK) is one of the scarcely studied disease conditions. In this work, we ascertained the
differentially expressed genes (DEGs) and variants associated with individual subpopulations of VK
disease phenotypes, viz., myocardial infarction, renal failure and prostate cancer. We sought to ask
whether or not any DEGs harbor pathogenic variants common in these conditions, attempt to bridge
the gap in finding characteristic biomarkers and discuss the role of long noncoding RNAs (lncRNAs)
in the biogenesis of VK deficiencies.

Keywords: RNA-Seq; vitamin K; comorbidities; differentially expressed genes; variant analysis

1. Introduction

The next-generation sequencing (NGS) technologies paved the way for systems ge-
nomics [1]. As NGS has provided a scope for understanding novel biological mechanisms
and the molecular underpinning of complex diseases, thorough genomic and transcriptome
analyses are needed [2]. With RNA-Seq being used for investigating the dynamic nature of
the cell’s transcriptome, which is the component of the genome that is actively translated
into RNA molecules, researchers are able to predict when and where genes are turned
on or off in a range of cell types/situations. As the number of biological samples investi-
gated using RNA-Seq analysis expands, the community has developed a wide range of
bioinformatics tools to meet specific demands with highly optimized pipelines for further
downstream processing [3]. There are a multitude of advantages of analyzing transcrip-
tome data; for example, finding genomic features such as gene and transcript expression,
miRNAs and non-coding RNAs (long noncoding RNAs, and small RNAs), in addition to
predicting variants or mutations in the form of novel isoforms and SNPs (SNVs or indels)
with sufficiently high expression levels.
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In the recent past, blood disorders have been well studied using RNA-Seq, as, for
example, [4] studied the potential gene expression difference in acute respiratory distress
syndrome (ARDS) using hematopoietic stem cell transplantation, which implies differences
in immune response and interferon signaling pathways. Zheng et al. recently provided a
genome-wide analysis comparing the RNA-Seq data from hemorrhoidal diseases [5]. Of
late, single-cell transcriptomic strategies have just begun to be understood and are being
used to study various disease phenotypes, such as in [6,7], to mention a few. However, vita-
min K (VK) deficiency is not studied extensively, and thus, the genome-wide transcriptome
profiles are not known. There are, indeed, associated VK phenotypes such as thrombosis,
thrombocytopenia, myocardial infarction, renal failure and prostate cancer, which are used
to ascertain the differentially expressed gene (DEG) profiles [8]. Furthermore, calling the
somatic or germline variants after the DEG profiles are checked could be a holistic measure
for screening and characterizing biomarkers. Our study attempts to fill this gap wherein
we have used myocardial, prostate cancer (both from the Sequence Read Archive) and renal
(in-house) datasets and checked for the DEG profiles and candidate mutations associated
with VK deficiency. We discuss the impending effects of the role of DEG profiles in the
context of VK and associated deficiencies.

2. Materials and Methods
2.1. Datasets

The myocardial data comprise the strand-specific RNA-Seq dataset for both cod-
ing and noncoding RNA profiling from 28 hypertrophic cardiomyopathy (HCM) pa-
tients and 9 healthy donors [9]. For our analysis, we considered three control and three
treatment samples from this study, obtained through the Sequence Read Archive (SRA:
ncbi.nlm.nih.gov/sra, accessed on 9 June 2022). The following myocardial samples were
taken: SRR8586402; SRR8586407; SRR8586429 (control) and SRR8586409; SRR8586423;
SRR8586431 (treated). In addition, we used data from the complete transcriptome landscape
of prostate cancer (PCa) using RNA-Seq from another study [10]: ERR031017; ERR031029;
ERR031031 (control) and ERR031018; ERR031030; ERR031032 (treated), which we also
compared with our own PCa datasets from our lab (PRJNA616165). Finally, the renal
datasets were divided into three groups: rejection time point, well-functioning rejection
matched, and post-therapy (PRJNA854340). There were four patients in the test group
(R2, R4, R5 and R6), all of whom received post-therapy (R2_pt, R4_pt, R5_pt and R6_pt),
and three patients in the control group who were in good health; without renal failure is
abbreviated as WF (WF2, WF4 and WF6). All samples were analyzed using paired-end
datasets, supplementing three of each pair of datasets (Supplementary Table S1).

