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Abstract: Sliding clamps play a pivotal role in the process of replication by increasing the processivity
of the replicative polymerase. They also serve as an interacting platform for a plethora of other
proteins, which have an important role in other DNA metabolic processes, including DNA repair.
In other words, clamps have evolved, as has been correctly referred to, into a mobile “tool-belt”
on the DNA, and provide a platform for several proteins that are involved in maintaining genome
integrity. Because of the central role played by the sliding clamp in various processes, its study
becomes essential and relevant in understanding these processes and exploring the protein as an
important drug target. In this review, we provide an updated report on the functioning, interactions,
and moonlighting roles of the sliding clamps in various organisms and its utilization as a drug target.
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1. Introduction

DNA replication is the first key step of the central dogma of molecular biology that en-
sures the faithful duplication of the entire genome of a cell. The enzyme DNA polymerase
(DNAP) required for this process is universally present in all living forms [1,2]. DNAPs
are large multi-subunit enzymes that work with other accessory proteins such as helicases,
primases, sliding clamps, single-strand DNA-binding proteins, topoisomerases, gyrases,
DNA ligases, and telomerases to successfully carry out DNA replication [3,4]. Together,
these proteins form a ‘replisome’, and unwind DNA to synthesize complementary strands
using both the parent strands as a template in a semi-conservative manner [5]. Smooth exe-
cution of the entire process, i.e., initiation, elongation, and termination, requires the proper
positioning and functioning of all the proteins. DNAPs display high processivity (carry
out rapid catalysis) and high fidelity (less error prone) [1]. To achieve high processivity,
DNAPs utilize processivity factors [6,7].

DNAP processivity factors, commonly referred to as sliding clamp proteins, are ring-
shaped multi-subunit proteins that encircle DNA and provide processivity to the DNAP
primarily by holding it onto DNA and enhancing the rate of nucleotide incorporation up
to 100–1000 folds in the growing DNA strand [8–10]. Sliding clamps have a far-reaching
presence in almost all organisms, including bacteriophage, and are critical for survival
because of their role in increasing the processivity of DNA polymerases. They bind and
slide freely onto the DNA to regulate various interactions with several other proteins which
associate with DNA. The structure of sliding clamps, as resolved with the help of methods
such as NMR and X-ray crystallography, is now available from many organisms [8,9,11–15].
Sliding clamps are symmetrical in nature and are generally arranged in a head-to-tail
fashion. The stoichiometry of the subunits differs in different realms of life. For example,
while they are dimeric in bacteria, they are available as a trimer in bacteriophage and
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eukaryotes. The job of loading of clamp onto the DNA is carried out by another set of
proteins called clamp loader complexes (CLCs), which help the clamp to get positioned
on the DNA in an active conformation. The clamps are responsible for managing and
regulating proteins that bind to them and establish connectivity among different cellular
pathways. The clamp is known to function in various channels, such as cell cycle regulation,
apoptosis, DNA methylation, replication, and repair pathways, etc. These clamps, thus,
along with their role in replication, are also important in various other activities to prevent
genome instability.

Structural and functional aspects of the sliding clamp.

1.1. Genetic Organization

β clamp, encoded by the dnaN gene, is present universally in prokaryotes [16]. The
gene locus and the gene arrangement are extensively conserved in these organisms. The
arrangement includes genes for the replication initiator protein DnaA, sliding clamp, and
RecF, which is involved in recombination. dnaN is present in between the dnaA and recF
genes. Though the promoters for dnaN are a feature of the preceding dnaA region, the
transcription from these promoters occurs independently [17,18]. This conservation of
the gene order is likely because these proteins together carry out an essential role in the
replication process. Similarly, the eukaryotic counterpart proliferating cell nuclear antigen
(PCNA) is also highly conserved. PCNA and β clamp have no homology in the sequence,
but their structures are superimposable.

1.2. Structural Organization

While the sliding camps of all the domains of life share structural homology, the
stoichiometry of the subunits differs [19]. The structure of the sliding clamp fulfills the
utmost vital criteria viz. interactions with DNA and various other proteins. An archetypical
sliding clamp has a pseudo-six-fold symmetry, and irrespective of the oligomeric state, six
domains form the complete ring shape (Figure 1). These six domains are in the form of
either a dimer with three domains in each subunit, as in the case of prokaryotes, or a trimer
with two domains in each subunit, as found in eukaryotes and some bacteriophages [15].
The subunits arrange themselves in a head-to-tail fashion to form a complete ring. Such
an assembly provides two distinct faces, namely, the N-face (amino-terminal end of the
subunit) and the C-face (carboxyl terminal end of the subunit) (Figure 2) [20,21]. It has
been found that the C-face acts as the major hub for the interaction with different proteins,
including DNA polymerases. At the same time, the N-face is known to act as a site for post-
translational modifications such as those identified in PCNA [22–24]. The independent
domains of all the clamps are connected via the inter-domain connecting loop (IDCL),
which also acts as a platform for interactions with various proteins [25].

