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Abstract: Dendrobium catenatum is a classical and precious dual-use plant for both medicine and
food in China. It was first recorded in Shen Nong’s Herbal Classic, and has the traditional functions
of nourishing yin, antipyresis, tonifying the stomach, and promoting fluid production. The stem is
its medicinal part and is rich in active polysaccharide glucomannan. As an excellent dietary fiber,
glucomannan has been experimentally confirmed to be involved in anti-cancer, enhancing immunity,
lowering blood sugar and blood lipids, etc. Here, the status quo of the D. catenatum industry, the
structure, bioactivities, biosynthesis pathway and key genes of glucomannan are systematically
described to provide a crucial foundation and theoretical basis for understanding the value of
D. catenatum and the potential application of glucomannan in crop biofortification.

Keywords: Dendrobium catenatum; glucomannan; biosynthetic pathway; structure; bioactivity; dietary
fiber; hidden hunger; biofortification

1. Introduction

Dendrobium catenatum (also named D. officinale) is a rare and precious Traditional
Chinese Medicinal (TCM) plant, and it was first recorded in the earliest works of Chinese
Medicine, Shen Nong’s Herbal Classic, written in the Eastern Han Dynasty nearly 2300 years
ago. The main medicinal part of D. catenatum is the stem, which has the effects of nourishing
yin, antipyresis, tonifying the stomach, and promoting fluid [1]. Wild D. catenatum is on the
verge of extinction, and it was listed as a third-class protected species in the Regulations
on the Protection and Management of Wild Medicinal Resources issued by the State Council
of China in 1987 and as an endangered plant by the China Plant Red Data Book in 1992.
Subsequently, D. catenatum was listed as critically endangered on the International Union
for Conservation of Nature (IUCN) Red list (Critically Endangered A4c ver 3.1), and as a
second-class national protected endangered plant on the List of Rare and Endangered Plants of
the People’s Republic of China in 2009 [2]. In the 2010 edition of the Pharmacopoeia of the People’s
Republic of China, D. catenatum (D. officinale) was separated from the “Dendrobium” item to
form a single item. In 2018, D. catenatum was listed as the top one of the new “Zhe-Ba-Wei”
Chinese Medicinal Materials by Zhejiang province. In 2019, D. catenatum was included
in the catalogue of pilot work of food and drug material management by the National
Health Commission of the People’s Republic of China, which indicates that D. catenatum
is officially recognized as an edible material. In 2021, as a second-level protected plant,
D. catenatum was further included in the new version of the List of National Key Protected
Wild Plants jointly issued by the National Forestry and Grassland Administration and the
Ministry of Agriculture and Rural Affairs of the People’s Republic of China.

As a traditional dual-purpose plant for both food and medicine, D. catenatum research
and industry have experienced three developmental stages (I~III). (I) The initiation stage.
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Since the 1970s, preliminary studies on the improvement of both seedling propagation
and artificial cultivation technologies have been carried out. D. catenatum raw materials
were obtained from wild resources by unrecoverable over-exploitation. (II) The blooming
stage. In the beginning of the 2000s, with breakthroughs in key technologies for seed
production, tissue culture, and planting substrates of D. catenatum, the artificial-sheltered
cultivation mode (Figure 1A) with high yield was dramatically developed, resulting in a
sharp rise of a ten-billion-level industry [3]. (III) The plateau stage. From the 2020s onward,
simulated wild cultivation mode with D. catenatum directly planted on the rock and trunk
(Figure 1B,C) is popular due to its high TCM quality, contributing to breaking through
the bottleneck and further transformation and upgradation of the D. catenatum industry.
Therefore, D. catenatum has progressed from its natural wild state (endangered) to facility
cultivation (high-yield), then to imitation wild cultivation (high-quality), leading to species
conservation and industrial rise with combined ecological and economic benefits.

Modern studies have shown that the main active components of D. catenatum are
polysaccharides, alkaloids, phenols, terpenes, and flavonoids [4]. Among them, polysac-
charide is closely related to its pharmacological activity and is an important index for the
evaluation of D. catenatum’s quality. The main active polysaccharide in D. catenatum stem
is glucomannan, which has antioxidant and mild immunostimulatory activity to protect
macrophages from hydrogen peroxide (H2O2)-induced oxidative damage [5]. Glucoman-
nan, as an excellent soluble dietary fiber, has the virtues of regulating the intestines and
stomach, improving immunity, lowering blood sugar and blood fat, fighting cancer, and
losing weight [6,7]. In addition, mannose as the main glucomannan component has been
identified to inhibit cancer cell growth by interfering with cellular glucose metabolism [8].
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Figure 1. Epiphytic cultivation model of D. catenatum. (A). Facility-aided cultivation; (B) Rock-de-
pendent eco-cultivation; (C) Trunk-dependent eco-cultivation; (D) Stereo cultivation. 
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ASP-6N and ASP-8N) in Aloe leaves are 19.13:1, 8.97:1, and 2.96:1, respectively [16]. In 
addition, glucomannan can also be obtained from microorganisms, such as the cell walls 
of bacteria, yeast, or fungus [17,18]. Natural glucomannan is composed of D-glucose and 
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rides in a certain molar ratio [19]. Moreover, the C3 position of D-mannose on the main 
chain can be linked to polysaccharides in the form of β-1,3-glycosidic bond or β-1,6-gly-
cosidic bond [20]. 
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2, Table 1), and its derivatives also contain other monosaccharides, such as galacturonic 
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Figure 1. Epiphytic cultivation model of D. catenatum. (A). Facility-aided cultivation; (B) Rock-
dependent eco-cultivation; (C) Trunk-dependent eco-cultivation; (D) Stereo cultivation.