2.2. RNA Sequencing Analysis, Statistics and Validation

The reads were checked for quality using FastQC [11], followed by HISAT2 [12,13],
which was used to align them to the human genome (GRCh38 assembly). A Cufflinks-
Cuffdiff pipeline was employed to find significant changes at the level of transcript expres-
sion, splicing and promoters [14], which was later benchmarked in our lab and used to
run through the workflow [15]. As Cufflinks treats each pair of fragment reads as a single
alignment, there is always an optimal amount of time and energy saved. With an “overlap
graph”, each of the largest sets of reads originating from the same isoform results in a
minimal set of fragments, and this determines the transcript abundances using a statistical
model [16] (Figure 1).

RNA-Seq reads were trimmed, but there was no significant reduction in size; further
aligned reads were processed to generate SAM, BAM and sorted BAM files through a cohort
of tools. As the DEG analysis primarily relies on paired samples, we checked paired-end
reads, i.e., control vs. treated in case of the myocardial, prostate and renal datasets. The
resulting tables were filtered (after ensuring the Cufflinks pipeline was used with the -g
option to check for novel isoforms) by p- and q-values of ≤0.05 and ≥2 log2-fold-change ≤2,
respectively. The output BAM files were subjected to the consensus mapping of SNPs
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with different tools such as SAMtools [17,18], VarScan [19], FreeBayes [20], Vt [21] and
GATK [22], using the default parameters such as the number of criteria, including coverage,
read counts, p-value, variant allele frequency, base quality and the number of strands on
which the variant was observed [23]. The filtered variants were then compared with the
ClinVar database. FreeBayes is a haplotype-based and Bayesian genetic variant detector
which calls variants based on the reads aligned to a target, but not necessarily with their
precise alignment. It can find SNPs, indels and multi nucleotide polymorphisms (MNPs) in
addition to complex events such as composite insertion and substitution events [20]. To
check this, we used a myriad of variant calling tools to screen and reach a consensus; for
example, Vt was used to identify short variations in the NGS data [21], whereas VarScan,
on the other hand, approaches variant detection by aligning the map to multiple locations
even as it screens the unique mapped reads for substitutions and indels, thereby detecting
multiple reads and converting them into unique SNPs/indels while also determining the
total number of reads supporting each allele (reference and variant).
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2.3. Clustering Coefficient Network Analysis Using cytoHubba

The proteins showing significant changes and interacting between all three different
datasets were used to build a gene interaction network using STRING-db, and later were
visualized using String [24] and Cytoscape v 3.9.1 [25]. The network was checked for the
top-ranking genes built using the expression correlation plugin with a 0.95 correlation as
the cut-off value. The cluster IDs for proteins showing similar abundance values as defined
in the hierarchical clustering were used to annotate the network to reveal relationships
between the different protein groups. Finally, the network analyzer, cytoHubba, was used
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to define the network measures [26]. A lower contrast (faded yellow/orange) means the
rank is lower and a bigger contrast (red/maroon) indicates the rank is greater. We further
evaluated the efficacy of network genes for betweenness, closeness, clustering coefficients
and stress centrality for the top 10 DEGs. The most common lncRNA and a variant of
uncertain significance (VOUS) were checked for the disease phenotypes and the lncRNA
was quantitatively measured in our samples by using an RT-PCR for validation.