Because of the head-to-tail arrangement of the subunits, the N-terminal domain (NTD)
of one subunit interacts with the C-terminal domain (CTD) of another subunit to form the
subunit-subunit interface [11,15,26]. The residues present at the interface of the subunits
are very important as they establish contact between the subunits through hydrogen bonds
(Figure 2) and/or intermolecular ion pair interactions, and thus play an important role
in oligomerization. Indeed, reports have demonstrated that hampering these interactions
affects the oligomeric nature and the overall stability of the protein [27–30]. Computational
analysis shows that along with these interface residues, some conserved hydrophobic
residues are equally significant in maintaining the ring shape and oligomeric nature [31].
Independent domain analysis of the T4 bacteriophage sliding clamp gp45 shows that CTD
is a more stable and rigid domain, whereas NTD is more fragile and flexible. This suggests
that NTD provides dynamicity to gp45, allowing the ring to open at the subunit interface,
while the rigid CTD allows the protein to reform a closed trimer on DNA [26]. A dimeric
ring has been suggested to be more stable than a trimeric arrangement [32,33]. However,
based on experimental evidence, it has been suggested that a less stable sliding clamp
could be advantageous in the replication of lagging strand as lesser stability may help in
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the dissociation and recycling of the clamp quickly [34]. It may also provide a functional
benefit as a less stable trimer can be deployed for other moonlighting roles apart from
replication.
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Figure 1. Comparison of a dimeric and a trimeric sliding clamp. The panel shows a comparison
of a dimeric and a trimeric clamp. The dimeric clamp has three domains viz. domain I, domain
II, and domain III, whereas a trimeric clamp has two domains viz. NTD (N-terminal domain) and
CTD (C-terminal domain) per subunit. The broken line marks the subunit-subunit interface. Within
a subunit, the two domains are connected through an amino acid region called the inter-domain
connecting loop (IDCL). The image was generated using the Escherichia coli β-clamp (PDB ID: 1MMI)
and human PCNA (PDB ID: 1VYM).

The ring structure leads to the formation of a central cavity of ~35 Å diameter (Figure 2),
which encircles the double-strand DNA (dsDNA). The structure of the PCNA and β clamp
contains both α helices and β sheets. Each domain has a two-fold repeat of a βαβββ
structural motif. Twelve long helices perpendicular to DNA are present in the central cavity
and span the major and the minor grooves of the dsDNA. Though a few acidic residues are
present, the overall charge of the helices is positive due to the presence of the Lys and Arg
residues. Thus, the central cavity is lined by various Lys and Arg residues, and despite the
fact that the sliding clamp is a negatively charged protein, the central cavity has a positive
potential. This is essential to track the dsDNA and establish non-specific contacts between
the protein and the negatively charged phosphate backbone of the dsDNA [8].

Furthermore, a few reports suggested a tilt of about 22◦ at the DNA axis so as to be
in contact with the walls of the central cavity [11,35]. After much scrutiny over the past
few years to establish the above finding, surprisingly, it was concluded that the water layer
plays an important role in the interaction of the clamp with DNA, and there is no direct
contact established between the sliding clamp and the positively charged residues of the
dsDNA in the presence of polymerase. This ‘water-skating’, as hypothesized in an earlier
report, allows for faster movement of the clamp, and the energy utilized for the same is
almost negligible [36].
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Figure 2. Sliding clamps from different organisms. Sliding clamp from T4 bacteriophage gp45
(1CZD), E. coli β clamp (1MMI), Pyrococcus furiosus PCNA (1GE8), Saccharomyces cerevisiae PCNA
(1PLQ), and Homo sapiens PCNA (1VYM) are superimposed using PyMol. In the dimeric bacterial
clamp (1MMI), three domains are colored in blue (I), green (II), and yellow (III), while in trimeric
clamps, NTD is colored green and CTD, yellow; the IDLC is colored orange. The ‘N’ and ‘C’ faces of
the clamps are shown. The enlarged subunit–subunit interface and hydrogen bonds are shown at the
bottom of the figure.

If present in a large number, sliding clamps may get loaded onto the DNA, though
the active conformation is not achieved [37]. Although there are reports suggesting pos-
sible direct interactions between DNA and the clamp [11], the closed ring structure still
needs help from another protein assembly known as the clamp loader complex (CLC) in
prokaryotes and bacteriophages, and the replication factor C (RFC) in eukaryotes. These
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protein assemblies belong to the AAA+ ATPase family and help the clamp to load onto
the DNA. The apparatus follows a simple mechanism for this procedure. When bound to
ATP, the clamp loading machinery binds and opens the clamp so as to recruit it on to the
primed DNA template. After the sliding clamp is positioned in an active conformation,
the ejection of the clamp loader complex/RFC is followed by hydrolysis of the bound ATP
(Figure 3) [38]. Based on the stability of different clamps in solution, the binding of the
clamp loader complex with the clamp differs. The T4 clamp is thought to be present in an
open conformation [39]; therefore, it can be easily trapped by the CLC. However, in the case
of PCNA, as well as β, the clamp is considerably stable and the loader needs to open it at
the subunit interface to bind to it and load it on the DNA [38,40,41]. Thus, it is impossible
to achieve a perfectly active conformation of the clamp on the dsDNA without the clamp
loader. Both proteins lie at the heart of the replisome, and a processive replication process
is not possible without these two.
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Figure 3. The role of the sliding clamp during replication. (A) The figure represents the E. coli
replisome and the position of the clamp. The sliding clamp is loaded onto the primer-template
junction by the clamp loader complex. The clamp consists of two hydrophobic pockets through
which the polymerase and other proteins of the replisome interact with it. (B) The clamp loader
complex opens the clamp, loads it onto the DNA, and is then ejected with the hydrolysis of ATP.
Once the synthesis of the Okazaki fragment is completed, the clamp, along with polymerase III, is
released. Reprinted/adapted from ref [42] under the terms of Creative Commons license (full terms
at http://creativecommons.org/licenses/by/4.0/ (accessed on 3 November 2022)).