Hidden hunger refers to malnutrition due to nutritional imbalance in the human
body, even having taken in enough energy. More than two billion people worldwide
have suffered from hidden hunger, which is highly correlated with the status that three
staple cereals (rice, maize, and wheat) provide 60% of the world’s food intake [9]. Recently,
rediscovery and utilization of a nutrient-rich variety of “forgotten crops” in Asia offers a
viable and promising approach to eliminate hidden hunger [10]. Glucomannan belongs
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to soluble hemicellulose and is an excellent source of soluble dietary fiber as the seventh
essential nutrient in the human body. Therefore, incorporating D. catenatum as a rich source
of glucomannan into the daily diet contributes to promoting nutritional diversification and
alleviating hidden hunger.

2. Feature and Structure of Glucomannan

Unlike other soluble fibers, glucomannan is characterized by high viscosity [11]. As a
hemicellulose polysaccharide, glucomannan is ubiquitous in the plant cell wall. Moreover,
glucomannan exists as energy storage substance in Araceae, Liliaceae, and Iridaceae and
Orchidaceae [12]. It was reported that glucomannan contributes to plant tolerance to the
lack of water as a compatible solute and the succulence in Aloe vera [13]. Storage glucoman-
nans in distinct species display different structures. The mannose:glucose (Man:Glc)ratio
is 1.6:1.0 in glucomannan from Amorphophallus konjac and 3.0:1.0 in glucomannan from
Orchis mascula [14,15]. The Man:Glc ratios of three glucomannans (ASP-4N, ASP-6N and
ASP-8N) in Aloe leaves are 19.13:1, 8.97:1, and 2.96:1, respectively [16]. In addition, gluco-
mannan can also be obtained from microorganisms, such as the cell walls of bacteria, yeast,
or fungus [17,18]. Natural glucomannan is composed of D-glucose and D-mannose linked
by a β-1,4-glucopyranoside bond to form polymer heteropolysaccharides in a certain molar
ratio [19]. Moreover, the C3 position of D-mannose on the main chain can be linked to
polysaccharides in the form of β-1,3-glycosidic bond or β-1,6-glycosidic bond [20].

Glucomannan is the main polysaccharide active component in D. catenatum (Figure 2,
Table 1), and its derivatives also contain other monosaccharides, such as galacturonic
acid, glucuronic acid, and galactose [21]. The contents of mannose and glucose in total
polysaccharides from D. catenatum are 120.60 mg·g−1 and 71.23 mg·g−1, respectively [22].
Several glucomannans from D. catenatum have been reported to exhibit different Man:Glc
molar ratios [5,23,24], and contain abundant O-acetyl groups [25–27]. Acetylation can
increase the activity and health benefits of glucomannan [28].
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Table 1. Polysaccharides isolated from D. catenatum: monosaccharide compositions, molecular
weights, structure unit/backbone chain, and bioactivities.

Name Molecular Weights
(Mw, kDa) Monosaccharide Compositions Bioactivities References

DOP2 4699 Man:Glc = 7.64:1.00 Unknown [23]
DOP3 5480 Man:Glc = 4.50:1.00 Unknown [23]
DOP4 5408 Man:Glc = 3.57:1.00 Unknown [23]

DOP-1-A1 130 Man:Glc = 40.2:8.4 Unknown [25]
SDOP 1660 Man:Glc = 4.9:1.0 Unknown [26]

DOPW-1 389.98 Man:Glc = 10.75:1.00 Unknown [29]
DOPW-2 374.11 Man:Glc = 8.82:1.00 Unknown [29]
DOP-1 389.98 Man:Glc = 5.18:1.00 Immunomodulatory activity [27]
DOP-2 374.11 Man:Glc = 4.78:1.00 Immunomodulatory activity [27]

DOP-W3-b 15.43 Man:Glc = 4.5:1.0 Immunomodulatory activity [31]
DOP-I-1 730 Man:Glc = 5.8:1.0 Immunomodulatory activity [32]

DOPa 810 Man:Glc = 5.6:1.0 Immunomodulatory activity [32]
DOPb 670 Man:Glc = 5.9:1.0 Immunomodulatory activity [32]

DOPA-1 394 Man:Glc = 5.8:1.0 Immunomodulatory activity [5]
DOPA-2 362 Man:Glc = 4.5:1.0 Immunomodulatory activity [5]

DWDOP1 1341 Man: Glc = 6.79:1.00 Unknown [33]
FWDOP1 1415 Man: Glc = 7.46:1.00 Anti-tumor activity [33]
DOPA-1 229 Man:Glc:Gal = 1.00:0.42:0.27 Anti-tumor activity [34]

DOP1-DES 298 Man:Glc = 2.2:1.0 Unknown [35]
DOP2-DES 30 Man:Glc = 3.7:1.0 Unknown [35]

LDOP-1 91.8 Man:Gal:Glc:Gal:Ara = 2.0:1.7:1.3:1.6:0.7 Anti-inflammatory activity [30]
DLP-1 1380 Man:Glc = 71.69:22.89 Immunomodulatory activity
DCP 221 Man:Glc:Gal = 69.5:30.2:0.3 Immunomodulatory activity [36]

DOP/DOPA/DWDOP/FWDOP/LDOP, Dendrobium officinale polysaccharide; SDOP, single Dendrobium officinale
polysaccharide; DOPW, water-soluble Dendrobium officinale polysaccharide fraction; DCP, D. catenatum polysaccha-
rides; Man:Glc, mannose:glucose.

