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Abstract: We aimed to identify miRNAs that were closely related to breast cancer (BRCA). By in-
tegrating several methods including significance analysis of microarrays, fold change, Pearson’s
correlation analysis, t test, and receiver operating characteristic analysis, we developed a decision-
tree-based scoring algorithm, called Optimized Scoring Mechanism for Primary Synergy MicroRNAs
(O-PSM). Five synergy miRNAs (hsa-miR-139-5p, hsa-miR-331-3p, hsa-miR-342-5p, hsa-miR-486-5p,
and hsa-miR-654-3p) were identified using O-PSM, which were used to distinguish normal samples
from pathological ones, and showed good results in blood data and in multiple sets of tissue data.
These five miRNAs showed accurate categorization efficiency in BRCA typing and staging and
had better categorization efficiency than experimentally verified miRNAs. In the Protein-Protein
Interaction (PPI) network, the target genes of hsa-miR-342-5p have the most regulatory relation-
ships, which regulate carcinogenesis proliferation and metastasis by regulating Glycosaminoglycan
biosynthesis and the Rap1 signaling pathway. Moreover, hsa-miR-342-5p showed potential clinical
application in survival analysis. We also used O-PSM to generate an R package uploaded on github
(SuFei-lab/OPSM accessed on 22 October 2021). We believe that miRNAs included in O-PSM could
have clinical implications for diagnosis, prognostic stratification and treatment of BRCA, proposing
potential significant biomarkers that could be utilized to design personalized treatment plans in
BRCA patients in the future.

Keywords: tissue; blood; breast cancer; primary synergy miRNA; diagnostic marker

1. Introduction

Breast cancer (BRCA) is the most common cancer worldwide [1–5], accounting for
11.7% of new cancer cases, which has risen rapidly [6,7]. To diagnose BRCA in its early
stages, reduce its mortality, and reduce treatment-related harm to patients [8,9], a current
challenge is to identify noninvasive and accurate biological markers to be used as indicators
for early screening and diagnosis of BRCA.

MicroRNAs (miRNAs) are a class of non-coding single-stranded RNA molecules with
a length of approximately 22 nucleic acids [1,10–12], which can be found in tissues and
blood [13–15]. For patients with different cancers, tumor-specific or related changes have
been found in the free nucleic acids in blood circulation [16,17]. MiRNAs constitute short
non-coding RNAs of post-transcriptional regulatory genes [18–20] and play an important
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role in development [21] and in normal physiological activities, and they can act as car-
cinogens [22,23] or tumor inhibitory regulators [24,25]. An increasing number of studies
have recently reported close associations between miRNAs and cancers [25,26]. According
to REMARK’s suggestion [27], we aimed to identify miRNAs closely related to BRCA as
clinical diagnostic markers [1,28–30].

The majority of previous studies have focused on tissues [31,32] or blood [33,34] to
search for cancer-related markers, but we hope to identify markers that have significantly
combined properties in both tissues and blood, to increase diagnostic accuracy. Blood-
derived markers [35–39] are not stable and may show opposite trends in different studies.
Tissue-derived markers perform more consistently, but tissue sampling can be physically
damaging to patients. Therefore, we hope to find markers of tissue and blood coexis-
tence for BRCA identification and diagnosis. Furthermore, we searched for “tissue-blood
shared miRNAs as cancer biomarkers” regarding BRCA or other carcinomas, but there
were only a few studies that focus on marker miRNAs that work in both tissues and
blood [40–44]. Thereby, we hope to fill the gap of miRNAs shared by tissues and blood as
tumor biomarkers.

In this study, we integrated many methods—Significance Analysis of Microarrays
(SAM), fold change (FC), Pearson’s correlation analysis, t test, receiver operating charac-
teristic (ROC), and decision trees—to develop a new method, called Optimized Scoring
Mechanism for Primary Synergy MicroRNAs (O-PSM), that can identify disease-related
miRNAs that a play major role in BRCA. This algorithm was performed for each feature
selection set, first filtering key miRNAs using SAM, FC, Pearson’s correlation analysis,
and t test, then constructing decision trees to obtain synergistic miRNAs, and in each
tree, further selecting miRNA sets to ensure they lead to maximum purity at each branch
of the nodes. This binary tree was split until it stopped growing; thus, the miRNAs in
the tree represent a set of feature combinations from the root node to the leaf nodes that
contribute synergistically to the classification. The combined miRNAs classify the samples
sequentially according to the hierarchical structure of the tree and jointly decide to identify
the diagnosis of BRCA.