1.3. Sliding Clamps as Processivity Factors

Since its discovery, the basic and foremost function of a sliding clamp in all domains
of life is to complement the polymerase activity by enhancing its processivity, which is
required by the cell to boost its replication rate and thereby improve the cell division
process. Reports suggest that the rate of incorporation of nucleotides increases from tens
to thousands of nucleotides per second when the sliding clamp comes into the picture,
along with the polymerase [43]. DNAP binds to the hydrophobic pocket present at the
C-terminus of the clamp and the DNA tilts at an angle of ~22◦ passes through the center of
the ring [11].

http://creativecommons.org/licenses/by/4.0/
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When these DNA-encircling proteins were discovered, it was assumed that cells
evolved such protein machinery only for ‘holding’ the polymerase and preventing it from
‘falling off’; hence the name processivity clamps [44]. However, later, various reports sug-
gested plentiful proteins other than the polymerases, which interact with these clamps [45].
In the T4 phage, for example, it has been shown that the gp45 (T4 phage sliding clamp),
besides being involved in DNA replication, is also involved in enhancing transcription of
late genes by interacting with transcription factors gp33 and gp55 [46]. However, several
studies have reported the presence of polymerases such as the phi29 DNA polymerase
and T7 DNA polymerase, which are highly processive and do not require aid from the
clamps [47]. Therefore, one can argue that clamps did not evolve just for the purpose of
speeding up and making the process of replication processive, but they may have other
important functions too.

1.4. Beyond the Obvious: Functions Other Than Processivity

Many different proteins involved in DNA replication, repair, and other cellular pro-
cesses have been identified so far, which require establishing contact with DNA. The sliding
clamp acts as the chief conductor for the orchestra of such proteins. The binding sites
for the ligands are the IDCLs and the underlying hydrophobic pockets. The clamp bind-
ing proteins usually contain a consensus sequence motif through which they can access
the clamp. In bacteria, β clamp-binding proteins have a conserved pentapeptide motif
QL(S/D)LF at their C-terminus [48]. It is, however, possible that this consensus sequence
accepts much more variability, and therefore, identification of the clamp binding motifs
(CBM) in prokaryotes is somewhat difficult. PCNA-interacting proteins (PIPs) preferably
have a stricter sequence motif Qxx[I/L]xxFF with much less variability [49]. However,
there are reports available that suggest that PIPs are not the only motifs, and that there are
other PIP-like motifs that essentially serve the same purpose [50].

1.5. Interactions with Other Members of the Replication Machinery

Apart from DNAP, the sliding clamp is known to interact with other participants
of the replication process. In bacteria, the initiation of DNA replication is dependent on
DnaA. Active DnaA (DnaA-ATP) is loaded on the oriC and is further responsible for the
recruitment of helicase. Subsequently, the other events of the replication unfold. The
initiation step has to occur only once per replication cycle, and in order to ensure this,
several modes of regulation are present. One such mechanism is the hydrolysis of the bound
ATP to yield an ADP-bound inactive form of DnaA after the synthesis of DNA begins.
This method of regulatory inactivation of DnaA (RIDA) includes a DnaA-like protein Hda
and β clamp [51,52]. Hda stimulates the ATP hydrolysis of DnaA by interacting directly
with it. This interaction requires the sliding clamp as a mediator, which maintains its
contact with had, as well as with the location on DNA where the replisome is present [53].
Similar observations were made while studying RIDA in Caulobacter crescentus, which
hinted that clamp is essential to direct Hda at the site occupied by the replisome [54]. A
similar mechanism is also employed in eukaryotes to prevent re-initiation of replication.
The pre-replication complex (pre-RC) includes a protein called Cdt1, which has a distinctive
PIP-motif named as PIP-degron with a higher affinity for the PCNA. The favoured tight
association of this protein with PCNA marks it for polyubiquitylation and, in turn, causes
its degradation [55]. Thus, Cdt1 can no longer cause re-licensing of the origin.

During the synthesis of the lagging strand, when Okazaki fragment maturation is
done by DNA polymerase I with the help of the DNA ligase to seal the gaps, the sliding
clamp is present on-site to play a central role. In E. coli, the sliding clamp is known to
increase the efficiency of ligation through two methods. Firstly, it makes direct contact with
the DNA ligase, and secondly, it slows down the nick translation process and enhances the
5′ exonuclease activity of DNA polymerase I. Thus, early ligation is favoured by the sliding
clamp [56]. Such interaction can also be seen between the Helicobacter pylori sliding clamp
and ligase [57]. However, one report from Mycobacterium tuberculosis suggests that no such
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direct interaction between these two proteins exists [58]. Studies carried out in eukaryotes
have also confirmed the role of PCNA as a mediator to which all the proteins involved in
Okazaki fragment maturation come and bind cyclically. For example, proteins such as FEN
1, polymerase δ, and ligase are included in the interactome of PCNA in S. cerevisiae, as well
as mammalian model systems. The conformational changes in these binding partners drive
the difference in the specificity of PCNA towards them [59].