3. Applications of Glucomannan
3.1. Medical Applications

D. catenatum has multiple traditional functions and has been developed into various
medicines, such as Mailuoning injection (Jinling Pharmaceutical Co., Nanjing, China),
Tongsaimai tablet (Jiangsu Kangyuan Sunshine Pharmaceutical Co., Nanjing, China), and
Dendrobium nightlight pill (Tong Ren Tang, Beijing, China). Modern medicine has shown
that D. catenatum polysaccharides have diverse bioactivities, including immunomodulatory,
anti-tumor, gastro-protective, hypoglycemic, anti-inflammatory, hepatoprotective, and va-
sodilating effects [37]. In this review, major emphasis will be placed on the gastrointestinal
protection, immunomodulatory, anti-cancer, hypoglycemic, and hypolipidemic functions
of D. catenatum glucomannan (Figure 3).
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IL-1β, Interleukin-1β; TNF, tumor necrosis factor; PI3K/AKT, phosphatidylinositol 3 kinase/protein
kinase B; CXCR4, chemokine receptor4; CCR7, CC chemokine receptor 7 CC chemokine receptor 7;
AMPK, adenosine monophosphate-activated protein kinase; ULK-1, UNC-51 like autophagy activat-
ing kinase 1; LC3, light chain 3; SCFAs, short-chain fatty acids; GPRs, g-protein-coupled receptors;
MAPK, mitogen-activated protein kinase; PP, Peyer’s patche; MLN, mesenteric lymph node; MNNG,
1-methyl-2-nitro-1-nitroguanidine; GS, glycogen synthase; GP, glycogen phosphorylase; GSK-3β,
glycogen synthase kinase 3β; PK, pyruvate kinase; HK, hexokinase; PEPCK, phosphoenolpyruvate
carboxykinase; G6Pase, glucose-6-phosphatase; GLP-1, glucagon-like peptide-1.

3.1.1. Intestinal Health Improvement

It has been reported that glucomannan can modulate mouse cecal and fecal micro-
biota with favorable prebiotic effects [38]. The unique properties of glucomannan hy-
drolysate make it valuable as a prebiotic in a wide range of food, feed, and pharmaceutical
products [39]. Prebiotics promote specific changes in the gastrointestinal microbiota [40],
promote the growth of probiotics such as Lactobacillus and Bifidobacterium, inhibit the
proliferation of harmful bacteria, reduce inflammation, improve the integrity of the in-
testinal mucosa, promote nutrient absorption [41], and control the blood glucose level of
patients with type 2 diabetes [42]. Glucomannan selectively stimulates the production
of beneficial gut microflora such as probiotics and benefits the treatment of functional
gastrointestinal disorders related to abdominal pain in mice [43–45]. The combined lax-
ative of glucomannan-probiotic promotes defecation in constipated rats [46]. Mannose-
oligosaccharides, the oxidative degradation product of glucomannan, are potential prebi-
otics, which can affect the growth and species abundance of fecal microbiota and regulate
the balance of intestinal flora [47,48]. For instance, D. catenatum polysaccharide DOP can
restore the diversity of intestinal flora and regulate the abundance of intestinal flora by
inhibiting the overexpression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β),
restoring the level of short-chain fatty acids (SCFAs), activating G-protein-coupled re-
ceptors (GPRs), and regulating the intestinal flora to alleviate the symptoms of colitis in
mice [49].

Glucomannan also plays a direct role in protecting the intestinal epithelium. D. catenatum
polysaccharide DOP is not easily digested and absorbed in the human body but is de-
graded into SCFAs by the gut microbiota in the large intestine, therefore improving intestinal
health [22,50]. In addition, D. catenatum glucomannan can reduce intestinal epithelial injury
and regulate intestinal mucosal immunity by keeping a balanced ratio of pro- and anti-
inflammatory cytokines and regulating the expressions of toll-like receptors (i.e., TLR-2, TLR-4,
TLR-6, and TLR-9) important for recognizing pathogen-associated molecular patterns derived
from various microbes in mice [51].

3.1.2. Immunomodulatory Activity

Glucomannan, one of the natural bioactive ingredients, can be used as an ideal im-
munomodulatory agent. Glucomannan can reduce brain inflammation, improve hippocam-
pal neuron damage, maintain hippocampal cognitive function, and play an anti-epileptic
role in epileptic rats [52]. D. catenatum polysaccharide DOPW3-B can improve the intestinal
mucosal immune activity by increasing at Peyer’s patches the levels of interferon-γ (IFN-γ)
and interleukin-4 (IL-4), two key effector cytokines for the differentiation of T helper types 1
and 2 with a positive effect on mesenteric lymph nodes [31,53]. Glucomannan can increase
the expression of several cytokines that are important for immune homeostasis (e.g., TNF-α,
IL-β and IL-10) [54]. Meanwhile, glucomannan plays a pivotal role in regulating the activa-
tion and proliferation of macrophages [55], and promoting phagocytosis [29]. Finally, the
pretreatment of D. officinale with organic solvents enhances the immunostimulatory activity
of polysaccharides and affects the mannose/glucose ratio of polysaccharides, which plays
an important role in immunostimulation [56].
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3.1.3. Anti-Cancer Activity