We used O-PSM to process and analyze BRCA data obtained from The Cancer Genome
Atlas (TCGA) and tested the classification performance in tissues and blood using data
obtained from the Gene Expression Omnibus (GEO), to identify five BRCA-related miRNAs:
hsa-miR-139-5p, hsa-miR-331-3p, hsa-miR-342-5p, hsa-miR-486-5p, and hsa-miR-654-3p,
which exhibited satisfactory classification efficiencies in both tissues and blood. The highest
single area under the curve (AUC) of these five miRNAs was the AUC of hsa-miR-139-5p,
which was equal to 0.9941 with a CI of 98.44–100%, and combined AUC of 0.9975 with a CI
of 99.36–100%. In independent sets, the highest single AUC was 0.8793 (CI: 78.69–97.16%)
from hsa-miR-486-5p, and the combined AUC was 0.9105 (CI: 99.36–100%) in serum, with
0.9714 (CI: 93.4–100%) from hsa-miR-139-5p and 1.0000 (CI: 99.36~100%) in the tissue
independent set 1, 0.9714 (CI: 93.4–100%), from hsa-miR-139-5p and 1.0000 (CI: 99.36–100%)
in tissue independent set 2.

We also assessed the categorization efficiency of the five screened miRNAs for BRCA
staging and typing, the latter being the one better characterized, surprisingly, by the panel.
In addition, we compared hsa-miR-125a-5p [45,46] and hsa-miR-146b-5p [45,47], which
were experimentally confirmed in tissues and blood from previous reports. The results
showed that miRNAs identified by O-PSM had better categorization efficiency. We also
analyzed the target genes of five miRNAs and obtained Protein-Protein Interaction (PPI)
networks and functional enrichment of target genes by STRING and Metascape databases.
In addition, survival analysis showed that high expression of hsa-miR-342-5p had a great
impact on patient prognosis. Our results showed that the combined use of the panel of
identified miRNAs may be effective for non-invasive diagnosis and prognostic stratification
of patients, in order to design a novel biomarkers-based approach for BRCA management
in clinical practice.
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2. Materials and Methods
2.1. Data

The TCGA BRCA RNA-seq data were obtained from the UCSC Xena database (https:
//xenabrowser.net/ (accessed on 1 October 2020)), which included data from 748 disease
patients, 187 healthy patients, and a total of 2253 miRNAs. The prognostic data and
phenotype information were also downloaded from the UCSC Xena database. There were
three independent test sets in the GEO (https://www.ncbi.nlm.nih.gov/geo/ (accessed on 1
October 2020)) for the classification effectiveness test; two of them involved tissue data, and
one involved blood data. The tissue independent set 1 was from GSE42128 [48] platform 3
(GPL15018 Agilent-031181 Unrestricted_Human_miRNA_V16.0_Microarray 030840), with
1205 miRNAs, which had data from 28 cancer patients and 20 para-carcinoma patients. The
tissue independent set 2 was from GSE57897 [49] (GPL18722→Homo sapiens microRNA
array), with 1849 miRNAs, which had data from 422 cancer patients and 31 healthy controls.
The blood data were from GSE42128 platform 2 (GPL16224→Exiqon LNA RT-PCR Human
panels (1 and 2)), with 274 miRNAs, which had preoperative serum data from 32 cancer
patients and 22 healthy controls (Figure 1A).

