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Abstract: Speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) is a cullin 3-based E3
ubiquitin ligase adaptor protein that plays a crucial role in ubiquitin-mediated protein degradation.
Recently, SPOP has attracted major research attention as it is frequently mutated in a range of
cancers, highlighting pleiotropic tumorigenic effects and associations with treatment resistance.
Structurally, SPOP contains a functionally critical N-terminal meprin and TRAF homology (MATH)
domain for many SPOP substrates. SPOP has two other domains, including the internal Bric-a-brac-
Tramtrack/Broad (BTB) domain, which is linked with SPOP dimerization and binding to cullin3, and
a C-terminal nuclear localization sequence (NLS). The dysregulation of SPOP-mediated proteolysis is
associated with the development and progression of different cancers since abnormalities in SPOP
function dysregulate cellular signaling pathways by targeting oncoproteins or tumor suppressors
in a tumor-specific manner. SPOP is also involved in genome stability through its role in the DNA
damage response and DNA replication. More recently, studies have shown that the expression of
SPOP can be modulated in various ways. In this review, we summarize the current understanding of
SPOP’s functions in cancer and discuss how to design a rational therapeutic target.
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1. Introduction

Protein degradation is an essential biological process that is involved in cellular home-
ostasis. Many diseases, including various cancers, result from the abnormal accumulation
of proteins [1]. The ubiquitin proteasome system controls approximately 80% of the ubiq-
uitination and degradation of intracellular proteins [2–4]. Ubiquitination is a conserved
post-translational modification that is involved in regulating cell proliferation, differentia-
tion, cell cycle progression, apoptosis, transcription, DNA damage and repair and drug
resistance [2,3,5]. Ubiquitination is closely associated with carcinogenesis resulting from
oncogenic alterations that disrupt the ubiquitination of proteins involved in key tumor
suppressor pathways [6]. Proteasome-mediated degradation is a multi-step process that
involves the labelling of target proteins with ubiquitin molecules (a single ubiquitin protein
or multiple ubiquitin molecules), followed by the degradation of the target ubiquitinated
substrates by the 26S proteasome complex [7,8].

Briefly, the first step in proteasomal degradation is the ATP-dependent activation of
ubiquitin by the ubiquitin-activating E1 enzyme. The activated ubiquitin is transiently
conjugated to a ubiquitin-conjugating E2 enzyme through a transthiolation reaction, after
which a ubiquitin-protein E3 ligase transfers to the specific target substrate for ubiquitin
ligation [9]. In mammalian cells, different numbers of ubiquitin ligases exist, including
several E1 ligases, 30–40 E2 ligases and more than 600 putative E3 ubiquitin ligases [10,11].
Among these E3, the Cullin–RING ubiquitin ligases (CRLs) complex family is the most
prominent group and consists of eight Cullin scaffold proteins (CRL1, 2, 3, 4A, 4B, 5, 7, 9)
(CRL1, 2, 3, 4A, 4B, 5, 7, 9) [10,12,13]. Generally, the Cullin–RING ligase complex consists
of the Cullin scaffold protein, a ring box protein, an adaptor, and the substrate receptor.
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In contrast to other CRLs, the Cullin3-RING consists of three primary components: the
Cullin scaffold protein, a ring box protein called RBX1 and a Bric-a-brac-Tramtrack/Broad
(BTB) protein that performs the dual functions of an adaptor and substrate receptor [13,14].
The speckle-type POZ protein (SPOP) is produced by the SPOP gene and was originally
identified as a protein by Nagai et al. in 1997. SPOP is a BTB protein containing meprin and
TRAF homology (MATH) and BTB domains that can bind Cullin 3 and other substrates [15].

An increasing amount of evidence indicates that SPOP may have dual functions in tu-
morigenesis. SPOP variants have been reported in many types of cancer, including prostate
(PrCa) [16–18], endometrial cancer (EC) [19], ovarian [20,21], liver [22], thyroid [23,24],
breast [25] and kidney cancers [26] amongst others. The majority of SPOP-related studies
have been carried out in PrCa, where it has been reported that 6–15% of patients have point
mutations in the substrate-binding MATH domain despite the discovery of a mutation in
the BTB domain [27,28]. Mutations in the MATH domain have been recognized as an early
event in the development and progression of PrCa, as SPOP mutations are associated with
PrCa’s lack of rearrangements of TMPRSS2 ETS family genes [29–31].