In a zebrafish xenograft model, D. catenatum polysaccharide DopW-1 inhibits the pro-
liferation of HT-29 cells by the apoptosis pathway and has an anti-tumor effect on colorectal
cancer [57]. It is known that hyper-activation of the phosphatidylinositol 3 kinase/protein
kinase B (PI3K/AKT) signaling pathway in human cancers can promote the proliferation
and survival of tumor cells [58]. Glucomannan can block the PI3K/AKT pathway, thereby
promoting the apoptotic rate and reducing the proliferation ability of tumor cells [59].
In parallel, glucomannan can also inhibit the expression of major chemokine receptors,
chemokine receptor 4 (CXCR4) and CC chemokine receptor 7 (CCR7), found in a wide
range of tumor cells, thus reducing the dissemination ability of tumor cells [60]. In addi-
tion to directly interfering with tumor cells, glucomannan also acts in an indirect manner.
The D. catenatum polysaccharide DOPa-3 significantly inhibits the formation and growth
of colon tumors and alleviates colon injuries [61]. In rats, DOPA-4 effectively inhibits
precancerous lesions of gastric cancer induced by 150µg/mL MNNG [62]. D. catenatum
polysaccharides can reduce oxidative stress level, inhibit stress-induced activation of adeno-
sine monophosphate-activated protein kinase (AMPK)/UNC-51 like autophagy activating
kinase 1 (ULK1) pathway and the expression of light chain 3 (LC3) I and LC3 II proteins,
reduce Beclin1 expression, and then reduce hypoxia/reoxygenation induced astrocyte
autophagy, reduce human astrocyte apoptosis, and promote astrocyte survival [63].

3.1.4. Hypoglycemic Activity

Glucomannan is suitable as a dietary fiber supplement for the treatment of being
overweight, hyperlipidemia, and diabetes. D. catenatum glucomannan DOP can alleviate
hyperglycemia in high fat diet (HFD)/streptozocin (STZ)-induced diabetic mice through
promoting the synthesis of liver glycogen and inhibiting the degradation of liver glyco-
gen [64].

DOP treatment can reduce the level of bile acid in diabetic rats, reduce the binding
of bile acid to the nuclear receptor FXR or the membrane receptor TGR5, increase the
level of glucagon-like peptide-1 (GLP-1), and improve glucose and lipid metabolism and
insulin sensitivity [65]. DOP promotes glycogen synthesis by regulating the expression of
glycogen synthase kinase 3β (GSK-3β) and glycogen synthase (GS) in the liver or glucose
transporter 4 (GLUT4) in muscle. Glucose levels are reduced by regulating the activity
of glucose metabolism enzymes in the liver, including pyruvate kinase (PK), hexokinase
(HK), and phosphoenolpyruvate carboxykinase (PEPCK) [66]. On the other hand, DOP
can delay diabetic cataract by decreasing the level of serum malondialdehyde (MDA),
increasing the activity of superoxide dismutase (SOD) and enhancing its antioxidant ca-
pacity [49]. Glucomannan AABP-2B, isolated and purified from Anemarrhena asphodeloides,
demonstrates its hypoglycemic effect by inhibiting α-glucosidase activity and activating
irS-1/PI3K/Akt signaling pathway in insulin-resistant cells [67]. Effects of glucomannan
on insulin sensitivity contribute to weight loss, and taking as little as 4 g of glucomannan
per day can promote weight loss [68].

3.2. Daily Application
3.2.1. Cosmetics

D. catenatum extracts are used as cosmetic raw materials to effectively solve the skin
problems caused by yin deficiency and fire hyperactivity due to their rich polysaccharides,
flavonoids, and other nutrients that are absorbed through the skin and have good moisturizing,
anti-aging, and anti-wrinkle effects [69]. The aqueous extract of D. catenatum can resist drying
damage to epidermal cells, increase cell vitality, and improve skin moisture content [70].
D. catenatum polysaccharide DSP has strong antioxidant activity, can scavenge DPPH free
radicals, and has a better inhibitory effect on lipid peroxidation and oxidative damage of red
blood cells [71,72]. Macromolecular polysaccharide as the main moisturizing component in
D. catenatum is a kind of polyhydroxyl polymer, whose polar groups can form hydrogen bonds
with water molecules to bind water. Meanwhile, polysaccharide can form a uniform film on
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the skin surface to prevent water loss [73]. Dendrobium huoshanense polysaccharide has certain
hygroscopic and moisturizing properties with a higher moisture retention rate than glycerin,
is non-irritating to skin, and serves as a natural moisturizing agent [74]. So far, many related
skin care products are popular in the market, such as moistening and skin brightening masks
with D. catenatum (SENYU, Jinhua, China), Dendrobium emulsion (MISS QUEEN, Ningbo,
China), and D. catenatum skin corset firming lotion (BOTANIERA, Hangzhou, China).