3. Results

Significant DEGs associated with blood disorders were commonly identified across
the myocardial, renal and prostate datasets. Between the control and treatment myocardial
datasets, apolipoprotein D (APOD ENSG00000189058) was found to be upregulated in the
first set (Sc5-LV and HCM515) and downregulated in the other (ND2 and HCM273). It
encodes a component of a high-density lipoprotein and shares many similarities with the
plasma retinol-binding protein [27]. This glycoprotein has associations with the lipoprotein
acyltransferase enzyme lecithin:cholesterol acyltransferase. Breast cysts and androgen
insensitivity syndrome (AIS) are two diseases linked to APOD due to cholesterol and
sphingolipids being transported/recycled to plasma membranes in the lung (normal and
CF), and the transport of glucose and other sugars, bile salts and organic acids; metal ions;
and amine compounds are the other associated pathways. CD163 (ENSG00000177575) is
downregulated in both myocardial datasets, and is a member of the scavenger receptor
cysteine-rich (SRCR) superfamily of scavenger receptors known to be associated with
monocytes and macrophages [28]. The gene serves as an acute phase-regulated recep-
tor that helps macrophages remove hemoglobin/haptoglobin complexes and endocytose
them, potentially protecting tissues from free hemoglobin-mediated oxidative damage.
The protein-encoding gene was shown to act as a bacterial innate immune sensor and a
local inflammatory inducer [28]. Furthermore, it is associated with multisystem inflam-
matory syndrome and histiocytic sarcoma in children. The binding and uptake of ligands
by scavenger receptors, hematopoietic stem cells (HSCs) and lineage-specific markers
are two mechanisms linked with it. Interestingly, we found a processed pseudogene
(ENSG00000274295) that is associated with polymerase (DNA Directed), epsilon 2 and the
accessory subunit (POLE2) in these datasets (Figure 2; Supplementary Tables S1–S4).

Two genes are common between the Sc5-LV/HCM515 and ND2/HCM273 of the my-
ocardial datasets: COL1A1, which codes for the collagen type I α-1 chain (ENSG00000108821),
is downregulated in the first dataset and upregulated in the third set; the pro-alpha1 chains
of type I collagen, which have two α-1 chains and one α-2 chain, are encoded by this
gene. Type I collagen forms fibrils and is found in most connective tissues, including bone,
cornea, dermis, and tendon. Osteogenesis imperfecta types I–IV, Ehlers–Danlos syndrome,
classical type VIIA, Caffey disease, and idiopathic osteoporosis are all linked to mutations
in this gene. Reciprocal translocations between chromosomes 17 and 22 are where genes for
platelet-derived growth factor β are located and linked to dermatofibrosarcoma protuber-
ans, a type of skin tumor caused by uncontrolled growth factor expression. Two transcripts
have been found as a result of the application of alternative polyadenylation signals. The
binding and uptake of ligands by scavenger receptors, as well as VEGFR3 signaling in the
lymphatic endothelium, are two linked processes. We also found a significant number of
downregulated DEGs in the form of fibroblast growth factor 12 (FGF12; ENSG00000114279),
which are associated with the activation of apoptotic and synovial fibroblast pathways
regulating a number of biological processes, including embryonic development, cell growth,
morphogenesis, tissue repair, tumor growth and invasion, and have extensive mitogenic
and cell survival functions. Although it lacks the N-terminal signal sequence seen in the
majority of FGF family members, it does include clusters of basic residues that have been
shown to behave as a nuclear localization signal. This protein accumulated in the nucleus
but was not secreted when transfected into mammalian cells. What remains interesting is
that CPNE5 (ENSG00000124772), which encodes a calcium-dependent protein, is downreg-
ulated in all three datasets of myocardial function. It harbors an integrin A domain-like
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sequence in the C-terminus and may regulate molecular events at the interface of the cell
membrane and cytoplasm, and is shown to have several alternatively spliced transcript
variants encoding isoforms (see Supplementary Table S3).
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in all three, myocardial, renal and prostate data.

Three genes, AMACR (ENSG00000242110), PCAT14 ((ENSG00000280623) prostate
cancer-associated transcript 14), and LTF (lactotransferrin) are frequently compared in
studies of prostate data. AMACR (α-methylacyl-CoA racemase) is upregulated in the first
two CA prostate datasets only when the latter dataset did not yield any significant DEGs. In
addition, various transcript variants with alternative splicing have been identified, such as
C1QTNF3 (C1q and tumor necrosis factor-related protein 3), which is known to cause a bile
acid synthesis defect; congenital; 4 (Supplementary Table S3). As LTF (ENSG00000012223) is
downregulated in both sets, it is largely associated with cellular growth and differentiation
regulation, cancer formation, and metastasis. It has been recently discovered to have activity
against both DNA and RNA viruses, including SARS-CoV-2 and HIV [29]. The two common
genes of OLFM4 (ENSG00000102837) and MMP8 (ENSG00000118113) were downregulated
in renal WF2-WF4 and upregulated inWF6-WF2. OLFM4 is a novel prognostic predictor
as well as therapeutic target for hepatocellular carcinoma [30]. One common lncRNA
of OVCH1-AS1 (ENSG00000257599) is upregulated in WF4–WF6 and downregulated in
WF6–WF2 (Supplementary Tables S1–S4).
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4. Discussion
4.1. NONHSAT106693 among Significantly Enriched Genes