We used GSE81002 [50–52] (GPL10656 Agilent-029297 Human miRNA Microarray
v14 Rev.2 (miRNA ID version)) and GSE97811 [53] (GPL21263 3D-Gene Human miRNA
V21_1.0.0, microarray data) from GEO to validate the classification effect of the screened
miRNAs for BRCA typing and staging. GSE81002 (GPL10656), which has 128 miRNAs
overlapping with TCGA BRCA data, and all 5 marker miRNAs in it, left a total of 425 sam-
ples. We removed 50 samples without pam50 subtype; then, there were 45 basal-like
samples, 44 normal-like samples, 155 Luminal A samples, 89 Luminal B samples, and
42 HER-2 (+) samples, 375 samples in total. GSE97811, which has 2222 miRNAs overlap
with TCGA BRCA data, and all 5 marker miRNAs in it, consisted of 61 samples, including
28 stage 1 samples, 28 stage 2 samples, and 5 stage 3 samples.

2.2. Random Sampling

Random sampling was performed using BRCA data downloaded from TCGA. The
diseased and healthy data were divided into four parts for random combination; three
were training sets and one was a test set. To enrich our research samples and generate
more accurate results, two-thirds of the training set was divided into a feature selection set,
and one-third was the feature evaluation set. One sampling produced 12 feature selection
sets, and we sampled 100 times at random to produce 1200 feature selection sets. We
finally obtained 1200 feature selection sets (i1k1 − i12k100), 1200 feature evaluation sets
(i1k1 − i12k100), and 1200 internal test sets (i1k1 − i12k100), to use in subsequent data
analyses (Figure 1B). I is the number of permutations of random combinations, k is the
number of random samples.

2.3. Differential Expression Analyses

The SAM method (R Package: siggenes) was then used to select differentially expressed
miRNAs from 1200 features selection sets, and characteristic miRNAs with p < 0.05 were
identified in each set. FC was performed on the characteristic miRNAs obtained from
SAM in each set, and the threshold was set as log2(|FC value|) > log2(1.2), to identify the
miRNAs with significant differential expressions (Figure 1B).

2.4. Clustering

To further obtain co-expression relationships between the miRNAs identified by SAM
and FC, these miRNAs were clustered using Pearson’s correlation analysis with correlation
coefficient (r) > 0.6, to obtain the sets of co-expressed characteristic miRNAs (Figure 1B).

https://xenabrowser.net/
https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/geo/


Genes 2022, 13, 1931 4 of 19

Figure 1. Flow Chart. (A) Data acquisition. (B) The set of microRNAs (miRNAs) with major synergis-
tic effect was screened by the synthesis algorithm Optimized Scoring Mechanism for Primary Synergy
MicroRNAs (O-PSM). 1. Four-fold cross sampling. 2. Differential expression analysis. 3. Clustering
was performed using the pearson correlation coefficient. 4. The significant decision tree models were
obtained by t test and decision tree. 5. Screening primary synergy gene sets by single Area Under
Curve (AUC) of each miRNA > 0.7. 6. After rating the primary synergy gene sets, keep the highest
scoring marker set. (C) Results validation.

2.5. The T Test and Decision Tree

The unpaired t test (p < 0.01) was performed on the clustering results, and the char-
acteristic miRNAs from each set identified by this test were used for the decision trees
(R package: rpart). To identify more significant sets, we also removed trees with redundant
branches (Figure 1B).

2.6. Screening Primary Synergy miRNA Sets by Single AUCs

We used ROC analyses to select miRNA sets. The AUC of the trees were calculated
using the R package, pROC. AUC value, accuracy and sensitivity were obtained from
each set. To select more representative primary synergy miRNAs, the single AUC value of
each miRNA in the feature evaluation set was greater than 0.7 during standard screening
(Figure 1B).
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2.7. Ratings of the Primary Synergy miRNA Sets

The combined AUC value, specificity, accuracy, and sensitivity of each miRNA in the
remaining feature evaluation sets and the frequency of occurrence of each miRNA was
combined to score the sets. The entropy weighting method was used to transform these
indices into scores of the primary synergy miRNA sets (Figure 1B).

Pxy = mxy /
(
∑x mxy

)
(1)

x is for each feature set, y is the indices, y ∈ (1, 2, 3, . . . , n). mxy is set as the AUC value,
specificity, accuracy, sensitivity and frequency of miRNA in the feature set.

Ey = −∑x Pxy· log
(

Pxy
)

(2)

Ex is the entropy.
Wy =

(
1− Ey

)
/
(
5−∑ Ey

)
(3)

Wx is the weight of entropy. Then, we assigned entropy weight to each set for subse-
quent scoring.