3.2.2. Food and Functional Food

Glucomannan has wide application prospects in the food industry and can be used as a
food additive, meal substitute food, and health care products, such as Tiepifengdou capsules,
oral liquid, decoction pieces, yogurt [75], teabags [76,77], beverages, and noodles [78],
and has been applied to a number of patents [79]. Due to its large molecular weight
and strong water binding ability, glucomannan has excellent hydrophilicity, gelation,
emulsification, film formation, thickening, and other unique functional properties [80]. With
alkali treatment, the acetyl group in glucomannan is removed to promote the formation of
intramolecular and intermolecular hydrogen bonds and get a gel with excellent stability [81].
Glucomannan is a licensed food additive, which is used as a stabilizing, thickening, and
gellating agent [82]. For example, in yogurt and other drinks, glucomannan can be used as
a thickening agent to increase flavor and nutrition [82]. In sausages, hams, and other meat
products, glucomannan can replace fat, reduce fat content, increase viscosity, and water
retention, to improve the texture and flavor of meat [83]. In starch products, the addition
of glucomannan affects the paste characteristics, rheological properties, and texture of the
starch system [84]. In addition, glucomannan can be used for food preservation, such as
glucomannan film, which has good stability and food applicability and can be used for
fruit and vegetable coating preservation and flavor microcapsule production [85].

4. Glucomannan Biosynthesis Pathway in Plant

In the biosynthesis pathway of glucomannan (Figure 4), the photosynthates of leaves
are transported to the D. catenatum stem in the form of sucrose, which is then decomposed
into glucose (Glc), UDP glucose (UDP-Glc), and fructose (Fru) under the action of sucrose
synthase (SUS) and invertase (INV), and then, under the action of hexokinase (HXK)
and fructokinase (FRK), Glc-6-P is further catalyzed by phosphoglucomutase (PGM) to
produce glucose-1-phosphate (Glc-1-P). At the same time, Fru-6-P is catalyzed by phosphate
mannose isomerase (PMI) to produce mannose-6-phosphate (Man-6-P), which is converted
to mannose-1-phosphate (Man-1-P) by phosphomannomutase (PMM). GDP mannose
pyrophosphorylase (GMP) catalyzes the production of GDP mannose (GDP-Man). Glc-
1-P is converted to GDP-glucose (GDP-Glc) by GDP-Glc pyrophosphorylase (GGP) and
Glc-1-P is also converted to ADP-glucose (ADP-Glc) by ADP-Glc pyrophosphorylase
(AGP). Subsequently, GDP-Man, GDP-Glu, or ADP-Glu are each transported into the
Golgi apparatus by specific transporters, and they are used as substrates of cellulose-like
synthases A/D (CSLA/D) to synthesize glucomannan. Additionally, GDP-Man is also
used for the synthesis of vitamin C/ascorbic acid (AsA) [86]. Glucomannan synthesized
in the Golgi matrix might have two roles. On the one hand, it is localized in the cell
wall through vesicle transport and functions as a structural polysaccharide [87]. On the
other hand, glucomannan also acts as a storage polysaccharide in some plants, such as
D. catenatum, Konjac, and A. vera. In Konjac, glucomannan was discovered to accumulate in
the egg-shaped idioblast within the parenchyma [12].
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Figure 4. Putative glucomannan biosynthetic pathway in D. catenatum (modified from [41,44,45,88]
Glc, glucose; Fru, fructose; Fru-6-P, fructose-6-phosphate; Glc-1-P, glucosophosphate-1-P; Glc-6-
P, glucosophosphate-6-P; Man, mannose; Man-6-P, mannose-6-phosphate; Man-1-P, mannose-1-
phosphate; AsA, ascorbic acid; SUT, sucrose transporter; STP, sugar transporter proteins; SuS, sucrose
synthase; INV, invertase; FRK, fructokinase; HXK, hexokinase; PGI, phosphoglucose isomerase; UGP,
UDP-Glc pyrophosphorylase; AGP, ADP-Glc pyrophosphorylase; GGP, GDP-Glc pyrophosphorylase;
PGM, phosphoglucomutase; GPT, glucose-6-phosphate transporter; BT1, brittle-1 protein, an ADP-
Glc transporter; PMI, phosphate mannose isomerase; PMM, phosphomannomutase; GMP, GDP-
mannose pyrophosphorylase; GMT, GDP-mannose transporter; CSLA, cellulose-like synthase A;
CSLD, cellulose-like synthase D.

5. Research Progresses of Key Glucomannan Biosynthetic Genes in Plant

The pathway of glucomannan synthesis involves some specific key enzymes: phos-
phate mannose isomerase (PMI), phosphomannomutase (PMM), GDP-mannose pyrophos-
phorylase (GMP), and cellulose-like synthase A/D (CSLA/D). PMI, PMM, and GMP can
provide precursors for the synthesis of GDP-Man, which serves as not only the glycosyl
donor and metabolic intermediate widely existing in various organisms but also the sub-
strate of the biosynthesis of glucomannan and ascorbic acid (AsA) [86]. In D. catenatum,
the expression levels of DcPMI, DcPMM, DcGMP2, and DcCSLA4/8/13 in the stem are
significantly higher than those in other tissues (Figure 5), indicating their important roles
for glucomannan accumulation in the D. catenatum stem.
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Figure 5. Expression profile of glucomannan pathway genes in tissues and organs of D. catenatum.
The raw RNA-seq reads of different tissues and organs in D. catenatum are derived from the NCBI
database (www.ncbi.nlm.nih.gov, accessed on 16 September 2022), including the leaf (SRR4431601),
the root (SRR5722140), the green root tip (SRR4431599), the white part of the root (SRR4431598), the
stem (SRR4431600), the flower bud (SRR4431603), the sepal (SRR4431597), the labellum (SRR4431602),
the pollinia (SRR5722145), and the gynostemium (SRR4431596). A heatmap has been generated via
TBtools software [89]. The color scale represents log2 of FPKM expression values; green and red
indicate a low and high level of gene expression, respectively.