Several genomic analyses have reported SPOP mutations in EC [32–34]. A previous
study showed that SPOP mutations in EC fail to interact with and ubiquitinate estrogen
receptor-α (ERα), thus facilitating tumorigenesis [35]. In contrast, a recent study suggested
that SPOP mutations associated with EC increase the ability of three BETs (BRD2, BRD3
and BRD4) to bind and enhance polyubiquitination of these substrate proteins, leading to
degradation and enhanced sensitivity to BET inhibitors [19]. These studies highlight that
the pathophysiological function of SPOP mutations remains to be fully understood in EC.

SPOP mutants associated with ovarian, liver and thyroid cancers have been reported
in several sequencing studies [20,22–24]. In breast cancer, studies have revealed that SPOP
targets substrates such as c-Myc, steroid receptor coactivator 3 (SRC-3) and progesterone
receptor (PR), thus functioning as a tumor suppressor [25,36,37]. However, SPOP can also
directly interact with and mediate the ubiquitination and degradation of breast cancer
metastasis suppressor 1 (BRMS1), which is a member of the metastasis suppressor family
with known repressive effects on distant metastasis [38]. In contrast to other cancer types,
studies have shown that SPOP is highly expressed in clear-cell renal cell carcinomas
(RCCs). SPOP-mediated tumorigenesis in RCCs may be mediated by the degradation of
cell proliferation suppressors and anti-apoptosis regulators such as Phosphatase and tensin
homolog (PTEN), Daxx, Dual-Specificity Phosphatase 7 (DUSP7) and Gli2 [39]. These
findings suggest that SPOP can act as a tumor suppressor in various solid cancers but also
as a tumor promoter in RCCs. The molecular mechanism through which SPOP performs
its functions is that its substrates mediate various cellular processes, including signaling
pathways, transcriptional regulation, genome stability and so on. Additionally, SPOP can be
regulated by MicroRNAs (miRNAs) and other molecules and can be post-transcriptionally
modified by cationic processes such as phosphorylation and self-ubiquitination.

In this review, we introduce the structural features of SPOP and provide a foundation
for understanding that SPOP interacts with and mediates efficient substrate ubiquitination
in multiple cancers. We discuss the substrate-regulated processes that are involved and
the underlying molecular mechanisms of oncogenesis. Finally, we discuss the regulatory
mechanisms of SPOP gene expression.

2. The Modular Structure of SPOP
2.1. The SPOP MATH Domain

SPOP is a 374-residue protein that consists of four domains: an N-terminal MATH
domain, a BTB/POZ domain, a BACK domain and a C-terminal NLS (Figure 1). The MATH
domain (residues 31–164) has an antiparallel β-sandwich structure that selectively recruits
substrates and is the predominant domain in which mutations occur [40]. Several critical
residues such as Y87, F102, Y123, W131 and F133 are capable of binding the SPOP-binding
consensus (SBC) motif from different substrates through the shallow central cleft [14,40].
The SBC motif comprises a five-residue Φ-π-S-S/T-S/T (Φ, denotes a nonpolar amino
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acid; π, denotes a polar amino acid) [40–42]. The interactions of the MATH domain and
SBC motif rely on hydrophobic and polar interactions [40]. It has been reported that
the binding affinity of one domain is independent of the other MATH domain within
the dimer. Consequently, the dimeric configuration can increase the ability of binding
to substrates in a substrate-specific manner, but only these substrates contain multiple
suboptimal SBC motifs [6,43]. Additionally, it is important that polyubiquitination be
followed by degradation when substrates have multiple SBC motifs, since substrates
merely undergo monoubiquitination when they contain only one SBC motif [43]. Zhuang
et al. reported that SBC phosphorylation in MacroH2A and Puc can block binding to SPOP,
however; more studies are needed to verify these observations [40]. Exploratory analyses
of SBC phosphorylation of other substrates at perhaps a range of sites and the responding
biochemical functions are required.
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ciated with α1-3 helices and is related to a strand-exchanged amino terminal region. Four 