Sx = ∑y mxy·Wy (4)

The scores (Sx) of each miRNA set were calculated and compared. The set with the
highest score was identified as the one with significant synergistic effects.

We selected the decision tree method, not only because it showed the synergistic effect
of miRNAs, but also because it provided us with the primary and secondary relationships
between them. The root node was the node with the most important significance in the
whole tree.

2.8. O-PSM for Primary Synergy miRNAs

By integrating the series of methods including random sampling, SAM, FC, Pearson’s
correlation analysis, t test, ROC and decision tree, we proposed the decision tree-based
scoring algorithm, which involves the aforementioned steps (Figure 1A,B).

2.9. Comparison of Methods

We compared O-PSM with a range of methods, including SAM, FC, t test, deci-
sion tree and their combinations, for a total of 19 methods, including the use of Fisher
Liner Discrimination and random forest to further determine the advantages of O-PSM
(Supplementary Table S7). Additionally, we also evaluated the robustness of O-PSM by
randomly permutating the data class labels. When the number of miRNAs screened by the
compared methods exceeded 5, we randomly selected 5 miRNAs for comparison.

2.10. Functional Annotation of miRNAs

We obtained a total of 2752 target genes for 5 miRNAs from the miRTarBase database
(https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/index.php (accessed
on 26 March 2021)). Target genes that were significantly negatively correlated with mark-
ers were screened by Pearson’s correlation coefficient. Using the negatively correlated
target genes, we enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways for differentially high expressed miRNAs (hsa-miR-
342-5p and hsa-miR-331-3p) and differentially low expressed miRNAs (hsa-miR-139-5p,
hsa-miR-486-3p and hsa-miR-654-3p) using the R package “clusterProfiler”, respectively,
to obtain relevant functional annotations.

2.11. Construction of PPI Network and In-Depth Network Analysis

We obtained the target genes of these 5 miRNAs by querying miRTarBase (https:
//mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/index.php (accessed on
26 March 2021)), with 354 of them in the STRING database (https://string-db.org (accessed

https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/index.php
https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/index.php
https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/index.php
https://string-db.org
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on 28 March 2021)). We used these 354 target genes to build a PPI network and analyze
their mechanisms. In order to obtain more information and make the PPI network clearer,
we utilized Cytoscape software to visualize it.

Molecular Complex Detection (MCODE) in Cytoscape was used to explore hub mod-
ules of PPI network, with the threshold degree cut-off = 2, node score cut-off = 0.2,
k-core = 2, and max depth = 100.

Finally, we obtained the functional annotation and the pathway enrichment of those
target genes in Metascape (https://metascape.org (accessed on 28 March 2021)).

2.12. Survival Analysis

Using TCGA BRCA prognostic information, of which there were 741 samples, we first
analyzed the effect of different clinical characteristics on patient survival by univariate cox
regression. Then, we collected factors that were associated statistically significantly with the
survival status of BRCA patients. We then combined remarkable factors in a multivariate
cox regression analysis to obtain independent factors that could influent the prognosis of
patients. Analysis was performed using the “survival” package and “survminer” package
in R. Then, we plotted Kaplan-Meier (K-M) curve by R package “ggsurvplot”.

3. Results
3.1. Identification of miRNAs with Primary Synergy Using O-PSM of Tissues

By performing O-PSM, 1200 sets were obtained, trees were generated in each feature
selection set, and trees with redundant branches were subsequently removed. To determine
the efficiency of discrimination, ROCs in the feature evaluation sets were calculated for the
remaining 12 miRNA sets without redundant branches of the trees involving i1k24, i2k24,
i5k56, i5k83, i6k56, i6k83, i9k60, i10k60, i11k44, i11k88, i12k44, and i12k88 (Figure 2A–L,
Supplementary Table S1).

To identify the miRNA sets with high quality, the sets with each single AUC value
greater than 0.7 were identified. The combined ROC, specifically, accuracy of each miRNA
set, and frequency of occurrence of each miRNA in all miRNA sets were used to score using
O-PSM. Finally, the highest ranked set was identified as i9k60, with a score of 0.7452.

