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Abstract: Adenoviral vaccines have been at the front line in the fight against pandemics caused
by viral infections such as Ebola and the coronavirus disease 2019. This has revived an interest
in developing these vectors as vaccines and therapies against other viruses of health importance
such as hepatitis B virus (HBV). Current hepatitis B therapies are not curative; hence, chronic
hepatitis B remains the major risk factor for development of liver disease and death in HBV-infected
individuals. The ability to induce a robust immune response and high liver transduction efficiency
makes adenoviral vectors attractive tools for anti-HBV vaccine and therapy development, respectively.
This review describes recent developments in designing adenoviral-vector-based therapeutics and
vaccines against HBV infection.
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1. Introduction

Hepatitis B virus (HBV) infection continues to pose a serious global health problem.
It is estimated that 296 million people globally are infected with HBV, with the highest
prevalence occurring in regions such as sub-Saharan Africa, and east and southeast Asia [1].
In these endemic and hyperendemic areas, infants and children are the groups most at
risk. Perinatal transmission from infected mothers to their newborn babies or horizontal
transmission from infected family members to children are two primary mechanisms of
HBV infection in these regions. While many infections acquired in adulthood are acute
and successfully cleared by the immune system, the vast majority of infections that occur
during infancy or early childhood become chronic, which increases the risk of developing
life-threatening HBV-associated illnesses, such as cirrhosis and hepatocellular carcinoma
(HCC) [2–4].

HBV belongs to the Hepadnaviridae family of viruses and carries a circular, partially
double-stranded genome of ~3.2 kb. The genome includes four overlapping open reading
frames (ORFs), namely polymerase (P), precore/core (C), surface (made up of pre-S1, pre-S2,
and S regions), and the X region [5]. Following binding to the host sodium-taurocholate co-
transporting polypeptide (NTCP) receptor and entry into the hepatocyte, viral polymerase
converts the partially double-stranded relaxed circular DNA (rc-DNA) into covalently
closed circular DNA (cccDNA), which remains in the nucleus as a stable minichromo-
some [6,7]. Additionally, HBV DNA may integrate into the host genome, which is a contrib-
utor to persistent HBV surface antigen (HBsAg) secretion and progression to HCC [8–10].
The diagnosis of acute and chronic HBV infection is dependent on the detection of viral
biomarkers, with HBsAg being the primary clinical marker for HBV infection [11].

The current vaccine against HBV is made up of a recombinant HBV small surface
antigen (S-HBsAg) and offers safe and effective protection against HBV infection [12].
However, this protein vaccine is less effective in those older than 40 years and in immune-
compromised individuals [13,14]. As a result of the Coronavirus disease 2019 (COVID-19)
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pandemic, old and new vaccine strategies such as protein, inactivated viral strains, mRNA,
and adenoviral vector (AdV)-based technologies have been extensively explored and offer
promising outcomes [15,16]. Protein and inactivated strain vaccines have generally resulted
in a lower overall protective efficacy in recent human trials as compared to nucleic-acid-
based vaccines [17–20]. Nucleic-acid-based vaccines induce a more durable and broader
immune response, with mRNA vaccines generally inducing the highest overall protective
efficacy [17,19,20]. A strong innate response induced by AdVs makes them particularly
interesting for vaccine development.

Available antiviral treatments include nucleotide/nucleoside analogs (NAs), which
prevent HBV DNA synthesis, and immunomodulatory interferons (IFNs) [21]. Although
these antivirals play a role in keeping viral infection under control, they rarely achieve
complete virological cure because they do not act on the stable cccDNA. Use of gene
therapy to impair viral replication using HBV-specific gene silencing, gene editing, and
epigenome modifications has been a promising strategy. Common approaches to HBV
gene silencing/editing involve the use of RNA interference (RNAi), transcription-activator-
like effector nucleases (TALENs), or clustered regularly interspaced short palindromic
repeats (CRISPRs) and CRISPR-associated protein (CRISPR/Cas) systems [22]. Despite
the availability of potent anti-HBV gene therapeutics, finding safe and efficient delivery
methods is the major challenge to clinical translation. Viral vectors such as lentiviral vectors,
adeno-associated viral vectors (AAVs), and AdVs have shown promise in gene therapy [23].
AdVs are valuable for targeting HBV because of their inherent hepatotropism.