Figure 1. Illustration of the structural features of Speckle-type POZ (pox virus and zinc finger
protein) protein (SPOP). The modular structural arrangement of SPOP is shown, which includes
the N-terminal meprin and TRAF homology (MATH) domain that selectively recognizes and re-
cruits substrates. Somatic mutations are predominantly clustered in several key amino acids in the
N-terminal MATH domain, including Y87, F102, S119, F125, K129, W131, F133 and K134. The Bric-a-
brac-Tramtrack/Broad (BTB) domain is responsible for binding to cullin3 and SPOP dimerization,
which also involves the BACK domain. The nuclear localization signal (NLS) is a C-terminal nuclear
localization sequence.

2.2. The SPOP BTB Domain

The BTB domain is a versatile protein-protein interaction motif and a common struc-
tural element that was discovered in zinc finger transcription factors and Cul3 substrate
adaptors. In the human genome, it is encoded by ~205 genes [8,44]. The BTB domain
(residues 184–297) is responsible for SPOP dimerization and interactions. Specifically, an
α3–β4 loop that consists of approximately ten amino acid residues in the BTB domain and
is fundamental for the interactions [10,45–47].

Beyond the BTB domain, α-helices make up the three-box domain, which can enhance
SPOP-Cul-3 interactions [48]. The BTB domain can dimerize to promote the dimerization
of SPOP-cullin3 to generate an oligomeric CRL3 that is highly multivalent and has multiple
catalytic centers for substrates [40,48,49]. There is a very low dissociation constant within
BTB domain-mediated dimerization [43]. The dimerization capability is associated with
α1-3 helices and is related to a strand-exchanged amino terminal region. Four essential
hydrophobic BTB dimerization residues, L186, L190, L193 and I217, jointly contribute to
the residues 184–297 to form SPOP dimers [14,40]. Dimerization-defective SPOP mutants
exhibit impaired ubiquitination without a significant decrease in binding cullin3 affinity [40].
In the human proteome, only SPOP and its homolog, SPOP-like (SPOPL), have both BTB
and MATH domains, despite BTB usually being linked to other interaction domains [44].

2.3. The SPOP BACK Domain

The BACK domain (residues 300–359) also mediates dimerization [49]. There are over
50 known human proteins that have BACK and BTB domain combinations [44]. Only the
BACK domains within SPOP and SPOPL (which is a unique human SPOP analog) have an
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atypical truncation that allows dimerization of the BACK domain [50]. The dimerization in-
terface consists of the BTB and BACK domains. The C-terminus acts independently to form
higher-order SPOP oligomers capable of enhancing the ubiquitination of substrates [51].
These oligomers enable augmenting the E3 activity by increasing the substrate avidity and
the availability of the E2 ubiquitin-conjugating enzyme [48,51].

2.4. The SPOP NLS Domain

SPOP contains a NLS at its C-terminus, in which amino acids 359–374 are essential for
its location at nuclear speckles. The NLS is essential for the nuclear localization of SPOP
and its interactions with nuclear-localizing substrates. SPOP lacking the NLS accumulates
in the puncta of the cytosol [52].

