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Abstract: Human epidermal growth factor receptor 2 (HER2) receptor tyrosine kinase is overex-

pressed in 20–30% of breast cancers and is associated with poor prognosis and worse overall patient 

survival. Most women with HER2-positive breast cancer receive neoadjuvant chemotherapy plus 

HER2-targeted therapies. The development of HER2-directed therapeutics is an important advance-

ment in targeting invasive breast cancer. Despite the efficacy of anti-HER2 monoclonal antibodies, 

they are still being combined with adjuvant chemotherapy to improve overall patient outcomes. 

Recently, significant progress has been made towards the development of a class of therapeutics 

known as antibody-drug conjugates (ADCs), which leverage the high specificity of HER2-targeted 

monoclonal antibodies with the potent cytotoxic effects of various small molecules, such as tubulin 

inhibitors and topoisomerase inhibitors. To date, two HER2-targeting ADCs have been approved 

by the FDA for the treatment of HER2-positive breast cancer: Ado-trastuzumab emtansine (T-DM1; 

Kadcyla®) and fam-trastuzumab deruxtecan-nxki (T-Dxd; Enhertu®). Kadcyla and Enhertu are ap-

proved for use as a second-line treatment after trastuzumab-taxane-based therapy in patients with 

HER2-positive breast cancer. The success of ADCs in the treatment of HER2-positive breast cancer 

provides novel therapeutic advancements in the management of the disease. In this review, we dis-

cuss the basic biology of HER2, its downstream signaling pathways, currently available anti-HER2 

therapeutic modalities and their mechanisms of action, and the latest clinical and safety character-

istics of ADCs used for the treatment of HER2-positive breast cancer. 
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1. Introduction 

Breast cancer is the most common cancer among American women and is the second 

leading cause of cancer-related deaths in women worldwide [1]. Breast cancer is a heter-

ogeneous disease that can be classified into four molecular subtypes based on cell-surface 

receptor expression: Luminal A, Luminal B, human epidermal growth factor receptor 2 

(HER2)-positive, and triple-negative breast cancer (TNBC); each of these breast cancer 

subtypes has distinct characteristics, epidemiology, responses to therapy, and prognoses 

[2–4]. Luminal A and B subtypes of breast cancer are the most prevalent subtypes. Lu-

minal A breast cancer expresses both estrogen receptors (ER) and progesterone receptors 

(PR), while Luminal B tumors expresses ER but may or may not express PR [4–7]. In ad-

dition to hormone receptors, Luminal B breast cancer may also express HER2 receptors 

[5,6,8]. HER2-positive breast cancers are mainly characterized by overexpression of HER2 

and they are considered the second most aggressive subtype [3,4]. TNBC does not express 
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either ER, PR or HER2; it is considered to be the most aggressive subtype of breast cancer 

[3,4,8]. 

Approximately 20–30% of breast cancer patients have an amplification and/or over-

expression of HER2, which is associated with poor prognosis and short overall survival 

[9–11]. Thus, HER2 became an optimal target in the therapeutic intervention and manage-

ment of HER2-positive breast cancers, and in the development of targeted therapeutics. 

In the early to mid-1990s, a humanized monoclonal antibody (mAb), trastuzumab, was 

developed to directly bind to the HER2 protein preventing downstream signaling [12–14]. 

Due to the overwhelming response in HER2-positive breast cancer patients, trastuzumab 

received FDA approval for the treatment of HER2-positive breast cancer as an adjuvant 

first line therapy in 1998 [15]. The development of trastuzumab remains one of the most 

significant advancements in the treatment of HER2-positive breast cancer and dramati-

cally influenced the therapeutic modalities for patients with HER2-positive breast cancer. 

Subsequently, a variety of HER2-targeting agents including mAB pertuzumab and small 

molecule inhibitors, such as lapatinib and neratinib, were later approved for the treatment 

of HER2-positive breast cancer [16–18]. Overall, HER2-targeting agents are associated 

with improved response rate (RR), progression free survival (PFS), and overall survival 

(OS) [19–21]. 

Despite the availability of HER2-targeting agents, approximately 5.8–8.6% of HER2-

positive patients relapse due to acquired therapeutic resistance to anti-HER2 mAb [22–

24]. In order to overcome this therapeutic resistance and to achieve maximal antitumoral 

activity, anti-HER2 mAbs are being augmented with taxane-based cytotoxic chemothera-

pies creating the foundation for a series of smart chemotherapeutics now known as anti-

body-drug conjugates or ADCs. ADCs combine the tumor specificity of mAb and the cy-

totoxicity of small molecule chemotherapeutics into one single pharmaceutical entity. The 

development process of ADCs is long and complex, extending the period from the pro-

posal of the ADC design to the approval of the first ADC to over 100 years [25,26]. ADCs 

have created a new era of targeted therapy that greatly improves the prognosis of breast 

cancer patients [27–31]. Two anti-HER2 ADCs, ado-trastuzumab emtansine (T-DM1; 

Kadcyla®) and fam-trastuzumab deruxtecan-nxki (T-DXd; Enhertu®) are approved as ad-

juvant therapies and rescue treatments for patients with HER2-positive breast cancer, and 

most recently HER2-low breast cancer [32–34]. To date, several ongoing clinical trials as-

sess efficacy of ADCs in the treatment of breast cancer and other solid tumors (discussed 

later), highlighting the overall potential of ADCs as promising treatment options against 

cancer [35]. This review covers the basic biology behind the structure and mechanism of 

action of ADCs, summarizes the advantages ADCs have in overcoming therapeutic re-

sistance, discusses the metabolic profile of ADCs, lists several ADCs currently under de-

velopment, and includes up-to-date in-depth information on FDA-approved ADCs for the 

treatment of HER2-positive and, most recently, HER2-low breast cancer along with their 

toxicity profiles and current ongoing clinical trials. 