There were 41 miRNAs in the raw data of i9k60. SAM selected 30 miRNAs with
p < 0.05. After FC screening (|FC value| > 1.2), 10 miRNAs remained. Using cluster-
ing, eight co-expression sets were identified. All sets had t test p values less than 0.01.
After pruning the decision tree, we had five miRNAs (hsa-miR-139-5p, hsa-miR-331-3p,
hsa-miR-342-5p, hsa-miR-486-5p, and hsa-miR-654-3p) that had major synergistic effects on
BRCA. The hsa-miR-139-5p was the miRNA that had the highest single AUC (0.9941), and
it was also the root node of the tree, which confirmed the importance of hsa-miR-139-5p.

3.2. Significant Categorization of Tissues

In the internal evaluated sets, the combined AUC of those miRNAs reached 0.9975,
exceeding the AUC of five single miRNAs, which showed that the combined effect was bet-
ter than the individual effects (Supplementary Table S2 and Figure 3A–F). Hsa-miR-139-5p
with the highest frequency was also the miRNA with the highest individual AUC. It was
also the root node of the decision tree (Figure 2N), highlighting its significance among the
five miRNAs.

In the internal test sets, the results were the same as in the internal test set. The
single AUC of hsa-miR-139-5p, hsa-miR-331-3p, hsa-miR-342-5p, hsa-miR-486-5p, and
hsa-miR-654-3p are 0.9904, 0.7084, 0.7974, 0.9294 and 0.8224, respectively, and the combined
AUC is 0.9930 (Supplementary Table S3 and Supplementary Figure S1).

In independent validation set 1, the results were verified once
(Supplementary Table S4 and Supplementary Figure S2), indicating the accurate clas-
sification performance of the miRNAs. The single AUC of hsa-miR-139-5p, hsa-miR-331-3p,
hsa-miR-342-5p, hsa-miR-486-5p, and hsa-miR-654-3p are 0.9714, 0.5625, 0.6446, 0.8982 and
0.9125, the combined AUC is 1.0000.

https://metascape.org
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Figure 2. ROC of 12 trees in evaluated sets and cluster and tree plots of i9k60. (A–L) The ROC
of 12 decision trees without redundant branches in the evaluated sets. (M) The 10 differentially
expressed in i9k60 miRNAs were divided into 8 co-expression sets by Pearson’s correlation coefficient
analysis. (N) Unpaired t test (p < 0.01) was performed on the clustering results, the characteristic
miRNAs in i9k60 screened by t test were used for the decision tree (R package: rpart). Through
pruning the tree, we ended up with 5 miRNAs: hsa-miR-139-5p, hsa-miR-331-3p, hsa-miR-342-5p,
hsa-miR-486-5p, and hsa-miR-654-3p.

To further test the combined effects of these five miRNAs, we tested them in tissue
independent set 2. The AUC results of hsa-miR-139-5p, hsa-miR-331-3p, hsa-miR-342-5p,
hsa-miR-486-5p, and hsa-miR-654-3p in GSE57897 showed that the combined effect reached
0.7181, exceeding each single AUC value, which showed the primary synergy of these five
miRNAs again (Supplementary Table S5 and Supplementary Figure S3).

3.3. Significant Categorization of Serum

The five miRNAs that showed primary synergy also achieved satisfactory results in the
independent test sets of serum (GSE42128 platform 2), with 0.9105 for the combined AUC,
indicating that the joint use of five miRNAs also had significant classification performance
in serum (Supplementary Table S6 and Figure 3G–L).

Both in tissues and blood (serum), the individual ROC was not as high as the com-
bined value, indicating that the combined effect of these miRNAs was better than that of
individual miRNAs. The results showed the reliable efficiency of O-PSM and synergy of
these five miRNAs.
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3.4. Categorization Performed Remarkably Well in Typing and Staging of BRCA

For BRCA typing, GSE81002 was used to remove samples without subtype information.
When samples of the subtype basal-like were cases, other subtypes were classified as
controls. The same was true for other subtypes. The i9K60 miRNAs collection showed
accurate categorization efficiency in basal-like BRCA and normal-like BRCA (Table 1).