In the eukaryotic replication system, Pol δ has the responsibility to carry out the
synthesis of lagging strand with the help of PCNA. After the strand displacement by
Pol δ-PCNA, the 5′ flap is removed by FEN-I and the Okazaki fragments generated are
ligated together by LigI. Depending on the number of functional binding sites available
on the trimeric clamp, all three proteins listed above can bind either cyclically [60] or
simultaneously [61], as has been shown for yeast and humans, respectively. After finishing
its job successfully, Pol δ dissociates from the DNA but remains bound to PCNA, and thus,
the number of FEN-I molecules associating with PCNA is limited. It was also observed
that LigI interacts with Pol δ, and a stable Pol δ-PCNA-FEN-I-LigI complex is formed on
the DNA. Once the 5′ flap is removed, Pol δ and FEN-I dissociate from PCNA. Now, LigI
can directly associate with the clamp and the nick can be effectively sealed. Therefore, by
allowing these three proteins to bind, PCNA manages the process of Okazaki fragment
synthesis and maturation [61].

1.6. Transcription Activation and the Clamp

A unique role of the T4 bacteriophage sliding clamp gp45 was established in the
late 1990s. It was noted that apart from replication, the T4 gp45 has a very crucial role
in activating the transcription of late genes, along with the T4 sigma factor gp55 and a
co-activator protein gp33 [62,63]. gp55 and gp33 interact with gp45 through the LDFL motif
present at their C-termini [64]. While gp55 is capable of carrying out basal transcription
from the T4 late promoter, the binding of gp33 suppresses this transcription. However,
interaction with gp45 with the RNA polymerase holoenzyme (RNA polymerase + gp55
+ gp33) enhances the transcription several folds [64]. Thus, gp45, the sliding clamp of T4
phage, moonlights as a transcription activator, and, in a manner, couples transcription
with phage DNA replication. A model by Geiduschek and Kassavetis explains the gp45-
mediated transcription initiation [46]. To initiate the transcription, the RNA polymerase
needs to locate the promoter sequences. Sliding clamp gp45 acts as a DNA-tracking protein
in this case. Due to the ATP hydrolysis, T4 clamp loader complex (composed of gp44 and
gp62 proteins) and gp45 dissociate from each other and the latter stays on the DNA. This
orphaned clamp now meets gp33 and gp55 while sliding on the DNA, and the three move
together and search for the promoter [46]. The recent cryo-EM structure elaborates the
entire process in a concordant manner with the proposed model. It was observed that gp55
causes a blockage in the RNA exit channel and may thus stop the further extension process.
Therefore, this roadblock has to be removed. In comparison, gp33 and gp45 do not cause
any hindrance and thus remain attached to the RNA polymerase. The presence of a sliding
clamp binding motif on gp55 enables it to stay attached to gp45, even after it is displaced
from RNA polymerase. Thus, soon after transcription termination, the promoter scanning
process is resumed (Figure 4) [65].

An in-depth mutational analysis of gp45 showed the significance of the two domains
of the gp45 monomer in the protein’s stability and activity in terms of both transcription
and DNA replication. Interestingly, the data suggested that certain mutations, such as
Q125A or K164A, located in the C-terminal domain of trimeric gp45, allowed the protein
to support only DNA replication and not late promoter transcription. Thus, this study
indicated that the C-terminal domain of the trimeric gp45 is likely involved in the late
promoter transcription activation [27].
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Figure 4. gp45 mediated transcription activation. After the gp45 is loaded onto the DNA, gp55 and
gp33 mediate the binding of gp45 with the RNAP. The three proteins, along with the RNAP, start
the promoter scanning process along the DNA, and initiate transcription upon interaction with a
promoter. Gray, RNAP; light orange, gp44; dark orange, gp62; cyan, gp45; yellow, gp55; dark green,
gp33; salmon, nontemplate-strand DNA; red, template-strand DNA; blue, -10-like element; magenta,
RNA. Reprinted from ref [65] under the terms of the Creative Commons CC BY license (full terms at
http://creativecommons.org/licenses/by/4.0/ (accessed on 3 November 2022)).

1.7. Role in Maintenance of Genome Integrity

Fidelity, along with processivity, is a necessary characteristic of cellular replication.
There are many factors responsible for causing serious DNA damage. If not rectified and
controlled, these damages can lead to genome instability, thereby causing chromosomal
aberrations and life-threatening diseases. According to the nature of DNA damage, multiple
DNA repair mechanisms have been identified. They include mismatch repair (MMR), break
induced replication (BIR), base excision repair (BER), and translesion synthesis (TLS),
among others. Sliding clamp is involved in many of these processes too (Figure 5).
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Mismatch repair is one of the post-replicative damage repair pathways, which exist in
almost all organisms with a few exceptions. MutS, MutL, and MutH and their eukaryotic
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clamp binding motif [67]. MutH is not present in all prokaryotes, and the endonuclease
domain of MutL compensates for its absence. The sliding clamp is also known to recruit
MutS, which is responsible for identifying the mismatches. A previous report by Simmons
et al. confirmed that the β clamp plays a critical role in stabilizing and recruiting MutS at
mismatched sites. Additionally, when a temperature-sensitive allele containing a G73R
mutation was examined, it failed to aid in the MMR pathway. The increase in mutation
frequencies in these allele was attributed to the failure of MMR instead of any other repair
pathway [68]. Similarly, in eukaryotes, PCNA is known to interact with MutS and MutL
homologs to serve in the MMR. The endonuclease domain of the MutL homolog is said to
be activated via PCNA [69].