2. Adenoviruses as Vectors

Adenoviruses (Ads) belong to a family of Adenoviridae and are subdivided into five gen-
era, of which human Ads fall under the mastadenoviridae. They are further subdivided into
seven species named A to G, with almost 70 serotypes that can infect humans. Widely
studied species C serotype 2 (Ad2) and serotype 5 (Ad5) cause infections of the upper
respiratory system. Ads are non-enveloped, double-stranded DNA viruses with a genome
of around 26 to 45 kb. The genome comprises two groups of genes that are either expressed
before (early) or after (late) viral DNA replication. Among other functions, the early units
(E1 to E4) encode proteins essential for viral genome replication, while the late region units
(L1 to L5) encode proteins that form the viral capsid [24–26].

Three generations of AdVs have been developed through the deletion of various
viral genes. First-generation AdVs were produced by deleting the E1 and/or E3 genes,
which leaves these vectors unable to replicate [27,28]. In recent years, first-generation
AdVs have shown promise in the development of vaccines against a range of infectious
diseases, including influenza, Ebola, and COVID-19 [29–31]. Second-generation AdVs have
E2 and/or E4 genes deleted along with E1 and/or E3. This not only increases the carrying
capacity, but also reduces the potential cytotoxic effects that may come with viral gene
expression [32,33]. Third-generation AdVs, also known as gutless or helper-dependent
AdVs (HDAdVs), have all viral genes deleted from the viral genome. HDAdVs are attractive
as vectors for gene therapy because of their higher transgene capacity, prolonged transgene
expression, and a diminished immune stimulation [27,34].

3. Adenoviruses as Vaccine Vectors

Traditionally, vaccine design has focused on use of either attenuated versions of
a particular pathogen or protein subunits. Although these have provided protection
against a variety of life-threatening diseases, next-generation vaccine technologies have
introduced the use of nucleic acids and viral vectors as good candidates [35]. Research
into the use of Ads as vaccine vectors has been appealing to scientists and researchers for
over 30 years. While the ability of Ads to induce both an innate and adaptive immune
response in the hosts is not ideal for most therapeutic applications, this feature is useful for
vaccine design [36,37]. Innate immune responses, produced soon after infection, are not
antigen-specific and do not induce immunological memory. However, an AdV-induced
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adaptive immune response results in activation of B and T cell differentiation with the
subsequent generation of immunological memory [38]. Conventional vaccines generally
require adjuvants for activation of innate immunity. By contrast, AdVs contain structural
components that are recognised by pattern recognition receptors (PRRs) to activate a robust
innate immune response [39].

Although there is a paucity of information on the use of AdVs for developing anti-HBV
vaccines, AdVs have successfully been developed as vaccines against other viruses. In a
study conducted by Gao et al., the effect of an Ad5-based vaccine encoding hemagglutinin
(HA) from the avian influenza virus H5N1 strain isolated from the 2003–2005 outbreak in
Vietnam was evaluated (Table 1). Vaccination with full-length HA-encoding Ads induced
cellular and humoral HA-specific immunity in mice and conferred protection against viral
challenge. Additionally, considering the role that poultry plays in transmission of H5N1, the
efficacy of this Ad5-based immunisation was tested on domestic chickens. It was found that
all subcutaneously immunised birds that were boosted upon viral challenge were protected
against infection [40]. Recently, the use of other AdV serotypes for vaccine design has
gained attention, including Ad26, another human serotype, and ChAdOx1, a replication-
incompetent simian AdV. Anywaine et al. performed a Phase I randomised clinical trial
to evaluate the safety, tolerability, and immunogenicity of an Ad26-derived Ebola vaccine
(Ad26.ZEBOV) in a heterologous two-dose regimen in adult volunteers from Tanzania and
Uganda (Table 1). The results revealed that 21 days after the second vaccine dose, 100% and
87–100% of the participants demonstrated Ebola virus glycoprotein antibody responses
and neutralising antibody responses, respectively [41]. The recent success of AdV vaccines
against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has revived interest
in using these vectors to protect against other viral infections.