Next, we evaluated the classification efficacy of i9k60 miRNAs for different stages of
BRCA. Similar to typing, when stage 1 BRCA samples were used as case group, samples at
other stages were used as control. The same was performed for other stages. The analysis
revealed that i9k60 miRNAs had better classification efficacy when in stage 2. The effect
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was not significant in other stages, and we speculated that this is due to the small amount
of data (Table 2).

Table 1. The Area Under Curve (AUC) and Confidence Interval (CI) value of i9k60 in typing
(GSE81002).

Subtype Combined AUC CI

Basal-like 0.840 78.94~89.15%
Normal-like 0.876 83.05~92.13%
Luminal A 0.680 62.66~73.39%
Luminal B 0.686 62.30~75.00%
HER-2 (+) 0.686 60.21~76.95%

Table 2. The AUC and CI value of i9k60 in Staging (GSE97811).

Stage Combined AUC CI

1 0.657 51.78~79.70%
2 0.723 59.08~85.48%
3 0.615 62.12~85.03%

3.5. Comparison with miRNAs That Had Been Experimentally Confirmed

We compared the selected miRNA collections with those that had been experimentally
verified to be closely related to BRCA, to further determine the collection abilities of i9k60
miRNAs. The miRNAs that met the requirements were in previous reports, showing that
hsa-miR-125a-5p and hsa-miR-146b-5p simultaneously existed in tissues and blood. ROC
was used to compare our sets of data with these previously reported data. The results
showed that the categorization efficiency of hsa-miR-125a-5p and hsa-miR-146b-5p differed
greatly from the miRNAs screened by us (Figure 4). For the miRNA set screened by O-PSM,
not only was the AUC value of these five miRNAs alone better than hsa-miR-125a-5p
and hsa-miR-146b-5p, but also the combined ROCs of the internal data set and the three
independent validation sets were 0.9975, 1.0000, 0.7181, and 0.9105, respectively, which
were all higher than hsa-miR-125a-5p and hsa-miR-146b-5p. The novel marker miRNAs
we screened not only achieved good classification results in several data sets, but they
also obtained great results when compared with the two experimentally validated BRCA-
associated miRNAs. Therefore, we believed that the miRNAs screened by the O-PSM
method are promising as markers for BRCA identification and diagnosis.

3.6. Comparison of Methods

To test whether O-PSM had advantages over other methods, we compared it with
a series of methods, including SAM, FC, t test, decision tree, and their combinations,
18 methods in total, including using Fisher Liner Discrimination to further identify the
advantages of O-PSM (Supplementary Table S7). When the numbers of miRNAs screened
by the comparison methods were more than five, we randomly selected five miRNAs
for comparison. All the comparison results showed that there was a difference between
these methods and O-PSM. The characteristic miRNAs screened by O-PSM had the highest
combined AUC in TCGA-BRCA (0.9975), and the combined AUC in tissue independent
validation set 1 tied with the AUC obtained by other partial methods and achieved better
results in both tissue independent validation set 2 and blood independent validation set.
Together, O-PSM showed good classification performance and could identify disease-
related miRNAs with primary synergies. We also permutated the TCGA BRCA data to
more accurately confirm the efficacy of these five miRNAs as clinical diagnostic markers
for BRCA. However, the permutated data could not pass O-PSM, further validating the
stringent screening conditions of O-PSM.
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platform3) and tissue independent Set 2 (GSE57897).

3.7. Functional Annotation

The development, progression and metastasis are highly complex processes that
involve multiple biological functions and pathways. We queried the target genes of marker
miRNAs in miRTarBase, screened the target genes negatively co-expressed with markers
by Pearson’s correlation coefficient, and annotated miRNAs functionally according to the
significant negatively co-expressed target genes. Then, we performed GO and KEGG
functional annotation by R package “clusterProfiler” for differentially high expressed
miRNAs (hsa-miR-342-5p and hsa-miR-331-3p) and differentially low expressed miRNAs
(hsa-miR-139-5p, hsa-miR-486-3p and hsa-miR-654-3p). We found that four out of five
marker miRNAs participate in multiple biological procedures and pathways that may affect
BRCA progression by regulating target genes (Figure 5).