Interestingly, in the phylum actinobacteria and some archaea, although the genes
related to the mismatch repair pathway are absent, the mutation rate is similar to that of an
organism with MMR. This finding hints at the presence of some other methods by which
these mutations are corrected [70]. Reports are available that suggest that some organ-
isms, such as Mycobacterium species, Corynebacterium glutamicum etc., possess a protein,
NucS, that has mismatch-specific endonuclease activity (EndoMS), and, hence, it is called
NucS/EndoMS. In the absence of this protein, the rate of mismatches increases sponta-
neously. The presence of the β-clamp binding motif and crosslinking studies suggested
interaction of the sliding clamp with EndoMS in C. glutamicum. This direct interaction is
responsible for lower mutation rates. It was also observed that tethering of the sliding
clamp with EndoMS leads to increased cleavage by the protein. It was further hypothesized
that the positioning of the EndoMS by the clamp at the mismatch site might play a role
in detecting errors. Additionally, the clamp might allosterically activate the enzymatic
activity of the endonuclease [71]. Thus, although the proteins involved in the mismatch
repair might differ in different organisms, the sliding clamp nevertheless plays a central
role in guiding and correctly recruiting these proteins.

Another kind of DNA repair pathway is the base excision repair (BER). As the name
suggests, the chemically altered or damaged base is identified and excised by DNA glyco-
sylases/endonuclease via this pathway. Further, the thus-generated abasic site is repaired
by other proteins involved in the process. BER is very efficient in the removal of these bases
and is, therefore, important for genome maintenance. It is also known to protect against
many diseases, including Huntington’s disease, as well as ageing [72].

In bacteria, Nei proteins are known to remove oxidized bases from DNA substrates.
In M. tuberculosis, it has been reported that Nei2, with its peculiar clamp binding motif,
interacts with subsites I and II, which are present near the interface of the dimeric clamp.
This interaction enhances the Nei2 activity by many folds [73]. It was also observed that
clamp interaction with another endonuclease, XthA, is of considerable importance for
mycobacterial BER [74].

Similarly, in mammalian systems, there are around 11 DNA glycosylases present, out
of which Neil, though it lacks a PIP motif, surprisingly binds to a disordered C-terminal
region of PCNA. This protein is also known to be stimulated by interaction with PCNA at
IDCLs. Through AFM analysis, it was observed that with Neil1, PCNA is not found in its
regular trimeric form, thus suggesting an entirely different kind of regulation and switching
from replication to repair [75]. Another DNA glycosylase involved in mammalian BER
is a type of adenine glycosylase, known as mammalian MutY homologue (MUTYH). It
binds via the regular PIP box and removes the adenine-paired opposite to 8-oxo-Guanine
generated because of ROS. PCNA provides a fixed direction to MUTYH for the removal of
the mispaired adenine [76]. Thus, both bacterial and eukaryotic clamps are involved in the
genome maintenance.

1.8. Translesion Synthesis and the Clamp

Occasionally, when the template to be replicated is severely damaged, and the DNA
repair methods discussed above fail to mitigate the damage, it leads to replication stalling.
The cells, in such a scenario, need a way out to continue the replication of the genetic
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material. The regular polymerase is of no help in these cases. At such times, cells respond
via two strategies: translesion DNA synthesis and non-mutagenic damage avoidance [77].
A separate Y-family, low-fidelity polymerase is engaged so as to maintain the replication
past these lesions. Such synthesis is termed translesion DNA synthesis (TLS) [78]. The
process of TLS is prioritized over the damage avoidance pathways as the low-fidelity
polymerases ensure genetic variability [77]. The Y-family polymerases include polymerase
IV and V in prokaryotes, and Pol
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When a replication block occurs, and pol III cannot carry out the synthesis any further,
Pol V binds at the damaged site. With the help of its interaction with the RecA and the β
clamp, pol V carries out the process of TLS [79]. Crystallographic evidence suggests that in
E. coli, pol IV is also known to enter the replisome under such circumstances; nevertheless,
both polymerases share the same binding site on the β clamp [80]. Once pol IV, the error-
prone polymerase, replicates the damaged part, pol III takes over for further synthesis [81].
In the eukaryotes, many post-translational modifications regulate interactions of PCNA
and thus assist in TLS. The process of TLS is said to be in control of monoubiquitination. It
is proposed that the differential affinity of various Y-family polymerases towards PCNA
determine which of them is to be recruited on the primer terminus [82]. The modified
PCNA thus switches from the high-fidelity polymerases to the low-fidelity ones. The Mms-
Ubc13-Rad5 complex can further polyubiqutinylate PCNA and cause template switching,
thus leading to error-free lesion bypass. In a similar manner, sumoylation of PCNA also
prevents replication fork collapse [83].