5.1. Phosphate Mannose Isomerase (PMI): Fru-6-P↔Man-6-P

Phosphate mannose isomerase (PMI) catalyzes the reversible conversion between
Fru-6-P to Man-6-P in eukaryotes and prokaryotes and is a key enzyme during GDP-Man
production [90], required for the first step of the mannose/L-galactose pathway during
AsA biosynthesis in plants [91]. In Arabidopsis, there are two PMI1 isozymes, but PMI1,
rather than PMI2, is involved in AsA biosynthesis. PMI1 has constitutive expression in both
vegetative and reproductive organs under normal growth conditions, whereas PMI2 has
no expression in any organs under light. Continuous light can induce PMI1 expression and
an increased AsA level in leaves, whereas long-term darkness can induce PMI2 expression
and decrease the AsA level. The diurnal expression pattern of PMI1 is in parallel with the
total PMI activity and the AsA content in leaves. Moreover, knockdown of PMI1 results in
a substantial decrease in the total AsA content of leaves, whereas knockout of PMI2 does
not affect the total AsA levels in leaves [92]. In addition, AsA plays an essential role in
scavenging reactive oxygen species (ROS) produced during cell metabolism and stress, and
increase in the AsA level contributes to an improvement in abiotic stress tolerance [93].
Overexpression of BcPMI2 from non-heading Chinese cabbage (Brassica campestris ssp.
chinensis Makino) improves AsA content and tolerance to oxidative and salt stress under
NaCl or H2O2 treatment, although transgenic tobacco has lower contents of AsA and
soluble sugar than WT under normal conditions [94].

www.ncbi.nlm.nih.gov
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To date, PMI-like genes are mainly used in the mannose selection-based plant trans-
formation system (plant PMI/Man system), which is non-antibiotic and environmentally
friendly [95]. Most plant cells are sensitive to mannose and fail to utilize mannose as a
sole carbon source because mannose can be taken up and phosphorylated to Man-6-P by
endogenous hexokinase, but Man-6-P is not further utilized in the absence of enough PMI
activity, subsequently leading to the accumulation of Man-6-P, inhibition of phosphoglucose
isomerase, glycolysis blocking, and cell growth arrest [96]. However, plant cells with high
PMI activity through genetic modification can metabolize Man-6-P and enter into glycolysis
for ATP production and normal growth [97]. As a new safe positive selectable marker gene,
PMI has been successfully used in the genetic selection of many plants, such as rice, maize,
wheat, sorghum, sugarcane, onion, tomato, potato, cassava, grape, apple, cucumber, sugar
beet, papaya, Arabidopsis, cabbage, and so on [98–100]. The Escherichia coli PMI (EcPMI)
gene was first used in the plant PMI/Man system, which is the most popular one [101]. In
2009, the first genetically modified maize MIR604 via the EcPMI/Man selection system was
approved for food and feed use, import, and processing in the European Union (European
Food Safety Authority, 2009). Saccharomyces cerevisiae PMI (ScPMI) can also be used as a
selectable marker in rice transformation [98]. However, non-plant type PMIs can still raise
public safety concerns, and plant type PMIs may offer a superior alternative [102]. Hu
et al. first proved that plant PMI genes from Chlorella variabilis and Oryza sativa can also be
used as selectable markers to obtain transgenic plants exhibiting an accumulation of PMI
transcripts and enhancement of PMI activity [100]. Through the selection system based on
the green microalga Chlorococcum sp. PMI (ChlPMI), a polycistronic gene cluster containing
crtB, HpBHY, CrBKT, and SlLCYB is transformed into tomato, resulting in the production
of high astaxanthin content [103].

5.2. Phosphomannomutase (PMM): Man-6-P↔Man-1-P

Phosphomannomutase (PMM) catalyzes the interconversion between Man-6-P and
Man-1-P and provides precursors for the synthesis of GDP-Man. GDP-Man is not only
used for the synthesis of glucomannan but is also an indispensable intermediate in the
AsA biosynthesis pathway. The PMM enzyme isolated from the cinnamon seed has the
activity of converting D-glucose produced by photosynthesis or glycolysis into a mannose
component of plant storage polysaccharide [104]. At present, there is much research on
the catalytic role of PMM in the AsA synthesis pathway. In tobacco, decreased expression
of PMM via the VIGS technique resulted in a reduction of AsA content in leaves, while
overexpression of PMM increases AsA content in leaves [105]. Transgenic tobacco plants
overexpressing the acerola (Malpighia glabra) PMM gene show around a 2-fold increase in
AsA content compared with WT, which correlates with the level of PMM transcripts and
the corresponding enzymatic activities [106]. Overexpression of rice PMM in transgenic
rice increased AsA content in seeds by 25–50% [107]. Overexpressing D. catenatum PMM
gene in Arabidopsis, resulting in a significant increase in the contents of both AsA and
polysaccharide [108].