2. HER2 and HER2-targeted Therapy in Breast Cancer 

HER-2 is a member of the epidermal growth factor receptor (EGFR) family of recep-

tor tyrosine kinases comprised of EGFR/HER1, HER2, HER3, and HER4. EGFR family of 

receptors play pivotal roles in normal cell growth and differentiation [36–38]. However, 

overexpression or abnormal activation of these receptors is linked to the pathogenesis of 

several human cancers including breast, ovarian and gastric [39–41]. The HER2 receptor 

is a 1255 aa, 185-kDa transmembrane protein whose locus is located on chromosome 

17q21.1 [11,42–44]. HER2 is expressed in many normal tissues at low levels, and its over-

expression was linked to excessive/unrestrained cell growth and proliferation leading to 

tumorigenesis [10,11,22,36–38,45,46]. In breast cancer, the HER2 gene is amplified in 20–

30% of primary tumors; this amplification and resulting overexpression of HER2 protein 

are correlated with enhanced activity in signaling pathways involved in potent prolifera-

tive and antiapoptotic signals [10,11]. HER2 amplification and/or overexpression 
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promotes aggressive disease phenotypes characterized by high resistance rate and short-

ened survival rates [10]. 

2.1. HER2 Activation 

Members of the EGFR family of receptors exist as monomers, when inactive, on the 

surface of cells and their structures are primarily comprised of three domains: a cysteine-

rich extracellular domain, a lipophilic transmembrane segment, and an intracellular tyro-

sine kinase domain [47,48]. With the exception of HER2 that does not bind to any ligands, 

the EGFR family of receptors are mainly activated through ligand binding to the extracel-

lular domain, which promotes subsequent receptor dimerization, autophosphorylation, 

and transphosphorylation of their intracellular tyrosine kinase domains (Figure 1) [49–

52]. In the absence of ligand-induced dimerization/activation, HER2 becomes activated 

when it heterodimerizes with EGFR, HER3, or HER4, or homodimerizes with another 

HER2 monomer. HER2 activation leads to subsequent activation of downstream signaling 

pathways such as PI3K/AKT, RAS/MEK/MAPK, JAK/STAT, and PKC [49–52]. Studies 

have demonstrated that the most active and most potent tumor-enhancing effect is 

achieved through the HER2/HER3 dimer, which functions mostly through the down-

stream activation of PI3K/AKT, MAPK/ERK and JAK/STAT pathways and is responsible 

for treatment failure and increased resistance to therapies in breast cancer patients [53–

55]. Besides members of the EGFR family, HER2 dimerize with other membrane-bound 

receptors, such as insulin-like growth factor 1 (IGF-1), leading to an increase in the phos-

phorylation of HER2 and consequent activation of tumor-promoting downstream signal-

ing pathways [56]. 

HER2 hetero- and homo-dimerization leads to auto- and trans-transphosphorylation 

of tyrosine residues located on the intracellular domain which, in turn, facilitates docking 

of various other intracellular proteins and can elicit activation of downstream signaling 

pathways [49–52]. Y1005, Y1023, Y1139, Y1196, Y1222, and Y1248 are among the main ty-

rosine residues that are readily phosphorylated and are important for HER2 kinase activ-

ity [57–62]. HER2 activation promotes the activation of transcription factors that regulate 

genes involved in cell proliferation, survival, differentiation, angiogenesis, and invasion 

[36,49,63]. Moreover, dimerization of the HER2 receptor leads to mislocalization and deg-

radation of the cell-cycle inhibitor p27Kip1 and thus promotes cell-cycle progression [45] 

(Figure 1). 
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Figure 1. Overview of the HER2 signaling pathway. Unlike the other EGFR family of receptors, 

HER2 does not bind to any known ligands. Instead, HER2 is activated following heterodimerization 

with other activated EGFR family of receptors or by heterodimerization with activated HER2 recep-

tors. Receptor dimerization leads to the phosphorylation of tyrosine residues and resultant signal 

transduction. PI3K/AKT, RAS/MEK/MAPK, JAK/STAT, and PKC are the most common signaling 

pathways through which several downstream cascades are activated, promoting numerous effects, 

including cell proliferation, survival, differentiation, angiogenesis, and invasion. Moreover, acti-

vated PI3K/AKT also leads to the degradation of cell-cycle inhibitor p27Kip1 and thus promotes cell-

cycle progression. EGF, Epidermal growth factor; HB-EGF, heparin-binding epidermal growth fac-

tor; TGF, tumor growth factor; NRG, neuregulin. 

2.2. HER2 Overexpression in Breast Cancer 

Activating HER2 mutations and HER2 amplification are early events in breast tumor-

igenesis occurring in almost 50% of in situ carcinomas and, in 20% of the cases, are main-

tained during progression of the disease to the invasive type [36,64]. Multiple studies re-

vealed that amplification of the HER2 gene is associated with higher cancer recurrence 

rate and shorter disease-free and overall survival [46,65]. Moreover, HER2-amplified 

breast cancers display increased sensitivity to certain chemotherapeutic agents, such as 

doxorubicin, increased resistance to certain hormonal agents, such as tamoxifen, and in-

creased propensity to metastasize to the brain, lungs, and liver [66,67]. These findings 

highlight the significance of HER2 as a prognostic marker, and the predictive implications 

HER2 has in breast cancer [11]. 