All the repair pathways and the proteins involved in them are absolutely essential for
genome maintenance. Loss or mutation in even one of them can cause havoc in a replicating
cell. The replication factor C-like complex, which acts as a clamp loader, is one such critical
protein. Its major subunit, Elg1 (ATAD5 in mammals), unloads PCNA from DNA and
is the one that ensures genomic integrity [84]. The absence of Elg1/ATAD5 leads to the
abnormal accumulation of PCNA on the DNA. Studies have concluded that indeed the
fundamental cause for the loss of genome stability is the problematic and unusual retention
of PCNA [85,86].

The exchange of polymerases involved in elongation and repair or ‘Polymerase switch-
ing’, is a critical process to ensure a correct and uninterrupted replication process. The
sliding clamp acts as a mediator between the polymerases. The polymerase switching
and the role of clamp in this process were first discovered in the T4 bacteriophage. It
was advocated that in the T4 phage, there can be either a momentary attachment of the
arriving polymerase with the inter-domain region of the clamp before exchange or a direct-
displacement of the already attached polymerase [87]. A well-known ‘tool-belt’ model
suggests that two polymerases can simultaneously bind the clamp while their interaction
affinity drives the switch [88]. However, some reports contradict this model and assume
that only one polymerase can attach at a time to the sliding clamp. In 2013, Rego et al.
proposed that the replicative polymerase pol III of E. coli establishes contact with the slid-
ing clamp at two sites. The exonuclease domain is responsible for this extra but weaker
interaction of pol III with the clamp. When the replication gets stalled and the damage is
not repairable, pol IV comes to the rescue. The increased concentration of this polymerase
and the weaker interaction at the exonuclease domain are responsible for the removal of
the pol III from the damage site [81]. Thus, the interaction points between the polymerase
and the clamp play a pivotal role in regulating TLS.

In S. cerevisiae, it was shown that the PIP motif was crucial in polymerase exchange.
Furthermore, the stalling of polymerase δ and monoubiquitination of PCNA were a pre-
requisite of polymerase η binding. The modifications in PCNA may be essential for
attracting and providing a certain favourable conformation to pol η. Once the damage is
repaired, the regular polymerase is available again, but only after PCNA undergoes deubiq-
uitination [89]. Thus, both the repair and replication can go hand in hand uninterruptedly,
with the sliding clamp being their bridge.
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1.9. Transposon Interaction with β Clamp

In 2009, it was shown that transposon insertion in replicating DNA occurs through β
clamp. Experimental evidence suggests that β clamp interacts physically and functionally
with the Tn7 transposon-encoded protein TnsE and dictates their selective introduction
and activation. Interaction with TnsE (foreign protein) does not hamper the regular physio-
logical roles of the β clamp inside the cell [90]. Many other insertional sequences (ISs) were
later shown to functionally interact with the β clamp [91]. This suggested that transposition
and replication are linked and occur in a well-coordinated manner.

1.10. Other Moonlighting Roles of PCNA

The moonlighting functions discovered till date for the bacterial sliding clamp are
somewhat lesser known than its eukaryotic counterpart. The increased complexity of
eukaryotes might be one of the many reasons for the diverse roles of PCNA. Apart from the
position in replication and repair, this versatile protein can perform several other functions.
The fact that many organisms do not depend on the clamp for increasing the processivity
leads to the proposal that the clamps did not naturally evolve just for the sole purpose of
providing processivity. Instead, the polymerases evolved themselves to depend on clamps
to fulfil other important functions. Thus, the dependency on the clamps is the ‘cause’, and
the ‘effect’ is the accumulation of clamps on the newly replicated DNA. This hypothesis
paves the way for understanding different activities occurring on daughter DNA duplexes
‘marked’ by PCNA [44].

Nucleosome assembly is one such event where the localization of PCNA on new DNA
further brings in proteins such as the chromatin assembly factor (CAF-1), thereby causing
an assembly of H3 and H4 histones [92]. PCNA is also thought to mediate the methylation
of newly replicated DNA via DNA cytosine methyltransferase (Dnmt 1), the enzyme
responsible for the CpG methylation. Dnmt 1 has a PCNA-binding motif, and therefore,
has a greater affinity for PCNA-bound DNA than free DNA. This leads to an increased
efficacy of selective and specific methylation on hemimethylated daughter DNA [93].

It has now been established that PCNA has a considerable number of partners to
associate with (Table 1), and the extent of the binding efficiency determines the role to be
played by this extraordinary mediator. It has a reputation to usher many proteins involved
in cell cycle regulation, cell signaling, and apoptotic pathways. For example, UV-irradiated
ING 1, a tumour suppressor protein, binds tightly to PCNA leading to the commencement
of apoptosis. There are also many anti-apoptotic proteins, such as Gadd45 family, which
have a PIP-box. The binding of these proteins to PCNA causes their inactivation and
thereby inhibits apoptosis. PCNA is also involved in regulating the stability of p53, a
tumour suppressor protein [25].

Owing to the large number of proteins that can interact with PCNA, as well as its role
in cell proliferation, the role of PCNA in cancer is of great interest. It is now widely known
that the majority of PCNA functions are controlled via post-translational modifications.
A Tyr residue present at the 211 position is known to get phosphorylated by EGFR and
c-ABL tyrosine kinase. This phosphorylation helps in promoting cell proliferation in
cancerous cells, and blocking the phosphorylation of this residue, in turn, leads to tumour
suppression [24].