Development of AdV-Based COVID-19 Vaccines and the Impact on Anti-HBV Vaccine Design

The recent COVID-19 pandemic has exacerbated the global demand for effective and
rapid vaccine production. Hundreds of millions of dollars have now been invested in
traditional vaccine technologies, such as live-attenuated and protein subunit vaccines, as
well as mRNA and viral-vector-based vaccines [42–44]. SARS-CoV-2 is an enveloped virus
consisting of a positive-sense RNA genome encoding Envelope, Membrane, Nucleocapsid,
and Spike (S) proteins. Importantly, S binds to angiotensin-converting enzyme 2 (ACE2)
and mediates viral entry into cells [44,45]. Replication-incompetent AdVs encoding the
SARS-CoV-2 S protein have been essential to the SARS-CoV-2 pandemic response [37]. Easy
adaptability, manufacturing, and storage capabilities make AdV vaccines suited to rapid
response in a pandemic situation [35].

In 2020, at the height of the pandemic, a study published by Feng et al. revealed
that a replication-defective recombinant Ad (Ad5-S-nb2) expressing S, induced S-specific
antibody production and cell-mediated immune responses in rodents and nonhuman
primates (Table 1) [46]. As the pandemic progressed, AdV-based vaccine research re-
mained at the front line. The chimpanzee adenoviral vector (ChAdOx1)-based ChAdOx1
nCoV-19 vaccine (AZD1222), encoding the SARS-CoV-2 S protein, induced both humoral
and cell-mediated immune responses, protection against lower respiratory tract infection
in nonhuman primates, an increased spike-specific antibody response by day 28, and a
neutralising antibody response after a booster dose in human participants (Table 1) [47].
An overall vaccine efficacy of 70.4% was observed in participants of a randomised, con-
trolled trial [48]. Administration of the commonly known Janssen Ad26.CoV2.S vaccine,
encoding the full-length SARS-CoV-2 S protein, showed that a single dose of Ad26.CoV2.S
produced S-binding neutralising antibodies and strong humoral immune responses in
the majority of the 805 vaccinated participants. It induced a 66.9% and 76.3% protective
efficacy across participants of all age groups and in participants over the age of 60, respec-
tively (Table 1) [17,49]. To avoid pre-existing immunity and allow vector re-administration,
Lugonov et al. performed a prime boost phase 3 clinical trial using the Ad26- followed
by the Ad5-derived vector expressing the full-length S protein. This regimen was well
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tolerated and 91.6% vaccine efficacy was observed at 21 days after the first dose with the
Ad26 vector [19]. As clinical research into adenoviral vaccines for SARS-CoV-2 continues, it
is likely that this vaccination technique will be adopted for immunisation against an array
of pathogens in the future. One such infectious disease is hepatitis B.

Table 1. Commonly used AdVs in anti-viral vaccine and immunotherapeutic development.

Ad Vector Target Antigen Delivered Key Findings References

Ad5

Avian
Influenza (H5N1) Hemagglutinin (HA)

• Cell-mediated and humoral
HA-specific immunity in mice

• Protection against viral challenge in
mice and chickens

[40]

SARS-CoV-2 Spike protein
• Spike-specific cell-mediated and

humoral responses in rodents and
nonhuman primates

[46]

HBV

Fusion protein including
modified HBV core,

polymerase, and
envelope proteins

• Production of HBV-specific splenic
and intrahepatic T-cells

• Cytokine production and induction
of cytolysis

• Reduction in circulating virus

[50]

Ad26

Ebola Ebola virus glycoprotein • Glycoprotein-specific and
neutralising antibody responses [41]

SARS-CoV-2 Spike protein
• Production of Spike-binding

neutralising antibodies
• Strong humoral immune response

[49]

ChAdOx1

SARS-CoV-2 Spike protein

• Humoral and cell-mediated
immune‘responses

• Protection against lower respiratory
tract infection in
nonhuman primates

• Increased spike-specific
antibody responses

• Neutralising antibody responses

[47]

HBV

Three full-length HBV
antigens, including

precore/core,
polymerase, and surface

• Enhanced T-cell responses in
immunocompetent uninfected mice [51]