Several methods have been developed for the identification of the HER2 status but 

only two methods, immunohistochemistry (IHC) and fluorescence in situ hybridization 

(FISH), are currently approved by the American Society of Clinical Oncology (ASCO) and 

the College of American Pathologists (CAP) for assessment of HER2 status [68–70]. All 

patients with invasive breast cancer are required to have their HER2 status determined 

based on one or more test results [68–70]. Patient derived specimens must undergo an 

initial HER2 testing by IHC assay (giving a score of 0 to 3+) followed by a validation 

through FISH (giving positive or negative results) [68–70]. Generally, only specimens that 

test IHC 3+ or FISH positive respond to anti-HER2 treatments; an IHC 2+ test result is 

called borderline and is usually validated with a FISH test [68–70]. 
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2.3. Targeting HER2 

Ever since the clinical relevance of HER2 in breast cancer was discovered and under-

stood, HER2 became an optimal therapeutic target in a large subset of patients harboring 

HER2 gene amplification and protein overexpression. A variety of anti-HER2 agents in-

cluding, trastuzumab, pertuzumab, lapatinib, and neratinib have been approved by the 

FDA for the treatment of HER2-positive breast cancer [16–18,71]. Trastuzumab, developed 

in 1990, is the first HER2-targeting mAb approved by the FDA for the treatment of HER2-

positive breast cancer [13]. Trastuzumab (Herceptin®) binds to the dimerization domain 

of HER2 and inhibits homodimerization, thereby preventing HER2 activation and inhib-

iting downstream signaling [72]. Several mechanisms of trastuzumab actions have been 

proposed including, inhibition of HER2 shedding, inhibition of PI3K/AKT pathway, anti-

body-dependent cellular cytotoxicity, and inhibition of tumor angiogenesis (Table 1). Per-

tuzumab (Perjeta®), which received FDA approval in 2017, is another HER2-targeting 

mAB which elicits its anti-HER2 activity via a slightly different mechanism: it binds to the 

dimerization domain and inhibits ligand-induced heterodimerization between HER2 and 

HER3, leading to reduced signaling via intracellular pathways [20,73]. Lapatinib 

(Tykerb®) and neratinib (Nerlynx®) are small molecule inhibitors that inhibit HER2 tyro-

sine kinase activity [74,75]. Lapatinib and neratinib both directly bind to the intracellular 

tyrosine kinase domains and inhibit kinase activity preventing the activation of down-

stream signals [74–76]. 

Table 1. Mechanisms of action of anti-HER2 agents. 

Drug Drug Type Mechanism of Action 

Trastuzumab (Her-

ceptin®) 
Monoclonal Antibody (mAb) 

Inhibition of HER2 shedding [77]. 

Inhibition of PI3K/AKT pathway [78,79]. 

Antibody-dependent cellular cytotoxicity (ADCC) [80]. 

Inhibition of tumor angiogenesis [81]. 

Pertuzumab (PER-

JETA®) 
Monoclonal Antibody (mAb) 

Inhibition of HER2 heterodimerization [73]. 

Antibody-dependent cellular cytotoxicity (ADCC) [82]. 

Lapatinib (TYKERB®) Small molecule tyrosine kinase inhibitor 
Inhibition of intrinsic tyrosine kinase activity [83]. 

Prevention of downstream activation signal [84]. 

Neratinib (Nerlynx®) Irreversible pan-erbB tyrosine kinase inhibitor Irreversible inhibition of intrinsic tyrosine kinase activity [85]. 

2.4. Resistance to Anti-HER2 Therapies 

Despite the targeted specificity of the anti-HER2 agents described, breast cancer pa-

tients continue to acquire therapeutic resistance with prolonged treatment [86,87]. The 

main mechanisms of resistance to anti-HER2 agents are (1) overabundance of HER ligands 

and receptors allowing for alternative dimerization that lead downstream pathways to 

continue to signal despite being partially inhibited [87]; (2) reactivation of pathway sig-

naling through loss of downstream negative-regulators, or gain of activating mutations 

[79,88,89]; (3) employment of alternative pathways to escape HER2 blockade and to con-

tinue drive the growth of cancer cells [90,91]. Since the development of resistance to HER2-

targeted therapy is common amongst HER2-positive breast cancer patients, it has 

prompted investigation into use of a combinatorial therapeutic regimen that combines 

anti-HER2 mAb with chemotherapeutic agents. Investigation into these novel anti-HER2 

combinatorial treatment modalities has led to the emergence of a new monoclonal anti-

body technology known as ADCs. With the proper drug/linker design and mode of inter-

nalization, ADCs present with features that have a potential for overcoming drug re-

sistance and improving therapeutic outcomes for patients with breast cancer [92]. 
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3. Antibody-Drug Conjugates for HER2-Positive Breast Cancer 

In 2000, the first ADC was approved by the FDA for the treatment of acute myeloid 

lymphoma [26]. Given the prognostic value of HER2 in breast cancer, HER2 is regarded 

as a potent therapeutic target for HER2-positive breast cancers. To date, nearly thirty 

HER2-targeting ADCs have been developed among which twenty-three positive results 

in clinical trials, and two of these ADCs have received FDA approval in the United States 

(Table 2). 

Table 2. Anti-HER2 ADCs in clinical trials or on the market. 

ADC Name Indication Trial ID Phase Reference 

Fam-trastuzumab deruxtecan-nxki Metastatic breast cancer - Approved [93–95] 

Ado-trastuzumab emtansine Metastatic breast cancer - Approved [19,96] 

Disitamab vedotin Metastatic gastric cancer NCT04714190 Phase III/Approved in China [97–100] 

Vic-trastuzumab duocarmazine Metastatic breast cancer NCT03262935 FDA accepted BLA 1/Phase III [29,101] 

ZRC-3256 Metastatic breast cancer CTRI/2018/07/014881 Phase III [102] 

TAA013 Metastatic breast cancer CTR20200806 Phase III [103] 

ARX788 Metastatic breast cancer/gastric cancer CTR20201708 Phase II/III [104] 

MRG002 Metastatic breast cancer NCT04492488 Phase II [105] 

DP303c Gastric Cancer NCT04146610 Phase II [106] 

BDC-1001 Metastatic breast cancer/gastric cancer NCT04278144 Phase I/II [107] 

A166 Metastatic breast cancer NCT03602079 Phase I/II [108,109] 

SBT6050 Advanced solid tumors NCT05091528 Phase I/II [110] 

SHR-A1811 Advanced solid tumors NCT04446260 Phase I/II  

SHR-A1201 Metastatic breast cancer CTR20191558 Phase I/II  

MT-5111 Advanced solid tumors NCT04029922 Phase I [111] 

ALT-P7 Metastatic breast cancer NCT03281824 Phase I [112] 

ZW49 Metastatic breast cancer NCT03821233 Phase I [113] 

FS-1502 Breast Cancer NCT03944499 Phase I  

BI-CON-02 Metastatic breast cancer NCT03062007 Phase I  

DX126-262 Breast/gastric cancer CTR20191224 Phase I  

HS630 Breast Cancer CTR20181755 Phase I  

B003 Metastatic breast cancer NCT03953833 Phase I  

GQ1001 Advanced solid tumors NCT04450732 Phase I  
1 accepted for review a biologics license application (BLA). 