Cancer cells are known to be immortal. To achieve this immortality, they have to
stop the telomerase shortening process. This is usually accomplished by two methods:
either by extension with the help of Telomerase, a reverse transcriptase, or through the
alternative lengthening of the telomeres (ALT) pathway. In contrast to the cancer cells
containing telomerases, cells undergoing the ALT pathway are more prone to replicative
stress, dsDNA breaks (DSBs) and replication blocks. In order to avoid various chromosomal
aberrations and rearrangements, this stress should be mitigated. PCNA is known to mediate
in this matter. It interacts with RTEL1, which resolves the G4 structures formed due to
repetitive G-rich sequences of telomeres. Apart from this, it also recruits the pol δ complex
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at telomere synthesis sites. Thus, because of such strong roles in cancer progression, PCNA
is considered as an effective target for the disease treatment [94,95].

Table 1. Sliding clamp-binding proteins. Table shows the list of various cellular processes and the
proteins that interact with the sliding clamp during these processes.

Process Proteins Interacting with Eukaryotic
PCNA

Proteins Interacting with
Bacterial Sliding Clamp

DNA replication

DNA Polymerase δ, DNA Polymerase ε,
Replication factor (RfC1, Rfc3, Rfc4), Flap
endonuclease (FEN-1), DNA ligase 1, DNA
topoisomerase 1, Cdt1, Topo Iiα

DNA Polymerase III, DnaA,
Clamp loader complex, DNA
Polymerase I, DNA ligase

DNA repair

DNA mismatch repair protein Msh3, Msh6,
Mlh1, Exonuclease 1, UNG2, MPG, PARP-1,
APE1, APE2, XRCC1, WRN, BLM, RECQ5,
NTH1, hMYH, XPG MutL, MutS, NucS, Nei2, XthA,

DNA Polymerase IV, DNA
Polymerase V

DNA damage

DNA Polymerase η, DNA Polymerase ζ,
DNA Polymerase λ, DNA Polymerase κ,
DNA repair protein REV1, E3
ubiquitin-protein ligase RAD18 and Rad5

Chromatin Assembly WSTF, DNMT1, HDAC1, p300, CAF-1 _

Cell cycle control
p21 (C1P1/WAF1), P27 (KIP2), Cyclin D1,
MCL1, P15 (PAF), CDK2, ING1b, Gadd45,
MyD118, CR6, P53, MDM2

DnaA, Hda

Sister chromatid
cohesion ESCO1, ESCO2, Chl1, Ctf18 _

In neutrophils, PCNA has been found to be associated with various procaspases in
the cytosol to prevent their activation, thereby preventing apoptosis and governing the
neutrophil survival. Various post-translational modifications could be responsible for this
association [96]. Furthermore, one of the two PCNA-interacting motifs, APIM, found in
eukaryotes has been shown to be conserved in the proteins of PI and MAPK pathway
in yeast and humans, which suggests that PCNA acts as a platform for various protein
interactions in the cellular stress response [97].

1.11. Unusual Processivity Factors
1.11.1. Viral Clamps

Computational analysis of viral replisomes suggested that a few viruses lack clamp
loader complexes [98]. Sliding clamps of such viruses are high in positive charges and
directly bind to the dsDNA. These clamps are not ring-shaped and they stay attached
to their respective DNA polymerases either as monomers (UL42) or dimers (UL44). The
proposed structure of the Herpes simplex virus clamp UL42 shows that DNA polymerase
binds to the outer β-sheet and the clamp interacts with DNA through a positively charged
α-helix [98,99]. The Human Cytomegalovirus clamp UL44 is a C-shaped dimeric clamp
that looks like a hybrid of PCNA and UL42 [100]. The computational analysis shows that
viral clamps can be categorized as either cellular (β clamp or PCNA) or viral (gp45, Ul42,
UL44, and BMRF1) homologues [98].

1.11.2. 9-1-1 Clamp

Schizosaccharomyces pombe, S. cerevisiae and H. sapiens have a unique heterotrimeric
clamp-like protein called a 9-1-1 clamp because each subunit is encoded by RAD9 (396 aa),
RAD1 (286 aa), and HUS1 (283 aa) [101]. Although PCNA and 9-1-1 clamps have insignif-
icant sequence similarity, they are structural homologues, and the 9-1-1 clamp has also
been referred to as ‘PCNA’s specialized cousin’ in the literature [102]. The 9-1-1 clamp has
also been found to hold significance in checkpoint control; hence the name, checkpoint
clamp [103]. It interacts with Chk 1, which is a protein kinase that regulates S-phase pro-
gression, G2/M arrest, and the replication fork stabilization [104]. Furthermore, 9-1-1 clamp
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has also been shown to have a role in DNA repair [103]. Similarly, Sulfolobus solfataricus, a
hyperthermophilic archeon, is known to have PCNA composed of three distinct proteins,
which interact together to form a heterotrimer and participate in DNA replication [105].