3. SOP Expression in the Development, Progression and Treatment of Cancer

Multiple studies have suggested that SPOP has dual functions in tumorigenesis based
on gene expression and clinical datasets. The analysis of datasets from The Cancer Genome
Atlas (TCGA) and other sources has indicated that the majority of cancers have significantly
decreased expression of SPOP compared to corresponding normal controls, including blad-
der urothelial carcinoma (BLCA), colon adenocarcinoma (COAD), kidney chromophobe
(KICH), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), prostate
adenocarcinoma (PRAD), rectum adenocarcinoma (READ), thyroid carcinoma (THCA) and
uterine corpus endometrial carcinoma (UCEC) [Figure 2a].
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Bladder Urothelial Carcinoma; BRCA, Breast invasive carcinoma; CHOL, Cholangiocarcinoma;
COAD, Colon Adenocarcinoma; ESCA, esophageal carcinoma; HNSC, Head and Neck squamous cell
carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP, Kidney renal
papillary cell carcinoma; LIHC, Liver hepatocellular carcinoma; LUAD, Lung adenocarcinoma; LUSC,
Lung squamous cell carcinoma; PAAD, Pancreatic adenocarcinoma; PRAD, Prostate adenocarcinoma;
READ, Rectum adenocarcinoma; STAD, Stomach adenocarcinoma; THCA, Thyroid carcinoma;
UCEC, Uterine Corpus Endometrial Carcinoma; ns, not significant; * p < 0.05, ** p < 0.01, *** p < 0.001.
(b) SPOP alterations occur across multiple cancer types (data from the cBioPortal database). (c) The
correlation of SPOP with overall survival is further elevated (data from the The Cancer Genome Atlas
(TCGA) portal or other published datasets of clinical cancer samples as indicated).

Cholangiocarcinoma (CHOL), esophageal carcinoma (ESCA), liver hepatocellular
carcinoma (LIHC), kidney renal clear cell carcinoma (KIRC) and kidney renal papillary
cell carcinoma (KIRP) show a marked increase in the expression of SPOP, yet the ESCA
variable was not statistically significant [Figure 2a].

Analysis of data in the cBioPortal database (www.cbioportal.org/) has shown that
SPOP alterations occur in different tumor types. The alterations include mutation, structural
variants, amplification, deep deletion and multiple alterations [Figure 2b]. SPOP mutations
are most common in PrCa, in which the SPOP mutation rate is 12%, which is consistent
with previous reports [27]. A previous clinical study suggested that SPOP mutations and
downregulation were tightly associated with a poor prognosis in patients with PrCa [18].
From the data presented in Figure 2a, further analyses revealed that the upregulation of
SPOP may predict favorable outcomes in KIRC and LUAD. In contrast, the low expression
of SPOP is associated with improved outcomes in KICH, KIRP, LIHC and PRAD [Figure 2c].
However, patients with BLCA, CHOL, COAD, LUSC, READ, THCA and UCEC do not have
significant associations between SPOP expression and overall survival (OS) [Figure 2c].
These findings require further validation before being used in routine patient management.
In addition to the observations made in clinical cancer datasets, previous studies have also
found that SPOP can have both oncogenic and tumor-suppressor functions [41].

In 2010, Kan et al. originally reported that SPOP is frequently mutated in PrCa [53].
Subsequently, whole-genome and exome sequencing analyses discovered that SPOP mu-
tations occur as early events in the development of PrCa but do not occur in normal
issues or prostate stroma [17,27,29,30,54,55]. In PrCa, SPOP mutations are located in the
MATH domain, which typically contains Y87, F102, S199, F125, W131, K129, F133 and
K143 mutations [Figure 1] that have been identified as biologically relevant events [27].
SPOP mutations can lead to genomic instability and impaired genome maintenance, re-
sulting in the inactivation of BRCA1 and an impaired homology-directed repair (HDR)
function [55]. Importantly, several have further indicated that SPOP acts as a tumor sup-
pressor by promoting the ubiquitination and subsequent degradation of downstream
substrates, including the Androgen receptor (AR) [56,57], steroid receptor coactivator
3 (SRC3) [58], TRIM24 [59], Gli3 [60–63], HIPK2 [64], 53BP1 [65], (Programmed death
ligand 1) (PD-L1) [66], BMI1 [67], Macrohistone H2A1 (MacroH2A) [67,68], Pancreatic duo-
denal homeobox 1 (Pdx1) [69–71], SENP7 [72], ERG [73,74], BRD2/3/4 [19,75,76], DEK [77],
DDIT3 [78], Nanog [79,80], Cdc20 [81], CYCLIN E1 [82], c-MYC [83], INF2 [84], EgIN2 [85],
Activating Transcription Factor 2 (ATF2) [86], fatty acid synthase (FASN) [87], Caprin1 [52],
17βHSD4 [88], ITCH [89], GLP [90], CDCA5 [91], PDK1 [92], SQSTM1 [93] and PrLZ [94].
These substrates can regulate diverse cellular processes in PrCa [Figure 3a]. colorectal
cancer, diffuse large B-cell lymphoma, lung cancer, liver cancer, choriocarcinoma, Ewing
sarcoma and hepatoblastomthe downregulation of SPOP can promote the development
and progression of PrCa, making it a potential therapeutic target.