3.1. Composition of Anti-HER2 ADCs 

ADCs consist of a humanized mAb, mainly immunoglobulin G (IgG), linked to a 

small molecular cytotoxic agent, known as the payload, using a cleavable or non-cleavable 

molecular linker (Figure 2) [114]. However, given the complexity of the anti-tumor mech-

anism of ADCs, several critical requirements in their structures have been highlighted for 

the development of a treatment with the desired efficacy while eliminating or reducing 

high grade adverse events (AEs) [114]. 
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Figure 2. Schematic diagram of an ADC showing the general structure and favorable characteris-

tics. The antibody contains antigen-binding sites (Fab) engineered to recognize target antigens. Pay-

loads are connected to the antibody via linkers. 

3.1.1. Target Antigen 

The design of an ADC revolves around the target antigen. Ideally, the target antigen 

should be tumor specific and preferentially expressed in tumor tissues but lowly ex-

pressed in non-tumorigenic tissues. Moreover, the target antigen must be easily accessible 

to antibody binding to facilitate effective internalization and delivery of the active cyto-

toxic drug into the tumor cell [115,116]. Currently, two antigens are approved for target-

ing breast cancer with ADCs, HER2 and TROP2. HER2 is overexpressed in 15–20% of 

breast cancer while TROP2 is overexpressed in more than 85% of triple negative breast 

cancer (TNBC) [117,118]. The potential use of other target antigens, such as EGFR and 

Notch3, in the development of new ADCs is currently being investigated [119–121]. 

3.1.2. Antibody 

The compatibility and specificity of the antibody is critical for the activity of an ADC. 

The mechanism of action of ADCs relies on the internalization of antibody-bound anti-

gens for the delivery of cytotoxic agents [115,116]. Hence, the antibody must have a high 

affinity to the target antigen to achieve maximum effect while reducing cross-reactivity 

that may reduce efficacy of the cytotoxic component of the ADC [122]. In addition, to pre-

vent production of anti-drug antibodies (ADAs) by the immune system, it is critical that 

the antibody component of the ADC has reduced immunogenicity [115,116], which is 

achieved through the use of humanized antibodies. All ADCs approved for the treatment 

of HER2-positive breast cancer utilize humanized immunoglobulin G1 (IgG1) as a mono-

clonal antibody for targeting HER2 [35,115,116]. 

3.1.3. Linker 

Linkers within the ADC function to conjugate the monoclonal antibody with the cy-

totoxic payload. Linkers should be highly stable in the blood circulation to allow the re-

lease and internalization of the ADC, though only upon antibody binding with the anti-

gen. Unstable linkers may release the cytotoxic drug prematurely before reaching the tu-

mor, hence, reducing the efficacy of the ADC treatment and increasing chances of off-

target toxicity [35]. 
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A linker can be classified as either cleavable or non-cleavable depending on its com-

position and susceptibility to proteolytic degradation within the cell. Non-cleavable link-

ers are more stable in circulation [115]; however, after proteolytic degradation, charged 

amino acid residues may be retained on the cytotoxic payload and can interfere with the 

overall efficacy of the drug [115]. The most commonly used type of non-cleavable linkers 

in ADCs is thioether linkers, currently used in T-DM1[123]. Cleavable linkers depend on 

the physiological conditions of the cell and can be subdivided into two types: pH-sensitive 

and protease-cleavable linkers [35,115]. pH-sensitive linkers utilize the lower pH in the 

endosomes and lysosomes of target tumor cells to trigger hydrolysis of acid labile groups 

within a linker, while protease-cleavable linkers utilize common proteases, found in lyso-

somes of target tumor cells, for specific peptide sequence recognition and cleavage in the 

linker [35,115,124]. It is important to note, however, that cleavable linkers display nonspe-

cific release of the cytotoxic drug [35,115]. The most commonly used cleavable linkers in-

clude acid-labile hydrazones, or disulfides [35,115]. 

3.1.4. Payload 

Cytotoxic payloads selected for ADCs are usually highly potent and extremely cyto-

toxic agents; hence, their development as free drugs is often clinically limited [125–128]. 

Ideally, ADCs allow for stable transfer of cytotoxic agents in the circulation while resisting 

off-target release. Conjugation of the payload to the linker is critical for the efficacy of an 

ADC and should be made possible by the chemical structure of the chosen cytotoxic agent 

[125]. In addition, the therapeutic entity of choice must be highly potent to elicit the de-

sired therapeutic efficacy. Several early ADCs that use standard chemotherapeutics as the 

payload demonstrated preclinical efficacy but failed in the clinical setting [129–131]. This 

poor clinical response to ADCs was mainly due to the suboptimal therapeutic efficacy 

within the tumor [132]. 

The number of payloads an ADC can carry, also known as drug-to-antibody ratio 

(DAR) is limited and can range from 0–8 payload molecules [116]. Alternatively, the num-

ber of antigens ADCs bind and deliver to are limited, thus it is necessary to choose cyto-

toxic agents that have a low half-maximal inhibitory concentration (IC50) to achieve opti-

mal therapeutic concentration while reducing the potential off-target effects to surround-

ing normal tissues [116]. Currently, the most used drug classes in ADCs are tubulin inhib-

itors and topoisomerase inhibitors [116,133]. 