One of the favorite candidate DEGs that is often sought is lncRNAs, and what
remains compelling is the list of lncRNAs that were upregulated and downregulated
across the three datasets. Among them, ENSG00000260604 (lncRNA) is upregulated
in both datasets, whereas ENSG00000276980 (intronic complement component 3—C3)
and ENSG00000287891 are downregulated. ENSG00000260604 is 1357 nucleotides long
(GeneCards, Ensembl, LNCipedia, and Ensembl/GENCODE) and is a well-annotated candi-
date, with the sense-intronic C3 sequence forming a product of the genes ENSG00000276980.1,
ENSG00000276980 and lnc-GPR108-3 [31]. On the other hand, C3 (ENSG00000125730)
and LINC02208 (ENSG00000250891) are downregulated in the latter two datasets, as this
helps activate the complement system, and the encoded preproprotein is proteolytically
processed [32]. Mutations related to this gene are linked to atypical hemolytic uremic
syndrome and age-related macular degeneration. The deficiency leads to autosomal reces-
sive and hemolytic uremic syndrome and is widely associated with immune responses,
in addition to the lectin-induced complement pathway and peptide ligand-binding recep-
tors. Furthermore, LINC02208 is expressed in tissue samples of the heart [33], even as
ENSG00000287891, which is also identified as a novel lncRNA, is downregulated in the
latter two myocardial datasets.

Interestingly, a novel lncRNA (ENSG00000285534) is downregulated in both sets of R2-
R2_pt and R4-R4_pt, whereas CXCL8 (C-X-C motif chemokine ligand 8 (ENSG00000169429)),
which is associated with melanoma and bronchiolitis is downregulated in R5-R5_pt and
upregulated in R6-R6_pt. They aid in immune response CCR3 signaling in eosinophils and
cytokine signaling, and produce a protein that belongs to the CXC chemokine family (en-
coded by IL-8), a key mediator of the inflammatory response. Mononuclear macrophages,
neutrophils, eosinophils, T lymphocytes, epithelial cells and fibroblasts all produce IL-8,
which acts as a chemotactic factor, directing neutrophils to the infection site. In addition to
participating in the proinflammatory signaling cascade with other cytokines, it may be likely
that the overproduction of such proinflammatory proteins are assumed to be the source of
the cystic fibrosis-related lung inflammation which may contribute to coronary artery dis-
ease and endothelial dysfunction. Tumor cells release this protein, which promotes tumor
motility, invasion, angiogenesis and metastasis. This chemokine also has angiogenic proper-
ties. Higher levels of IL-8 are positively connected with the increased severity of numerous
illness outcomes, and IL-8 binding to one of its receptors (IL-8RB/CXCR2) enhances blood
vessel permeability (e.g., sepsis). On the other hand, LEF1 (ENSG00000138795) is upregu-
lated in both datasets (R5 and R6) and three other genes, viz., G0S2 (ENSG00000123689),
HSD11B1 (ENSG00000227591) and PTGS2 (ENSG00000073756), were commonly down-
regulated in the R4 and R5 sets. G0S2 (G0/G1 Switch 2) is a protein-coding gene located
in the mitochondria involved in the extrinsic apoptotic signaling pathway, which plays a
role in the positive regulation of the extrinsic apoptotic signaling pathway regulating Van
der Woude syndrome. HSD11B1 (ENSG00000227591), or more specifically, HSD11B1-AS1
(HSD11B1 antisense RNA 1), is a lncRNA and is associated with the cortisone reductase
deficiency. Besides this, the genes POSTN (ENSG00000133110); EPDR1 (ENSG00000086289);
and SFRP4 (ENSG00000106483) were upregulated in the third set of myocardial data and
upregulated in the second set of prostate data. Periostin is a secreted protein that in-
duces cell attachment and spreading; plays a role in cell adhesion; and its differential
expression is known to regulate T2-high asthma, myocardial-infarction-regulating heparin
binding and cell-adhesion molecule binding [34]. LTF (ENSG00000012223) is downregu-
lated in the second set of prostate and treated renal data (WF2-WF4), with a novel lncRNA
NONHSAT106693 (ENSG00000287903) shown to be upregulated in the third set of myocar-
dial data and upregulated in the treated renal data.
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4.2. Heatmaps Showed Distinct Gene Expression Profiles with a Variance in Principal Components