www.cbioportal.org/
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Figure 3. The potential oncogenic functions of Speckle-type POZ (pox virus and zinc finger protein)
protein (SPOP) in kidney cancer and tumor-suppressive roles in other cancer types. (a) SPOP exerts
potential antitumor activity by regulating proliferation, migration, invasion, metastasis, apoptosis,
drug resistance, cell senescence and lymphocyte infiltration via modulating various substrates in
PrCa. (b) SPOP has tumor-suppressive effects across multiple cancer types, including endometrial,
gastric, colorectal, cervical and lung cancers, hepatocellular carcinoma, choriocarcinoma, Ewing
sarcoma and diffuse large B-cell lymphoma. It has dual roles in breast cancer that regulate the
degradation of its various substrates. (c) SPOP exerts its potential oncogenic activity by enhancing
the ubiquitination and degradation of Phosphatase and tensin homolog (PTEN), Dual-Specificity
Phosphatase 7 (DUSP7), Gli2 and SETD2 to promote renal carcinogenesis.

The majority of cancer studies involving SPOP have been in PrCa; however, mul-
tiple studies have reported SPOP mutations in other cancer types including EC, breast
cancer (BC), gastric cancer (GC), colorectal cancer, diffuse large B-cell lymphoma, lung
cancer, liver cancer, choriocarcinoma, Ewing sarcoma and hepatoblastoma. The SPOP
substrates in these cancers include: ERα [35,95], and BRD 2/3/4 in endometrial cancer [19],
ERα [96], PR [37], SRC3 [25], c-MYC [36], BRMS1 [38], ASCT2 in breast cancer [97], Gli2
in gastric cancer [98], Gli2 [99], HDAC6 in colorectal cancer (CRC) [100], and MyD88
and CHAF1A in diffuse large B-cell lymphoma (DLBLC) [101–104]. Fas-associated death
domain protein (FADD) [105], SIRT2 in lung cancer (LC) [106], SENP7 in hepatocellular
carcinoma (HCC) [107], DHX9 in choriocarcinoma [108], FLI1 in Ewing sarcoma [109], and
SLC7A1 [110], DRAK1 and PIPKIIβ in cervical cancer (CC) [111,112]. Figure 3b summarizes
the different SPOP substrates and their functions in cellular processes reported in different
cancers. The in-depth investigations are necessary to validate the definitive role of SPOP in
these cancer types before designing a clear rationale for therapeutic strategies.

SPOP could potentially have tumor-suppressive roles in several cancers. Emerging
evidence demonstrates an oncogenic function of SPOP in kidney cancer (KC). Studies
have reported the overexpression and accumulation of SPOP in renal cell carcinoma (RCC)
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in primary and metastatic tissues that is significantly associated with EMT and poor
prognosis [26,113–115]. In contrast, SPOP silencing in the A498 and ACHN RCC cells
induces cell apoptosis, inhibits cell viability, and decreases colony formation and migration
ability whilst also increasing sensitivity to Sorafenib [116]. In addition, Li et al. reported that
the SPOP protein can accumulate in the cytoplasm under hypoxia to promote tumorigenesis
via the degradation of tumor suppressors such as PTEN, DUSP7, ERK phosphatases and
Gli2 as well as the proapoptotic protein Daxx in clear cell renal cell carcinoma (ccRCC) [39].
SPOP can also be responsible for the polyubiquitination of the tumor suppressor SETD2 and
can negatively regulate H3K36me3 levels in RCC [117,118]. In summary, SPOP possesses
an oncogenic role in RCC via overexpression, cytoplasmic accumulation and subsequent
ubiquitination and degradation of multiple tumor suppressive substrates [Figure 3c]. Given
these findings, SPOP inhibitors may be a potential new therapeutic in the treatment of RCC.