3.2. Mechanism of Action of Anti-HER2 ADCs 

Anti-HER2 ADCs share one main mechanism for targeting tumors where mABs 

function as transport systems carrying cytotoxic payloads to HER2 overexpressing tumor 

cells and binding to the extracellular domain of the HER2 protein [134–136]. Once bound, 

antibodies linked with cleavable linkers release the payloads into or around tumor cells, 

whereas antibodies linked with non-cleavable linkers are internalized by the tumor cells 

and depend on lysosomal degradation to release the payload [134–136]. Depending on 

their structures, payloads can be membrane permeable and can affect surrounding tumor 

cells regardless of their HER2 expression, a phenomenon known as the bystander effect 

[137] (Figure 3). The bystander effect characteristic allows for increased bioavailability of 

cytotoxic payload and improves the efficacy of the drug in heterogenous tumors [137]. 
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Figure 3. Antibody-drug conjugate mechanism of action. Once the ADC is administered, (1) it is 

released into the bloodstream. (2) The antibody portion of the ADC binds to overexpressed target 

tumor antigen/receptor (e.g., HER2). (3) Upon binding, the ADC-receptor complex undergoes re-

ceptor-mediated endocytosis, leading to the formation of endosomes (4). Within the lysosome, (5) 

the ADC-receptor complex is degraded, and the linker is cleaved, leading to the release of cytotoxic 

payloads (6). Depending on the type of payload used, (7) it will cause cell death either through DNA 

damage or microtubule disruption. Additionally, (8) payloads that have a membrane-permeable 

nature will exert the same cytotoxic effect on neighboring cells through a process known as the 

bystander effect, regardless of their antigen expression. 

3.3. Metabolism of Anti-HER2 ADCs 

Anti-HER2 ADCs share a common structural construct designed to stably travel 

through the bloodstream and selectively deliver cytotoxic payloads to HER2-expressing 

cells [134–136]. To achieve optimal drug delivery while reducing off-target drug release, 

a number of elements pertaining each component of the ADC structure need to be opti-

mized [138–143]. The mAb portion of anti-HER2 ADCs is distinctly metabolized by pro-

teolytic degradation within the cancer cells; changes in the binding-regions of the mAb 

impact the ADC/cancer cell interaction and can result in altered metabolism [144]. In ad-

dition to the structure of the mAb, the type of linkers selected plays an important role in 

the metabolism of the ADC [138,144]. A 2-fold increase in ADC clearance was reported 

with the use of a disulfide-linked T-DM1 when compared to the thioether-linked T-DM1 

[138]. Moreover, the stability of ADCs in the bloodstream is also found to be linker de-

pendent [140,141,144]. ADCs are reported to have shorter terminal half-lives compared to 

their respective unconjugated mAb [140,141]. The number of cytotoxic payloads conju-

gated to the mAb also affects the metabolism of the ADC [139,144]. ADCs with a higher 

drug-antibody ratio (DAR) tend to have increased clearance and reduced drug exposure 

[139]. Additionally, the type of cytotoxic payloads used in the ADC construct affect the 

metabolic profile of the ADC [142–144]. After the administration of ADCs, off-target re-

lease of cytotoxic payloads may lead to metabolism by cytochrome P450 enzymes 

[142,143]. Given the potency of cytotoxic payloads, changes in their exposure due to P450 

enzymes-mediated drug-drug interactions (DDIs) may affect the safety profile of the ADC 

in patients [142,143]. Thus, evaluations of the metabolism of each structural component 

should be considered in the development of the ADC. 
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3.4. Current FDA Approved ADCs for HER2-Positive Breast Cancer 

3.4.1. Ado-Trastuzumab Emtansine (Kadcyla®) 

Ado-trastuzumab emtansine (T-DM1; Kadcyla®) was the first anti-HER2 ADC to re-

ceive FDA approval [7,19]. In 2013, T-DM1 was approved as a single therapy for the treat-

ment of advanced-stage HER2-positive early breast cancer (EBC) after neoadjuvant treat-

ment with trastuzumab and a taxane (paclitaxel or docetaxel) [19]. More recently, in 2019, 

the FDA expanded the approved use of ado-trastuzumab emtansine for the treatment of 

early-stage high-risk HER2-positive breast cancer patients with residual invasive disease 

after neoadjuvant taxane and trastuzumab-based treatment [96]. T-DM1 is comprised of 

the monoclonal antibody trastuzumab that islinked to mertansine (DM1), a potent micro-

tubule polymerization inhibitor, via a non-cleavable maleimidomethyl cyclohexane-1-car-

boxylate (MCC) thioether linker [145–147]. The T-DM1 structure retains both the cytotoxic 

functions of trastuzumab, including cellular cytotoxicity and signal inhibition, and the 

antitumoral effects of DM1 [145–147]. DM1, by itself, is known to have a relatively narrow 

therapeutic window, but its linkage to trastuzumab, with a DAR of 3.5, increased DM1 

targeted selectivity and thereby widened its therapeutic window [148]. The indication for 

T-DM1 as a second line treatment in advanced-stage HER2-positive breast cancer, and 

more recently for early-stage patients with invasive residual disease, are based on data 

from the EMILIA, TH3RESA and KATHERINE phase III clinical trials [19,30,96,149,150] 

(Table 3). 

Table 3. Summary of Phase III clinical trials that led to FDA approval of T-DM1. 

Trial 
EMILIA 

(HER2-positive advanced breast cancer previously treated with trastuzumab and a taxane) 

Groups Experimental Therapy Control Arm 

Treatment T-DM1 Lapatinib + capecitabine 

Sample size n = 495 n = 496 

Endpoint 
Overall  

Survival 
30.9 months 

Overall  

Survival 
25.1 months 

 
Progression-free 

Survival 
9.6 months 

Progression-free 

Survival 
6.4 months 

 
Grade ≥ 3  

Adverse Events 
48% 

Grade ≥ 3  

Adverse Events 
60% 

Trial 

TH3RESA 

(HER2-positive advanced breast cancer previously treated with both trastuzumab and lapatinib 

in the advanced setting and a taxane in any setting) 

Groups Experimental Therapy Control Arm 

Treatment T-DM1 Physician’s Choice 1 

Sample size n = 404 n = 198 

Endpoint 
Overall  

Survival 
22.7 months 

Overall  

Survival 
15.8 months 

 
Progression-free 

Survival 
6.2 months 

Progression-free 

Survival 
3.3 months 

 
Grade ≥ 3  

adverse events 
40% 

Grade ≥ 3  

adverse events 
47% 

 