When dealing with multivariate data, using a matrix in high-throughput experiments
for ascertaining gene expression patterns is of considerable interest. From the varied
datasets, we have attempted to identify the transcriptome expression by comparing the
control and treated datasets to check their variance (Supplementary Figures S1 and S2).
Overall, we obtained 392 DEGs, of which 172 genes were upregulated and 220 genes
were downregulated (Supplementary Table S3). In myocardial datasets, 10 genes were
upregulated when comparing the first datasets (Sc5-LV and HCM515), whereas 6 genes
were upregulated and 28 genes were downregulated in the second datasets and 28 genes
were upregulated and 24 genes were downregulated in the third datasets (N102_LV and
HCM506). Among the prostate data, 14 genes were upregulated in the first datasets (10N
and 10T), 34 genes were upregulated in the second datasets (2N and 2T) and there were no
significant DEGs found in the third datasets (3N and 3T). In comparing renal datasets, the
test group and post-therapy group were analyzed, of which 9 genes were upregulated and
31 genes were downregulated in the first datasets (R2 and R2_pt); 7 genes were upregulated
and 30 genes were downregulated in the second datasets (R4 and R4_pt); 13 genes were
upregulated and 21 were downregulated in the third datasets (R5 and R5_pt); and 19 genes
were upregulated and no genes were downregulated in the fourth datasets (R6 and R6_pt).
The results of the control group include 9 genes that were upregulated in the first datasets
(WF2 and WF4); 4 genes that were upregulated and 11 genes that were downregulated in
the second datasets (WF4 and WF6); and 19 genes that were upregulated and 1 gene that
was downregulated in the third datasets (WF6 and WF2).

4.3. CytoHubba Yielded Top Niche Ranks with Variant Analysis Showing No Mutations Attributed
to DEGs

We sought to ask whether the common DEGs form top niche ranks in all three datasets.
To check this, we imported the network of DEGs (Figure 3A) into Cytoscape and visualized
all other networks, such as closeness, betweenness, stress and clustering genes, in cyto-
Hubba. The network with the top 10 genes yielded a rank list indicating the top niche genes
associated through the clustering coefficient. Although the color indicates the score of the
genes interacting in the network, we found that among the top-ranking genes, four DEGs
are known to be associated with VK deficiency (Figure 3B). COL1A2 (α-2 type I collagen) is
one of the profibrotic genes that expresses osteocalcin in the liver [35] and is also used as
a marker of cardiac fibrosis [36]. POSTN (periostin) is one of the VK-dependent proteins,
which is majorly involved in hematopoiesis [37], myocardial infarction, fibrosis and bone
health [38]. SFRP4 (secreted frizzled-related protein 4) is involved in bone mineral density,
which is related to osteoporosis [39]. The EPDR1 (ependymin-related 1) gene produces a
type II transmembrane protein that is related to the protocadherins and ependymoma, two
families of cell-adhesion molecules. This protein may have a role in calcium-dependent cell
adhesion, according to gene expression studies in brain tissue [40]. LTF (lactotransferrin)
has been found to have an effect on host immunological responses and has a potential
antagonistic pleiotropy, suggesting that it may be protective against caries in addition
to being predisposed to localized aggressive periodontitis [41]. The above comorbidities
are related, and hence, these four genes are considered the hub genes associated with VK
deficiency. With this proposition, we determined the extent of lncRNAs in the network, and,
as a result, we could plot the lncRNA top-ranking DEGs as well (Figure 3C; Supplementary
Table S4). Taken together, we found NONHSAT106693 to be a novel lncRNA with a large
expression in the testis, indicating that it could be associated with all three, viz., VK, renal
and PCa (FPKM/TPM: 0.14; Figure 3D). We have reconfirmed the expression in vivid
samples of VK in-house (data shown).
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Figure 3. (A) The network illustrates the interaction between the differentially expressed genes in all
three datasets (myocardial, prostate and renal), and it was constructed with GeneMANIA. (B) The
network image represents the clustering coefficient of common DE genes from all three datasets.
The image was generated with cytoHubba. (C) The top ranks of lncRNAs in clustering coefficient
networks. (D) The graph shows the tissue expression of common novel lncRNA, and it is generated
with the NONCODE database.