5.3. GDP-Mannose Pyrophosphorylase (GMP): Man-1-P↔ GDP-Man

GDP-mannose pyrophosphorylase (GMP) (also named Vitamin C Defective1, VTC1)
catalyzes the conversion of Man-1-P and GTP to GDP-Man and pyrophosphate. GMP plays
an important role in maintaining the AsA level and redox balance in plants. Compared
with WT, the Arabidopsis vtc1-1 mutant accumulated only 25% of leaf AsA content, but had
no effect on the AsA redox state [109]. Arabidopsis KONJAC1 (KJC1) and KJC2 interact
with VTC1 to stimulate GMP activity to affect the accumulation of AsA and glucomannan,
and VTC1 mutants cause severe dwarfism [110]. The acerola plant has very high AsA
levels, consistent with that of the M. glabra MgGMP gene promoter, which has higher
activity than 35S and Arabidopsis GMP promoters. Transgenic tobacco plants containing
the MgGMP gene and its original promoter, which displayed about 2-fold increased levels
of AsA [111]. Transgenic tomatoes overexpressing a yeast-derived GMP exhibit up to a
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31 and 17-fold increase in GMP activity in leaves and green fruit, respectively. The AsA
levels increase by up to 70% in leaves, 50% in green fruit, and 35% in red fruit, especially in
photosynthesizing organs [112]. The overexpression of tomato SlGMP3 increases total AsA
levels and tolerance to oxidative stress in tomatoes and high or low temperature stress in
tobacco, whereas knockdown of SlGMP3 in tomatoes leads to substantially decreased AsA
content and a defective phenotype with lesions and senescence due to failing to instantly
detoxify ROS [113,114]. Overexpression of tomato GMP in potatoes can improve the content
of AsA and dehydroascorbate (DHA) under low temperature stress and enhance the cold
tolerance of potatoes [115]. Transgenic tobacco expressing Pogonatherum paniceum GMP
has a high germination rate and high AsA content under drought and salt stress, and has
strong salt tolerance and drought resistance [116]. Overexpression of D. catenatum GMP in
Arabidopsis results in increased mannose content in water-soluble polysaccharides and
enhances salt stress tolerance [117], consistent with salt hypersensitivity in the Arabidopsis
vtc-1 mutant [118].

In addition, the GMPase activity level can regulate the sensitivity of Arabidopsis to
ammonium [119]. The vtc1-1 mutant exhibits stunted root growth with an elevated of
NH4

+ efflux at the elongation zone and inhibition of cell elongation in the presence of
NH4

+ [120], but this NH4
+-hypersensitive phenotype in mutant is independent of AsA-

deficiency. In fact, the GMP gene disruption can also cause N-glycosylation disorder
of proteins associated with the destruction of hormone homeostasis and the increase of
nitric oxide content under high NH4

+ conditions, consequently leading to conditional
sensitivity to ammonium ions [121]. However, impaired GDP-mannose biosynthesis and
defective N-glycosylation are required for but are not the primary causes of conditional
NH4

+ sensitivity in vtc1-1, whereas pH alterations in the presence of NH4
+ associated with

lost N for assimilation and alkalinization of the cytosol account for the drastic root growth
defect in WT and vtc1-1 [122].

5.4. Cellulose-like Synthase A/D (CSLA/D): GDP-Man + UDP/GDP-Glu→ Glucomannan

The cellulose synthase gene superfamily consists of the CesA family and 10 Csl
families: CslA~CslH, CslJ, and CslM [123,124]. The 30 Arabidopsis CSL proteins is clustered
into six families: CslA, CslB, CslC, CslD, CslE, and CslG [125], and the 33 rice CSL proteins
are also divided into six families: CslA, CslC, CslD, CslE, CslF, and CslH [126], but only
the CslA, CslC, CslD, and CslE families are shared by both. CSL proteins are usually
located in the Golgi apparatus, which mediates the synthesis of hemicellulose and then
transports it to the cell wall [127]. The CSLA/D families are mainly responsible for the
skeleton synthesis of mannan and glucomannan [128,129]. So far, nine CSLA and six CSLD
genes have been identified in Arabidopsis, while 10 CSLA and four CSLD genes have
been identified in rice [130,131], and 13 CSLA [132] and eight CSLD members have been
identified in D. catenatum [21].

Heterologous expression assays showed CSLA proteins from a variety of species
catalyze the biosynthesis of the β-1,4-mannan or glucomannan backbone in vitro, such
as CtManS in guar (Cyamopsis tetragonoloba) [133], AtCSLA2/7/9 in Arabidopsis [128],
OsCSLA1 in rice [134], PtCslA1 in Populus trichocarpa [135], AkCSLA3 in A. konjac [136],
and TfManS in fenugreek (Trigonella foenum-graecum) [137]. In Arabidopsis, the csla9 mutant
exhibits significantly decreased glucomannan, and the csla2 csla3 csla9 triple mutant is
absent of detectable glucomannan in inflorescence stems, although these mutants have
no alteration in stem development or strength [138]. The clsa7 mutant is embryo lethal
due to defective embryogenesis with evidently delayed development, abnormal cell pat-
terning, and an arrested globular stage, associated with reduced nuclei proliferation and
failed cellularization in the endosperm [139]. Overexpression of AtCSLA2, AtCSLA7, and
AtCSLA9 leads to elevated glucomannan content in stems; AtCSLA9 overexpression can
rescue the embryo lethality of csla7, indicating their functional redundancy [138]. Therefore,
AtCSLA2, AtCSLA3, and AtCSLA9 are necessary for glucomannan synthesis in the stem,
while AtCSLA7 is necessary for glucomannan synthesis in the embryo [138]. Heterologous
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expression of the O-fucosyltransferase family member AtMSR1 can enhance the gluco-
mannan synthesis capability of AtCSLA2 and AkCSLA3, possibly via affecting enzymatic
activity by protein glycosylation [140,141]. The mannosyl level in stem glucomannans is
decreased by around 40% in Arabidopsis msr1 single mutant and by more than 50% in
msr1 msr2 double mutant [142]. Transcription factors ANAC041, bZIP1, and MYB46 can
directly bind the promoter of AtCLSA9 and regulate its expression [143]. Furthermore,
overexpression of MYB46 leads to a significant increase in mannan content. In D. catenatum,
overexpression of DoCSLA6 in Arabidopsis promotes mannan biosynthesis [144].