Based on GO (Figure 5A,B) and KEGG (Figure 5C,D), we identified the upregulated
miRNAs involved in the Rap1 signaling pathway, focal adhesion, Ras signaling pathway,
MAPK signaling pathway and proteoglycans in cancer (Figure 5E), which were closely
related to cell adhesion and other related functions. Adhesion is associated with cancer
metastasis [54]. Cell migration is central to numerous physiological processes, including
embryonic development, immune surveillance and wound healing, and dysregulation of
migration is critical for cancer propagation. Among the target genes, EGFR is epidermal
growth factor receptor [55–57], which is frequently expressed at high levels in different
forms of cancer, and its expression is often positively correlated with cancer progression
and poor prognosis [58–63]. FLT4 is FMS-like tyrosine kinase 4 [64], ID1 is a DNA-binding
protein inhibitor [65], MET is proto-oncogene tyrosine protein kinase Met [66], and PRKCA
is the classical protein kinase C alpha type [67–69], which are receptor tyrosine kinases
(RTKs). RTKs are cell surface receptors with specific structural and biological characteristics
that react to environmental clues by activating proper signaling cascades in cancer cells.
PGF is placental growth factor [70], which belongs to growth factors (GF). In cancer cells,
PGF mediates a range of pro-metastatic cellular events, including engaging endothelial cells
to build blood supply, enhancing invasiveness and cell movement [71]. The upregulated
markers reduce the expression of target genes, leading to dysregulation of processes such
as signal transduction, cellular processes, and human diseases, and inhibit functions such
as cell adhesion, which may promote tumor metastasis (Figure 5F).



Genes 2022, 13, 1931 11 of 19

Figure 5. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations
of hsa-miR-139-5p, hsa-miR-331-3p, hsa-miR-342-5p, hsa-miR-486-5p, hsa-miR-654-3p. (A,B) Through
R package “clusterProfiler”, we obtained the GO annotation of these miRNAs. (C,D) Through R
package “clusterProfiler”, we obtained the KEGG enrichment analysis of them. (E) Sankey plot
of upregulated miRNAs—target genes—pathways. (F) KEGG pathways plot of target genes of
upregulated miRNAs. (G) Sankey plot of downregulated—target genes—pathways.

The target genes of downregulated miRNAs are mainly involved in glycosaminoglycan
biosynthesis [72,73] and lysosome [74] and central carbon metabolism in cancer [75]; and
these functions are tightly related to angiogenesis, cell growth, cell proliferation and
apoptosis (Figure 5G). We assumed that marker miRNAs downregulate expression, reduce
the repressive effect on target genes, enable the overactivation of related pathways and
indirectly promote tumor development.

3.8. PPI Network and Mechanism Analysis of Target Genes

With the STRING database, we obtained the PPI network of target genes (Figure 6A),
in the whole network, among them, the target genes that possessed the most interactions
are targets of hsa-miR-342-5p, which have 65 relationships. The first three tightly connected
hub interworking subnets are filtered by MCODE (Figure 6B–D).

Then, we obtained the functional annotations of all target genes of five marker miR-
NAs in Metascape, and the results (Figure 6E) showed that they are highly related to the
phosphatidylinositol phosphate biosynthetic process with the p value of 9.886 × 10−8.
Phosphatidylinositol 3-phosphate is a lipid that regulates membrane dynamics protein
sorting and cell signaling [76]. They are also related to regulation of the purine nucleotide
metabolic process (p = 1.028 × 10−6). Purines are basic components of nucleotides in
cell proliferation; thus, impaired purine metabolism is associated with the progression
of cancer, membrane trafficking (p = 1.999 × 10−6), which is a focal point for targeting
cancer [77], negative regulation of the protein modification process (p = 3.963 × 10−6),
vesicle organization (p = 5.970 × 10−6), PID MTOR 4PATHWAY (p = 1.629 × 10−5), neg-
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ative regulation of apoptotic signaling pathway (p = 1.897 × 10−5), malignant pleural
mesothelioma (p = 2.421 × 10−5), adipogenesis (p = 2.489 × 10−5) and brain development
(p = 2.630 × 10−5).