While AdV-based vaccine research has made meaningful contributions to immunisa-
tion against SARS-CoV-2, it is important to note that there is a significant gap in application
of AdVs to vaccination against HBV. There has, however, been progress in the fields of
immunotherapeutics and therapeutic vaccine strategies using AdVs against HBV. This
includes stimulating the immune system, after viral infection, to produce an antiviral
response. For example, TG1050 is an Ad5-derived novel anti-HBV immunotherapeutic
encoding a fusion protein comprising modified HBV Core, Polymerase, and select domains
of Envelope proteins [50] (Table 1). A single dose of TG1050 induced splenic and intra-
hepatic HBV-specific T cells that produced cytokines and stimulated cytolysis, with the
resultant reduction in circulating viral replication markers [50]. Recently, Chinnakannan
et al. published their findings on the design and development of therapeutic ChAdOx1
and modified vaccinia Ankara (MVA) viral vectors against HBV (Table 1). Administration
of ChAdOx1 encoding an HBV immunogen consisting of three full-length HBV antigens
(precore/core, polymerase, and surface) followed by a heterologous MVA-boost vaccine
produced enhanced T cell responses in immunocompetent uninfected mice. Polyfunctional
CD8+ and CD4+ T cells produced cytokine combinations, including IFNγ, TNF-α, and
IL-2 [51]. The success of anti-HBV AdV-based immunotherapeutics further emphasises
the potential of AdVs to deliver HBV antigens to cells successfully. Additionally, as it has
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been established that AdV vaccines can induce both cell-mediated and humoral immune
responses and that the basic method for production of these vaccines is easily adaptable,
research into the use of AdVs to immunise against HBV is currently underway and is
important for the advancement of HBV vaccine research.

4. Adenoviruses as Vectors of Gene Therapy against HBV

Because of their high liver tropism, AdVs are attractive for the development of gene
therapies targeted to HBV. The reduction in HBV replication markers by higher than 90%
in culture and in mice using first-generation AdVs expressing RNAi activators has been
demonstrated [52]. However, strong vector-induced immune responses and short-term
therapeutic effects in vivo have been observed. Delivery of anti-HBV RNAi activators
using HDAdVs resulted in a prolonged therapeutic effect in vivo [53,54]. The dependence
of viral persistence on functional cccDNA makes this HBV replication intermediate an ideal
target for achieving a sterilising cure from HBV infection. cccDNA targeting using TALENs
or CRISPR/Cas9-based therapies has shown promise [55–58]. These gene editors mediate
sequence-specific deleterious mutations within the HBV DNA [22]. Although AdV-based
anti-HBV TALEN delivery is not encouraging [59], promising outcomes when using AdVs
to deliver anti-HBV CRISPR/Cas sequences have been reported [60,61].

A recent study by Kato et al. successfully demonstrated the efficacy of an AdV
expressing a CRISPR/Cas9 system with eight guide RNAs (gRNAs) targeting the HBV
X gene (HBx) [60]. In this study, use of an AdV was ideal as the increased carrying
capacity of the AdV allowed for inclusion of 8 gRNAs and a large Cas protein-encoding
sequence isolated from Streptococcus pyogenes, spCas9. This Cas9 protein recognises the
protospacer adjacent motif (PAM) sequence 5‘-NGG-3‘, which is more common within
the HBV genome. spCas9 is, therefore, preferred to Staphylococcus aureus-derived Cas9
(saCas9), which, although smaller than spCas9, uses the PAM sequence 5′-NNGRRT-3′,
which is uncommonly found in the HBV genome [61]. A study by Schiwon et al. compared
the efficacy of TALENs targeting HBV to a CRISPR/Cas9 system with three different
gRNAs, delivered by an HDAdV [59]. The anti-HBV activity of the two gene editors
was tested in both HepG2.2.15 and HepG2-NTCP cells. HepG2.2.15 cells contain stably
integrated replication-competent HBV sequences [62], and HepG2-NTCP cells express
human NTCP, which makes them susceptible to HBV infection in culture [63]. The levels of
viral protein, RNA, and genome equivalents were compared. The results showed that the
CRISPR/Cas9 system induced a far more significant reduction in viral protein secretion
than the TALEN system, with a reduction of 54% and 45% in HBsAg and HBeAg secretion
compared to no reduction with the TALEN system, respectively. This was supported by
the 64% reduction in HBV transcripts seen in the CRISPR/Cas9-treated cells [59]. This
AdV-mediated multiplex approach has therapeutic potential for targeting a diverse range
of HBV genotypes or different targets to avoid viral escape, using one vector. Although
the efficacy of AdV-based gene therapy is undeniably promising and HDAdVs reduce
vector immune stimulation, capsid-induced innate immune response and pre-existing
capsid-specific immunity remains a challenge. This has limited success on AdVs in gene
therapy clinical trials [64,65]. The recent widespread use of AdV-based COVID-19 vaccines
will further exacerbate the challenge of pre-existing immunity.