Treatment exposure-adjusted 

rate of grade ≥ 3  

Adverse Events 

123.6/100 patient-

years 

Treatment exposure-ad-

justed rate of grade ≥ 3  

Adverse Events 

278.4/100 patient-

years 

Trial 

KATHERINE 

(HER2-positive early breast cancer with residual invasive disease at surgery after neoadjuvant 

therapy with trastuzumab and a taxane) 
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Groups Experimental Therapy Control Arm 

Treatment T-DM1 Trastuzumab 

Sample size n = 743 n = 743 

Endpoint 
Invasive  

disease-free survival 
87.8% 

Invasive  

disease-free survival 
77.8% 

 
Freedom from distant 

recurrence 
89.5% 

Freedom from distant 

recurrence  
83.7% 

 
Overall  

Survival 
94.3% 

Overall  

Survival 
92.5% 

 
Grade ≥ 3  

Adverse Events 
15.4% 

Grade ≥ 3  

Adverse Events 
25.7% 

1 Physician’s choice of therapy included chemotherapy, hormonal therapy, and anti-HER2 therapy. 

The initial approval of T-DM1 was based on the EMILIA study. The EMILIA was a 

phase III clinical trial that investigated the efficacy of T-DM1 vs. capecitabine and lapa-

tinib, the standard second-line therapy at the time, in HER2-positive metastatic breast 

cancer patients progressing after treatment with trastuzumab and a taxane (n = 991) 

[19,149]. The results of the study favored T-DM1 which demonstrated an improvement in 

median overall survival (OS) (30.9 vs. 25.1 months; HR 0.68; 95% CI: 0.55–0.85; p < 0.001) 

and progression free survival (PFS) (9.6 vs. 6.4 months; HR 0.65; 95% CI: 0.55–0.77; p < 

0.001) after a 47.8-month median follow-up [19]. In this study, most noted adverse events 

in the T-DM1 cohort were changes in clinical laboratory test results, including thrombo-

cytopenia and elevated serum aminotransferase levels [19]. Moreover, in the lapatinib 

plus capecitabine cohort, incidences of symptomatic adverse events including diarrhea, 

nausea, vomiting, and palmar–plantar erythrodysesthesia were higher [149]. 

Furthermore, the observed superiority of T-DM1 in the EMILIA study was further 

confirmed in the TH3RESA phase III clinical trial. T-DM1 demonstrated an improvement 

in OS when compared to physician’s choice of therapy (22.7 vs. 15.8 months; HR 0.552; 

95% CI: 0.37–0.83; p = 0.0034) and in PFS (6.2 vs. 3.3 months; HR 0.53; 95% CI: 0.42–0.66; p 

< 0.0001) after a 7.2-month median follow-up [30]. Relative to the EMILIA study, the most 

noted adverse events in the T-DM1 cohort of the TH3RESA study were thrombocytopenia 

whereas in the physician’s choice therapy, the most frequently observed adverse events 

were neutropenia, diarrhea, and febrile neutropenia [30]. 

Recently, the approved use of T-DM1 was extended to include the treatment of early-

stage high-risk HER2-positive breast cancer patients with residual invasive disease after 

neoadjuvant treatment [151]. This expansion in the indication was based on the results of 

the KATHERINE study [96,151]. The KATHERINE was a phase III clinical trial in which 

patients showed significant increase in the 3-year invasive disease-free survival (IDFS) in 

the T-DM1 cohort vs. cohort treated with trastuzumab alone (87.8% vs. 77.8%; HR 0.5; 95% 

IC: 0.39–0.64; p < 0.001) [96]. The safety data of T-DM1 was consistent with both EMILIA 

and TH3RESA studies where the most reported adverse events were thrombocytopenia 

[96]. In addition, higher-grade adverse events associated with T-DM1 induced thrombo-

cytopenia were reported when compared with trastuzumab alone [96]. 

In summary, T-DM1 was found to be associated with manageable symptomatic ad-

verse events, mostly grade 1–2 in severity; including gastrointestinal (GI) toxicity, neu-

ropathy and left ventricular ejection fraction (LVEF) decline [19,30,96]. The most fre-

quently reported high-grade toxicities include thrombocytopenia, which is a dose-limit-

ing toxicity, and increases in liver enzymes leading to potential liver toxicities [19,30,96]. 

Currently, there is an ongoing study, ATOP phase II clinical trial (NCT03587740), 

investigating the potential of replacing the use of trastuzumab plus chemotherapy with 

T-DM1 as a single first line treatment in patients with early HER2-positive breast cancer 

[70]. Investigation of this approach started in 2013 with a phase II clinical trial named 
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ATEMPT and recently ended producing no definitive results [28]. To date, it is still un-

known if T-DM1 is beneficial to patients who have not received neoadjuvant therapy. 

Moreover, in a phase II basket trial, T-DM1 was determined to be effective against 

tumors with HER2 mutations, regardless of amplification or expression status [27]. This 

was the first positive trial investigating this molecular subset, which resulted in a war-

ranted use of T-DM1 for further studies and trials [30,149,150] 

In 2016, a phase Ib/IIa clinical trial was conducted to investigate the combinatorial 

effects of T-DM1 and docetaxel, and potentially pertuzumab, in patients with HER2-pos-

itive advanced breast cancer [152]. The results from the study reported that T-DM1 com-

bined with docetaxel ± pertuzumab appeared efficacious; however, nearly 50% of the pa-

tients experienced AEs requiring dose reductions [152]. More recently, a phase II clinical 

trial, NSABP Foundation Trial FB-10, studied the safety and tolerability of T-DM1 plus 

neratinib in patients with metastatic HER2-positive breast cancer, and reported a recom-

mended dose for this regimen to provide basis for future studies that would better define 

the activity of this combination [153]. 