SPOP has oncogenic or tumor suppressive functions that are cancer type specific. The
development of targeted therapies enables treatment for different human cancers. Previous
structural analyses have indicated that SPOP binds to the SBC motif of specific substrates via
its N-terminal MATH domain [40]. On this basis, Guo et al. identified 109 small molecule
inhibitors by computational screening that can disrupt SPOP-substrate interactions [119].
Among the identified molecules, compound 6a was considered an initial hit for binding
SPOP that competed with the puc_SBC1 peptide. Additional synthetic optimization of 6a
resulted in a compound that had strong inhibitory activity in disrupting SPOP’s binding to
PTEN and DUSP7. This resulted in the inactivation of downstream signaling pathways
such as the PTEN-phosphoinositide 3-kinase/AKT pathway and the dephosphorylation of
extracellular signal-regulated kinase (ERK) [119]. The small-molecule inhibitor 6b was also
cytotoxic in A498 ccRCC cells and stabilizes SPOP substrates [119]. Recently, Rincon et al.
identified novel therapeutic natural compounds that can specifically target stable MCF-7
SPOP knockdown cells by disrupting GLI3-dependent SHH signaling [120].

4. SPOP-Regulated Processes

SPOP serves as a regulatory hub that mainly works on two necessary processes, specif-
ically intracellular signaling pathways and the regulation of genomic function (Table 1) [14].

Table 1. Summary of SPOP substrates and their cellular functions. Androgen receptor—AR, pro-
gesterone receptor—PR, steroid receptor coactivator 3—SRC3, Macrohistone H2A1—MacroH2A,
Phosphatase and tensin homolog—PTEN, Dual-Specificity Phosphatase 7—DUSP7, Fas-associated
death domain protein—FADD, Programmed death ligand 1—PD-L1, Pancreatic duodenal homeobox
1—Pdx1, fatty acid synthase—FASN, breast cancer metastasis suppressor 1—BRMS1.

SPOP-Binding Substrates Pathway or Process Involved Refs.

AR, TRIM24 Androgen receptor signaling [56,57,59]
17βHSD4 Androgen biosynthesis [88]

ERα Estrogen receptor signaling [35,95,96]
DDIT3 ER stress-induced apoptosis [78]

PR Progesterone receptor signaling [25,36,37]

SRC3 Progesterone, estrogen and androgen
receptor signaling [25,58]

HIPK2, 53BP1 DNA damage response [64,65]
GLP DNA methylation [90]

SETD2 H3K36 Trimethylation [117,118]
DEK DNA replication and mRNA processing [77]

BMI1, MacroH2A X-chromosome inactivation [67,68]
Gli2, Gli3 Hedgehog signaling pathway [39,60–63,98,99]

CDCA5, PDK1, PTEN PI3K-AKT signaling pathway [39,91,92]
DUSP7 ERK pathway [39]
PIPKIIβ Phosphoinositide signaling pathway [113]
MyD88 TLR-MyD88-NF-κB pathway [101–103]



Genes 2022, 13, 2051 9 of 17

Table 1. Cont.

SPOP-Binding Substrates Pathway or Process Involved Refs.

FADD Pancreatic stellate cell activation and
NF-κβ signaling [105]

PD-L1 PD-L1/PD-1 pathway [66]
BRD2/3/4 AKT-mTORC1 signaling pathway [19,75,76]

Cdc20, CYCLIN E1 Cell cycle [81,82]

c-MYC Cell cycle, apoptosis and cellular
transformation [36,83]

Daxx Apoptosis, transcriptional regulation, cell
cycle and angiogenesis [39]

SENP 7 Cellular senescence [72,107]
HDAC6, ITCH, DHX9 Epithelial-mesenchymal transition [89,100,108]

Pdx1 Glucose homeostasis and pancreatic
β-cell development [69–71]

Nanog Stem cell-like traits [79,80]
INF2 Mitochondrial fission [84]
FASN lipid metabolism [87]

Caprin1 Stress granule (SG) assembly [52]

BRMS1 Breast cancer metastasis [38]
SLC7A1 Arginine metabolism [110]