Overcoming AdV Immunity in AdV-Based Anti-HBV Gene Therapy

Extensive efforts have been put into developing strategies to overcome immune
stimulation and avoid AdV clearance (Figure 1). Immune suppression before vector ad-
ministration has been explored with promising outcomes [66,67]. However, this method is
not favoured, because of the possibility of increased risk of infection by other pathogens.
The possibility of using polyethylene glycol (PEG), a synthetic biocompatible compound,
to diminish capsid-induced innate and adaptive immune responses has been heavily re-
searched for targeting hepatitis B and other diseases. ‘PEGylated’ vectors have been shown
to evade pre-existing immunity, mediate prolonged transgene expression, and reduce AdV
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toxicity in vivo [68–70]. Although multiple studies have shown that PEGylation can shield
capsid proteins essential for viral entry, therefore reducing transduction efficiency [70–72],
several other studies have illustrated that with optimised PEGylation approaches, trans-
duction efficiency remains optimal in vivo [73–75]. The genetic modification of capsid
epitopes by mutagenesis or direct clonal evolution is another strategy that may be used
to generate clonal mutants that evade host immunity [76–78]. Importantly, some genetic
modifications of the capsid can affect vector structural integrity and diminish transduction
efficiency [79,80], while others have minimal effects on vector viability or infectivity [81].
These findings illustrate that understanding the biology of AdV and vector–host interac-
tions are key to the development of chemical or genetic capsid modifications that yield
highly efficient and safe AdVs. Using adenoviral serotypes with low seroprevalence in
humans, such as Ad26, Ad11, and Ad35, present another alternative to avoiding pre-
existing immunity. Several studies have shown that transduction efficiencies of these
low-seroprevalence vectors are not affected by the immunity against Ad5, a highly preva-
lent serotype in human infections [82–84]. Although most of these strategies are yet to be
tested for hepatitis B gene therapy, they can be easily translatable for the design of highly
potent and safer anti-HBV therapeutics.
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Figure 1. Strategies to avoid immune responses to adenoviral vectors (AdVs). AdVs may elicit both
innate and adaptive immune responses to vector proteins. Strategies to evade these immune responses
include genetic modification to the viral capsid, use of less prevalent Ad serotypes, shielding the
viral capsid by PEGylation, removal of viral sequences to generate gutless AdVs, and administering
immunosuppressive drugs before vector injection (created with Biorender.com).

5. Conclusions

AdV’s higher transduction efficiency, which translates to a low dose requirement, easy
manufacturing, and low storage costs, amongst other advantages, makes them a feasible
option to combat viral infections, especially in low-income countries. Although strong
immune stimulation by AdVs can prime a robust and long-lasting adaptive response,
which is attractive for vaccine development, this feature may result in rare but severe ad-
verse effects [85–87]. Significant progress has been made with diminishing AdV-mediated
immune induction. Approaches that include chemical and/or genetic modifications of
the capsid and deletion of all viral genes are not enough to avoid the AdV immunity
obstacle. Trade-offs between immune evasion and loss of biological functionality also
pose a challenge. Approaches that combine multiple strategies, e.g., chemical and genetic
manipulation of the capsid, may offer a better solution [78,88,89]. For the foreseeable future,
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using low-seroprevalence Ads such as Ad26 and ChAdOx1 may be the best strategy to
overcome pre-existing immunity.
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