3.4.2. Fam-Trastuzumab Deruxtecan-Nxki (Enhertu®) 

Fam-trastuzumab deruxtecan-nxki (DS-8201a; T-DXd; Enhertu®) was the second 

anti-HER2 ADC to receive FDA approval. In 2019, it was approved for HER2-positive 

unresectable or metastatic breast cancer treated with at least two prior lines of HER2-tar-

geting regimens [95]. Following that, in 2021, the approved use was expanded for the 

treatment of patients with previously treated HER2-positive advanced gastric cancer [94]. 

Most recently, in 2022, T-DXd was approved in the US for the treatment of patients with 

HER2-positive metastatic breast cancer with prior HER2-targeted treatment [154]. Subse-

quently, T-DXd was approved for the treatment of patients with unresectable, or meta-

static HER2-low breast cancer with prior chemotherapy or recurrence [155]. The approved 

indications of T-DXd are based on data from the phase I & II DESTINY-BREAST01 clinical 

trial, DESTINY-BREAST03 phase III clinical trial, and the DESTINY-BREAST04 phase III 

clinical trial [31,34,93,95,154,156] (Table 4). 

Table 4. Summary of clinical trials that led to FDA approval of T-DXd. 

Trial 

DESTINY-BREAST01 

(Trastuzumab Deruxtecan in Metastatic HER2-Positive 

Breast Cancer Previously Treated with T-DM1) 

Group Experimental Therapy (intention to treat) 

Treatment T-DXd (5.4 mg/Kg) 

Sample Size n = 184 

Median Progression-Free 

Survival 
16.4 months 

Overall Response 60.9% 

Drug-related Grade ≥ 3  

adverse events 
57.1% 

Trial 

DESTINY-BREAST03 (Phase III Clinical Trial) 

(Trastuzumab Deruxtecan versus Trastuzumab Emtansine 

for Breast Cancer) 

Groups Experimental Therapy Control Arm 

Treatment T-DXd T-DM1 

Sample Size n = 261 n = 263 

Progression-Free Survival at 

12 Months 
75.8% 34.1% 

Overall Response 79.7% 34.2% 

Drug-related Grade ≥ 3  45.1% 39.8% 
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Adverse events 

Trial 

DESTINY-BREAST04 

(Trastuzumab Deruxtecan in Previously Treated HER2-

Low Advanced Breast Cancer) 

Groups Experimental Therapy Control Arm 

Treatment T-DXd Physician’s Choice 1 

Sample size n = 373 n = 184 

Median Progression-Free 

Survival 
9.9 months 5.1 months 

Overall Survival 23.4 months 16.8 months 

Drug-related Grade ≥ 3  

adverse events 
52.6% 67.4% 

1 Physician’s choice of therapy included: capecitabine, eribulin, gemcitabine, paclitaxel, or nab-

paclitaxel. 

Like T-DM1, the structure of T-DXd is comprised of the mAb trastuzumab [156]. 

However, instead of DM1, trastuzumab is linked to a cytotoxic derivative of exatecan, a 

potent topoisomerase I inhibitor, via a cleavable Maleimide tetrapeptide linker with a 

DAR of 8 (compared T-DM1, having a DAR of 3.5) [156]. The cleavable linkers are acted 

upon by lysosomal enzymes, cathepsins, that are vastly available in many cancer cells 

[157,158]. Once cleaved, and with the membrane permeable property of the payloads, cy-

totoxic exatecan derivatives are capable of exerting bystander effects and thus achieving 

improved efficacy in heterogenous tumors [157,158]. 

Initially, T-DXd received accelerated approval for the treatment of HER2-positive un-

resectable or metastatic breast cancer following two or more prior anti-HER2 based regi-

mens [159]. This indication was approved after the results of the first in-human phase I 

clinical trial and the phase II DESTINY-BREAST01 trial [93,95,156]. The phase I clinical 

trial for T-DXd assessed the safety, tolerability, and activity of the drug against patients 

with pretreated advanced HER2-positive breast cancer (n = 111) [93]. The study showed 

that 59.5% (95%CI: 49.7–68.7) of the patients showed favorable objective response with T-

DXd monotherapy after a 20.7-month median follow-up. Moreover, 19% of the patients 

showed at least one serious treatment-emergent adverse event, including anemia and/or 

decreased neutrophil, white blood cell, and platelet counts [93]. The results of the phase I 

clinical trial led to the registration of a phase II trial, DESTINY-BREAST01 [95]. It investi-

gated the effect of T-DXd on patients with HER2-positive metastatic breast cancer after 

prior treatment with T-DM1 (n = 184). After 11.1 months median follow-up, 60.9% (95% 

CI: 53.4–68.0) of the patients reported a response to the therapy [95]. A more recent update 

of the study with an increased duration of follow-up, from 11.1 to 20.5 months, reported 

a 61.4% overall response rate (ORR) with a median duration of response (DOR) of 20.8 

months [31]. The median PFS was reported to be 19.4 months (95% CI: 14.1–NE) and the 

median OS was 24.6 months [31]. During the study, the most noted high grade adverse 

events in T-DXd treated group were, decreased neutrophil count, anemia, and nausea. 

Additionally, some patients treated with T-DXd presented with interstitial lung disease 

[31,95] 

T-DXd was recently approved in the US for patients with HER2-positive metastatic 

breast cancer treated with a prior anti-HER2 based regimen [160]. This approved exten-

sion in the indication was based on positive results from the phase III clinical trial, DES-

TINY-BREAST03 [154,160]. The trial investigated the effect of T-DXd vs. T-DM1 in HER2-

positive patients with metastatic breast cancer previously treated with a trastuzumab and 

taxane-based therapy (n = 524) [154]. Results from the trial showed that T-DXd improved 

PFS (75.8% vs. 34.1%; HR 0.28; 95% CI: 0.22–0.37; p < 0.001) and had an ORR of 79.7% vs. 

34.2% in the T-DM1 treated cohort [154]. Moreover, it was observed that patients treated 

with T-DXd had a higher incidence of high-grade drug-related adverse events (45.1% vs. 