CSLD family members are required for the growth of stem and root, tip growth of root
hair and pollen tube, and female gametophyte development and fertility. In Arabidopsis,
the csld2 and csld3 mutants exhibit root hair bursts [145–148]; the csld5 mutant has reduced
stem growth [149]; the csld1 and csld4 mutants are defective in male transmission and
pollen tube production; the csld2 csld5, csld3, and csld5 and csld2, csld3, and csld5 mutants
display dwarfism and severely reduced viability [129]; and csld2 and csld3 show synergid
cell degeneration during megagametogenesis and reduced pollen tube penetration during
fertilization [150]. In rice, the oscsld4 (nd1) mutant is dwarfed and its culm possesses a
decreased content of xylan and cellulose but an increased amount of homogalacturonan,
whereas disruption of the Arabidopsis AtCSLD5 gene results in decreased xylan and ho-
mogalacturonan synthase activities in Arabidopsis [151]. It seems that CSLD proteins are
not only limited in (gluco)mannan biosynthesis. At first, researchers tended to believe that
CSLD proteins have major functions in mannan synthesis because microsomes isolated from
tobacco (Nicotiana benthamiana) leaves heterologously expressing AtCSLD5 or co-expressing
AtCSLD2/3 have elevated mannan synthase activity, specifically using GDP-Man as an
activated nucleotide-sugar donor [152]. However, genetic rescue assays with CSLD-CESA
chimeric proteins and in vitro biochemical reconstitution suggested that CSLD3 prefers
to function as a UDP-Glu-dependent β-1,4-glucan synthase and forms a protein complex
displaying a similar ultrastructural feature to the CESA6-forming complex [153,154]. Over-
expression of cotton GhCSLD3 in Arabidopsis enhances primary cell wall synthesis and
restores the defects of the atceas6 mutant, including significantly reduced cellulose content,
a defected cell wall, and a lower dry mass, indicating that GhCSLD3 and AtCESA6 may
play a similar role in cellulose or cellulose-like polysaccharide synthesis [155]. Furthermore,
the CSLD family is the most similar of the CSL gene families to the CESA family at the
amino acid level [125] and, together with the CSLF family (accounting for mixed-linkage
glucan synthesis), displays the closest relationship with the CESA family at the phylogeny
level [156]. Therefore, the CSLD family might function as both a (gluco)mannan synthase
and a β-1,4-glucan synthase.

6. Summary and Perspective

Food production concerns a new hot topic from meeting the need of “eating fully” to
“eating healthily” [7,157]. In modern life, dietary structure and habits have changed, and
the source of staple food is mostly limited to several starch crops, including rice, wheat,
maize, and potatoes, leading to nutrition imbalance and hidden hunger [158]. Furthermore,
severe malnutrition will hinder human growth and development, accompanied by mental
disorders and diseases [159]. More than 7% of chronic diseases in contemporary society
are caused by hidden hunger. The FAO proposed Zero Hunger as the 2nd Sustainable
Development Goal to eliminate all forms of hunger by 2030, and biodiversity for food and
agriculture is indispensable to achieve the Zero Hunger program [160]. Dietary diversity
and a higher intake of dietary fiber can reduce the risk of chronic diseases such as diabetes,
obesity, and cardiovascular disease. Intriguingly, D. catenatum as a traditional dual-purpose
plant for both food and medicine in China, is able to supple glucomannan as an excellent
dietary fiber and has great potential to fight hidden hunger.

The efficiency of D. catenatum is largely dependent on the active polysaccharide gluco-
mannan, which has multiple medicinal effects such as anti-tumor, lowering blood lipids,
and preventing diabetes. To date, most of the studies on the glucomannan biosynthetic
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pathway have focused on its role as a cell wall structural component. PMI, PMM, and GMP
sequentially catalyze the production of GDP-mannose, thus providing precursors for the
synthesis of glucomannan, and CSLA/D is required for the synthesis of the glucomannan
skeleton. However, little is known about the subcellular localization, transportation, and
regulation of storage glucomannan, which may be clarified by the comprehensive appli-
cation of newly developed technologies including immunolocalization, high throughput
omics, and gene editing, consequently contributing to creating a glucomannan biofortified
crop through synthetic biology (Figure 6). For instance, a stack of four identified com-
mitted genes, including manC and manB from Escherichia coli BL21(DE3), manA and pgi
from Bacillus subtilis, are introduced into food-grade B. subtilis to obtain mannan [161].
Four anthocyanin synthetic genes, sZmPSY1, sPaCrtI, sCrBKT, and sHpBHY, are introduced
into rice endosperm to produce astaxanthin-rich rice with high antioxidant activity [162].
Therefore, it is promising that glucomannan biofortified crops in the future will contribute
to reducing hidden hunger and chronic diseases and promoting human health.
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