4.1. SPOP-Related Intracellular Signaling Pathways

Increasing evidence has shown that SPOP substrates are implicated in the biological
processes of cells, including signaling pathways that are essential to maintain normal cellu-
lar functions. For example, the Hedgehog (Hh) signaling pathway is a largely conserved
signal transduction pathway during metazoan evolution that intimately regulates cell
growth and differentiation [63,121]. Cai et al. showed that SPOP plays a critical role in
skeletal development and remodeling and that SPOP mutations can increase the level of the
repressor Gli3R, which has been further explored as a substrate of SPOP but not Gli2 [63].
As a result, Ihh signaling is compromised, suggesting an important positive regulator in
SPOP in Hh signaling [63]. These researchers also demonstrated that SPOP mutations lead
to a significant increase in the level of the activator Gli3, which promotes Shh signaling,
suggesting a negative role for SPOP in cord patterning [122].

4.2. SPOP’s Role in Genome Stability

Impaired DNA damage repair (DDR) can result in genome instability. Initially, it
was reported that SPOP participates in DDR in a predominantly ATM-dependent man-
ner [123]. SPOP can be recruited to DNA double-strand break (DSB) foci, where it partially
colocalizes with γ-H2AX foci in response to ionizing irradiation (IR) or the topoisomerase
1 inhibitor, camptothecin [123]. SPOP depletion can lead to impaired DDR, resulting in
hypersensitivity to IR [123]. However, it is unclear how SPOP terminates DDR upon IR
exposure. Furthermore, Boysen et al. demonstrated the role of SPOP in DDR, with SPOP
mutations causing homology-directed repair (HDR) of DSB defects by BRCA1 inactivation
and RAD51 foci decrease [55]. The researchers found that the loss function of SPOP results
in an increased sensitivity to PARP inhibition after DSB induction [55]. Additionally, SPOP
can induce non-degradable ubiquitination of HIPK2 and 53BP1, which are both involved
in DDR, and degradable ubiquitination of STED2, which regulates the trimethylation of
histone H3K36 [64,65,117,118] that is associated with HDR [117,118]. These results suggest
that SPOP plays a role in genome stability via multiple pathways affecting DDR.

Gene rearrangements caused by DNA replication stress can also result in genome
instability. Previous studies have reported that DSBs induced by the collaboration of
TOP2A, 2B and AR signaling lead to gene rearrangements that contribute to genome
instability [124,125]. SPOP can remove TOP2A from the TOP2A-DNA cleavage complex in
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normally growing cells [42]. However, SPOP mutations fail to remove TOP2A from DNA,
thus causing genome instability.

5. The Regulation of SPOP

The regulation of SPOP expression at different levels includes DNA methylation
that affects transcription, miRNAs that affect translation, and phosphorylation and self-
ubiquitination that affect posttranscriptional modifications.

Hypermethylation is a common modification of DNA that silences the expression of
tumor suppressor genes in most cancer types [126]. DNA methylation can regulate tumor
suppressor SPOP gene transcription by affecting the binding affinity between RXRA and
the SPOP promoter in CRC and RXRA as a transcription factor [99]. A similar study in
LC suggests that the transcription factor C/EBPα can bind the SPOP promoter [127]. In
non-small cell lung cancer (NSCLC), the combination of this transcriptional regulatory
element and DNA methylation regulates the expression and function of SPOP [127].

miRNAs are small single-stranded non-coding RNAs that have been shown to nega-
tively modulate SPOP expression by targeting the 3′-untranslated region (3′-UTR) of its
mRNA. Huang et al. in 2014 showed the post-transcriptional regulation of SPOP expression
by miR-145 [128]. In 2018 and 2019, several miRNAs were identified that can regulate
SPOP expression in RCC, oral squamous cell carcinoma (OSCC), CRC, NSCLC and GC.
In RCC, carcinogenesis is controlled through the E2F1-miR-520/372/373-SPOP axis. The
miR-520/372/373 family is downregulated, and SPOP was upregulated, resulting in a
significant decrease of PTEN and DUSP7 levels with subsequent increased proliferation,
invasion/migration and metastasis [129]. Recently, a study suggested that miRNA-17-5p
can target SPOP and that upregulation of miRNA-17-5p can downregulate SPOP to pro-
mote proliferation and inhibit anti-tumor immunity in CRC through the overexpression
of PD-L1 [130]. Intriguingly, in OSCC, miR373 was upregulated in samples as well as
cell lines and negatively regulates the expression of the SPOP protein but not mRNA,
promoting proliferation, invasion and migration of corresponding cells [131]. Another
study showed that miR-372/373 enhances CRC cell stemness by targeting factors important
for cell differentiation, including SPOP [132]. Additionally, miR-543 and miR-520b are
upregulated in GC and LC, respectively [133,134]. SPOP has been identified as a direct
target of these miRNAs that act to promote proliferation and metastasis by decreasing
SPOP expression [133,134].