4.4. Variants of Unknown Significance

The variants called from these DEGs were further compared with five different tools:
VarScan, SAMtools, FreeBayes, Vt and GATK. To check whether any DEGs harbor the
pathogenic variants, we compared ClinVar pathogenic variants of VK with a list of a
significant number of variants (Supplementary Table S2). Among them, 37 variants were
found to have a match with the ClinVar data, which were associated with CFTR, ESR1,
GGCX, ATP8B1, VWF, GLA and F8. Although CFTR (chr 7) has been afflicted in both
myocardial (rs397508397) and prostate control (rs75789129) samples from SAMtools and
Vt, ESR1 was shown to be seen in both the renal control and treated samples, and the F8
was seen only in the myocardial treated samples. On the other hand, rs563109158 (T > C)
was found in the gene GGCX, which is an extremely rare variant of uncertain significance;
it was found to be common in all the three sets, implying that this is predisposed in an
ostensibly large population (C = 0.000318/6 (ALFA)/C = 0./0 (TWINSUK)/C = 0.000223/1
(Estonian)/C = 0.000404/107 (TOPMED)/C = 0.000407/57 (GnomAD)/C = 0.000519/2
(ALSPAC)/C = 0.001002/1 (GoNL)). This was further considered as a candidate for the
classification of disease prevalence and penetrance estimates and was, therefore, classified
as a variant of unknown significance (VOUS). Taken together, none of the DEGs seem
to be commonly enriched from our prostate RNA-Seq datasets screened in-house (data
unpublished). This VOUS was common, particularly in the control sets (Sc5-LV; ND2)
and the myocardial treated set (HCM506); the control set of 2T and the treated set of
3T in prostate samples; the test group of R4, R5 and R6 and the post-therapy group of
R4_pt and R5_pt; and the control group of WF2 in Renal datasets. This indicates that it
is found across different phenotypes. The interpretation was reported as the uncertain
significance and the variant condition was identified as VK-dependent clotting factors
combined with the deficiency of type 1 with no citations found in ClinVar, and therefore,
we have validated the finding using Sanger sequencing from our PCa/VK cohort ). The
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other genes, ATP8B1, GGCX, GLA and VWF, were identified in all three control and treated
samples as the identified results were taken for further analysis of molecular docking and
simulation studies.

5. Conclusions

Vitamin K (VK) plays an important role in human metabolism. In this work, we inves-
tigated whether any common DEGs were significantly enriched among various datasets
and, if so, whether or not the variants in them are noteworthy for VK disease phenotypes,
viz., myocardial, renal and prostate cancer. Although we found a large number of lncRNAs
among the DEGs, NONHSAT106693 was found to be a significantly enriched lncRNA
across the renal and myocardial datasets, implying that it plays an important role in atyp-
ical hemolytic uremic syndrome and age-related macular degeneration. Our work also
emphasizes the role of variants of unknown significance (VOUS) in these phenotypes,
especially the common variant, viz., rs563109158, seen in GGCX, which is associated with
VK-dependent clotting factors. There is room for analyzing more datasets associated with
VK, coagulation and blood disorders, which would set a precedent in screening pathogenic
and, perhaps, unique variants/VOUSs as the downstream analysis and development of
NGS panels for rare blood disorders and VK deficiencies are on the rise.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13112078/s1, Figure S1: Heatmaps and transcriptome
expression profiles of control and treated datasets; Figure S2: Principal Components of control and
treated datasets; Table S1: RNA-Seq datasets from SRA Database; Table S2: List of Variants from three
datasets; Table S3: DEGs across three datasets; Table S4: Upregulated/downregulated genes and
analysis of lncRNAs; supplementary information: qRT-PCR validation.
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