1.11.3. Thioredoxin as the T7 Clamp

Bacteriophage T7 replisome machinery does not have a sliding clamp. Interestingly,
its DNA polymerase uses thioredoxin, a small redox protein, to enhance its processiv-
ity. Therefore, to stay tethered to the replication fork, the T7 DNA polymerase binds to
helicase [106,107]. During DNA damage, unlike other replisomes, the T7 DNA Polymerase-
Helicase complex remains associated with the DNA and executes replication through lesion
without getting dissociated from DNA [108]. Polymerase switching in the T7 replisome
occurs rather easily; the incoming polymerase passively binds the helicase and replaces the
synthesizing polymerase without affecting replication processivity and fidelity [109,110].
This is somewhat similar to T4 replisome dynamic processivity.

1.12. Utilizing the Potential of Clamps: Development as Therapeutic Targets

A vast repertoire of proteins has been identified till date, whose functions are modu-
lated via the sliding clamps. Not only in eukaryotes but also in prokaryotes, this interactome
is being identified continuously. The ability of the clamps to affect and regulate many
different cellular processes makes them a strong candidate for the development of new
therapeutic targets. The hydrophobic cleft, at which all of the clamp-interacting proteins
bind, via their clamp-binding motif, can be a good target for the same. Specific small
molecule inhibitors, peptides, natural products, non-steroidal inflammatory drugs, etc.
have been developed that strongly bind to the hydrophobic clefts of the clamps to inhibit
replication and repair pathways [111,112]. Various studies on bacterial-encoded toxins also
encourage the identification of new drug targets. For example, in SocAB, a toxin-antitoxin
system found in C. crescentus, the toxin SocB inhibits the elongation step of DNA replication
by binding to the sliding clamp via the usual clamp-binding motif. The binding of SocB
takes place in the hydrophobic cleft of the clamp, a site shared by many other proteins.
Therefore, barring the elongation step, various other interactions could also be inhibited
because of this SocB-DnaN association. Small molecule therapeutics could be designed
based on this knowledge, making the sliding clamp a crucial target for disrupting vital
functions in pathogenic bacteria [113].

In a recent report, it was shown that bacterial growth is inhibited by low concentrations
of cell-penetrating peptides containing PCNA binding motif [114]. Certain inhibitors
containing tetrahydro carbazole moieties have also been designed, which mimic the binding
between linear motifs from polymerases and E. coli sliding clamps [115]. RU7, which is
one of the first inhibitors to be developed, is known to inhibit polymerase II, III, and
IV [111]. The sliding clamp has also been considered as a potential drug target against M.
tuberculosis. Grieslimycin, a derivative of streptomycin, was found to be active against the
bacterium by inhibiting its sliding clamp and thereby replication [116]. Similar inhibition of
replication was seen by the use of several non-steroidal anti-inflammatory drugs (NSAID)
in E. coli [111].

Since PCNA is overexpressed in rapidly dividing cancer cells, it acts as a potential
therapeutic target against cancerous cells. PCNA has been developed as a drug target by the
formulation of peptides, which either intervene between different associating proteins and
PCNA or alter the modifications of the PCNA. One well-known protein, p21, is known to
interact with PCNA very strongly. Peptides derived from the PIP motif of p21 associate with
the IDCLs of PCNA and, therefore, make the site unavailable for several other interacting
partners [117]. Prevention of post-translational modifications of PCNA by inhibitory
peptides is also one of the many ways through which processes, such as cell growth, etc.
can be modulated. Additionally, small molecules targeting PCNA trimerization have also
been designed and have been shown to be effective against tumour growth [118]. Studying
how some diseases progress and how certain pathogenic bacterial proteins interact with the
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sliding clamps gives insight into the mechanism by which the basic cellular pathways can
be hampered. This would help in the development of novel anti-microbial and anti-cancer
drugs [24,117].

2. Conclusions

The DNA polymerase executes DNA replication with high fidelity and processivity.
The processivity is contributed by the sliding clamp protein that binds to DNA polymerase
during DNA synthesis. However, the sliding clamps have come a long way from being mere
processivity factors to becoming a ‘Jack of all trades’. These polymaths, with wide-ranging
communication abilities, lie at the heart of several critical pathways in a cell. The presence of
a conserved binding motif in all interacting partners allows them to associate with the clamp
and carry out their necessary functions in a coordinated manner. The ‘tool-belt’ model
can explain how this heavy traffic is regulated. Moreover, the presence of nearly the same
consensus sequence in all the interacting proteins sheds some light on how evolution has
resulted in the same protein mediating different pathways, and thus there is connectivity
between them. The presence of similar secondary clamp-binding motifs in some proteins
further fine-tunes their regulation. The clamps also mark the newly replicated DNA for
nucleosome assembly and chromatin modelling. Further structural studies on clamps of
different organisms can elaborate on the structural-functional relationships and how the
regulation of various proteins involved in replication and repair is refined. Nevertheless,
the existing knowledge on both prokaryotic and eukaryotic sliding clamps is vast and
establishes their role not only as proteins that hold the polymerase on the DNA, but also
as proteins which help in maintaining error-free replication, DNA methylation, cell-cycle
progression, apoptosis, etc. (Figure 6). Thus, the significant roles played by sliding clamps
in replication, genome maintenance, etc. also make them an attractive target for developing
potent antibiotics or anti-cancerous agents.
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