Genes 2022, 13, 2065 14 of 23 
 

 

39.8%) and had a higher occurrence rate of interstitial lung disease or pneumonitis (10.5% 

vs. 1.9%) [154]. 

Most recently, T-DXd received FDA approval for the treatment of adult patients with 

unresectable, or metastatic HER2-low breast cancer, after treatment with prior chemother-

apy or after disease recurrence within six months of completing adjuvant chemotherapy 

[155]. The approval is based on the results from the DESTINY-Breast04 Phase III trial 

where T-DXd reduced the risk of disease progression or death by 50% versus physician’s 

choice of chemotherapy in patients with HER2-low metastatic breast cancer with hormone 

receptor (HR)-positive disease or HR-negative disease (n = 557) [34]. Results from the trial 

showed that T-DXd improved PFS (9.9 versus 5.1 months; HR 0.50; 95% CI: 0.40–0.63; p < 

0.0001) and had an OS of 23.4 months vs. 16.8 months in patients treated with chemother-

apy [34]. Moreover, grade 3 or higher adverse events occurred in 52.6% of the patients 

receiving T-DXd and in 67.4% of the physician’s choice of chemotherapy cohort [34]. 

Currently, there are ongoing clinical trials, phase Ib/II DESTINY-BREAST07 

(NCT04538742) and phase Ib DESTINY-BREAST08 (NCT04556773), that are investigating 

the anti-tumor activity of T-DXd in combination with other therapies in patients with 

HER2-positive metastatic breast cancer or metastatic HER2-low advanced or metastatic 

Breast Cancer, respectively. The trials are still ongoing and no results have been posted 

yet. 

3.5. Toxicity Profiles of FDA Approved Anti-HER2 ADCs 

Clinical trials for both T-DM1 and T-DXd report that both ADCs are generally well 

tolerated and are mainly associated with low incidences of AE. However, there are clinical 

concerns regarding T-DM1-induced high-grade thrombocytopenia and T-DXd-induced 

high-grade interstitial lung disease [19,30,31,34,93,95,96,154]. T-DM1-induced thrombocy-

topenia has been regarded as a primary dose limiting or treatment terminating factor 

[161]. The main mechanism of T-DM1-induced thrombocytopenia is reported to be off-

target uptake of T-DM1 by megakaryocytes, either through receptor binding or pinocyto-

sis [162–164]. It has been suggested that structural modifications of T-DM1 could poten-

tially improve the toxicity profile of the ADC [161]. 

Interstitial lung disease is an AE associated with T-DXd and, according to the FDA 

label, is regarded as a treatment terminating factor in patients with grade 2 or higher in-

terstitial lung disease [31,165]. The mechanism of T-DXd related lung injury is suggested 

to be an off-target uptake of T-DXd into alveolar macrophages presented with features of 

diffuse lymphocytic infiltrates and slight fibrosis [166]. Additional studied are required to 

further investigate the basis behind this off-target uptake as it is not yet fully understood 

[157,166]. 

3.6. Anti-HER2 ADCs Undergoing Development 

Multiple novel anti-HER2 ADCs are currently under development. While some 

ADCs are being investigated in ongoing clinical trials (Table 2), many others are being 

developed for further improvements in the efficacy of the ADC while eliminating any 

related AE. Recently, the FDA accepted for review a biological license application (BLA) 

for vic-trastuzumab duocarmazine (SYD985) for the treatment of advanced HER2-positive 

breast cancer [167]. This was based on significant results from the phase III trial, TULIP, 

favoring vic-trastuzumab duocarmazine over physicians’ choice of therapy in patients 

with pretreated locally advanced or metastatic HER2-positive breast cancer [29]. In addi-

tion, a phase I/II study, SBT6050-201 (NCT05091528), was recently announced for 

SBT6050, which is currently being evaluated in a phase I/Ib ongoing trial in patients with 

advanced HER2-overexpressing solid tumors [110]. 

Multiple novel ADCs designed with different technologies have also shown encour-

aging results. Disitamab vedotin (RC48), utilizing hertuzumab anti-HER2 antibody, was 

recently granted conditional approval in China for the treatment of locally advanced or 

metastatic HER2-overexpressing gastric cancer [168]. In the US, however, RC48 is still 
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undergoing phase III clinical trial in patients with locally advanced or metastatic HER2-

overexpressing gastric cancer (NCT04714190) [169]. ZW49 is another anti-HER2 ADC that 

utilizes a biparatopic antibody that recognizes the binding domains of both trastuzumab 

and pertuzumab [113]. ZW49 showed encouraging results in preclinical studies [113,170] 

and is ongoing phase I clinical trial (NCT03821233) [113]. Lastly, a pertuzumab-based 

ADC has recently been engineered to have less affinity for HER2 at acidic endosomal pH 

leading to significant improvements in lysosomal delivery and cytotoxicity when tested 

against HER2-low-expressing xenograft models [171]. The engineered pertuzumab vari-

ants are expected to enter clinical trials in patients with HER2-overexpressing solid tu-

mors [171]. 

4. Conclusion 

The emergence of ADCs in the last decade has revolutionized the management of 

HER2-positive breast cancers. The unique molecular structures of ADCs harness the spec-

ificity of HER2-targeting antibodies in guiding cytotoxic payloads to HER2-overexpress-

ing tumors. The distinctive pharmacokinetic and pharmacodynamic properties of anti-

HER2 ADCs offer solutions for high-risk, heavily pretreated patients and offer the poten-

tial to overcome limitations of HER2 resistance; they also spotlight the increased response 

to HER2 targeted therapy. T-DXd and T-DM1 have shown the path to transformed treat-

ment options for HER2-positive patients and will continue to do so with ongoing clinical 

trials. A plenitude of growing anti-HER2 ADCs are currently in their preclinical and early 

clinical phases and are next in line to contribute to the growth of this field of oncology. 

Although one mechanism of action of ADCs, internalization and intracellular processing, 

has been established, there remain questions regarding other processing mechanisms and 

organ-injury-specific mechanisms that need to be answered to be able to safely expand 

the use of anti-HER2 ADCs to a wider range of patients. 
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