Post-transcriptional modifications of the SPOP protein consist of phosphorylation and
self-ubiquitination. Zhang et al. reported that cyclin D-CDK4 can mediate the phosphory-
lation of SPOP to promote SPOP degradation by regulating PD-L1 protein abundance [66].
More recently, everal have further indicated that SPOP acts as a tumor suppressorhas been
shown to stabilize its interaction with 53BP1 [65]. Subsequently, SPOP induces polyubiqui-
tination of 53BP1 and dissociation of 53BP1 from DSBs to activate HDR and consequently
induce genome stability [65]. Interestingly, another study found that snails can facilitate
SPOP self-ubiquitination and degradation in a cullin3-dependent manner [135].

SPOP function can also be regulated by the liquid-liquid phase separation (LLPS) of
proteins as a novel regulatory mechanism [136,137]. Increasing evidence has indicated that
various nuclear bodies, such as nuclear speckles, DNA damage loci and other substrate-
containing bodies, contain the SPOP protein [15,49]. LLPS is critical for SPOP-substrate
ubiquitination and the subsequent degradation in cells [136]. In contrast, tumor-associated
SPOP mutations may disrupt LLPS and thereby inhibit the ubiquitin-dependent proteolysis
of substrates.

Mukhopadhyay et al. showed that the GTPase Activating Protein (SH3 Domain)
Binding Protein 1 (G3BP1) can interact with SPOP and inhibit SPOP ubiquitin ligase in
PrCa [138]. Ji et al. have also found that heparan sulfate 3-O-sulfotransferase 1 (HS3ST1)
inhibits SPOP expression and also inhibits activation of the NF-κB pathway activation
mediated by FADD degradation in NSCLC [139].
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6. Summary and Perspectives

In this review, we summarize the molecular functions and dual roles of SPOP in pro-
moting or inhibiting tumorigenesis in a cancer type-specific manner by targeting multiple
proteins. These roles suggest that SPOP and its substrates are potentially viable targets for
the development of cancer therapeutics. The complex oncogenic and tumor suppressive
roles of SPOP indicate that the design of therapeutic strategies is cancer type specific. For
example, SPOP inhibitors could be used to treat kidney cancer as SPOP is an oncogene in
RCC. As a putative tumor suppressor in other cancer types, SPOP promoters may also be a
desirable approach. An alternative approach is to target the factors upstream of SPOP; for
instance, the upregulation of miR-520/372/373 could cause the downregulation of SPOP in
CRC cells, inhibiting proliferation, invasion and metastasis by increasing the levels of PTEN
and DUSP7 [129]. Conversely, the downregulation of miR-17-5p, miR-543 and miR-520b
can inhibit proliferation and metastasis via the upregulation of SPOP [130,133,134].

SPOP binds to the cullin 3–RING box 1 through the BTB domain to increase E3
ubiquitin ligase activity by promoting the dimerization of SPOP [40,48]. It would be an
attractive option to design small-molecule inhibitors that target cullin 3–RING box 1 to
affect its affinity for SPOP and thereby decrease SPOP dimerization.

The majority of investigations have focused on the role of SPOP in PrCa. Further
studies are needed in other cancer types, including the systematic exploration of SPOP
substrates. Future studies will undoubtedly provide further insight into the functional
mechanisms of SPOP in human cancers and uncover a rationale for the design of therapeu-
tic interventions.
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