Through the PPI network mining modules, we found that the first three modules all
contain the target genes of hsa-miR-342-5p; thus, we think that the differential expression
of hsa-miR-342-5p may have a more important effect on BRCA. Therefore, we analyzed the
effect of hsa-miR-342-5p on the prognosis of BRCA patients.

First, we determined the factors that would affect the prognosis of BRCA patients by
univariate cox regression. The analysis revealed that hsa-miR-342-5p as well as primary tu-
mor stage (T stage), regional lymph nodes stage (N stage) and distant metastasis (M stage),
which are also known as the TNM stage, were associated statistically significantly with
the survival status of BRCA patients (Figure 6D). The effect of gender, race and radiation
therapy on patient prognosis was not remarkable. We then combined hsa-miR-342-5p
with the TNM stage in a multivariate cox regression analysis, and the results showed that
hsa-miR-342-5p remarkably influenced patient survival despite the influence of TNM stage
(Figure 6D). Thus, we concluded that hsa-miR-342-5p could influence the prognosis of
BRCA patients significantly as an independent factor. By plotting the K-M curve, we could
see that when hsa-miR-342-5p was highly expressed in patients, there was better prognosis
of patients (Figure 6E).

We then analyzed the expression of target genes of hsa-miR-342-5p, which significantly
enriches pathways, and could see that their target genes were remarkably low expressed in
disease and relatively high expressed in normal samples, consistent with our findings from
functional and survival analyses (Figure 6F).
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Figure 6. Protein-Protein Interaction (PPI) network and mechanism of the target genes and survival
analysis of miRNAs. (A) PPI network of target genes obtained from STRING database. (B) The top
three clusters filtered by MCODE. (C) Functional annotation of target genes by Metascape. (D) Mul-
tivariate cox regression analysis of factors that influence prognosis of BRCA patients. ‘*’: p < 0.05,
‘**’: p < 0.01, ‘***’: p < 0.001. (E) Prognostic impact of high and low expression of hsa-miR-342-5p on
TCGA BRCA patients. (F) Heat map of significantly differentially expressed hsa-miR-342-5p target
genes in BRCA patients and normal samples.
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4. Discussion

Identifying non-invasive markers of tumors has been a pressing issue. In urologic
tumors, miRNAs have been shown to be useful biomarkers, but a large body of research
data is not yet available for clinical practice [78]. However, it is now clear to us that
different cancers can have very different clinical presentations in different patients. The
use of biomarkers can be a very promising strategy. Epigenetics-based biomarkers such as
dysregulated DNA methylations, deregulated expression of chromatin structure proteins
and miRNAs or nt-RNAs or lncRNAs could have a high impact on clinical practice in
oncology. Nevertheless, the transfer from laboratory to clinical practice remains slow. This
is why translational research, with clinical implications, is the future of oncology research.

Avan et al. had compiled the potential value of tissue and circulating miRNAs for prog-
nostic and therapeutic applications in BRCA in 2018 [79], and they concluded that miRNAs
are promising for early detection of BRCA, predicting prognosis, and monitoring patient
response to treatment based on preclinical and clinical investigations of tissue-specific miR-
NAs and circulating miRNAs. However, the performance of circulating miRNAs has been
inconsistent and may lead to conflicting conclusions in different studies. Tissue-specific
miRNAs are relatively stable, but biopsy can cause some damage to the body. We hope to
mine BRCA markers in miRNAs common to tissue and blood, so that marker miRNAs can
have the advantages of both: non-invasive and stable.

We proposed O-PSM to identify more efficient and accurate non-invasive disease-
related miRNAs. Five miRNAs (hsa-miR-139-5p, hsa-miR-331-3p, hsa-miR-342-5p, hsa-
miR-486-5p, and hsa-miR-654-3p) were identified from BRCA tissues and blood samples
of patients, which played a major role in this disease. These five miRNAs showed precise
classification performance in BRCA tissues and serum, showed appropriate significance for
the clinical diagnosis of BRCA, and strongly supported the screening ability of O-PSM. We
placed the entire O-PSM process into an R package stored at https://github.com/SuFei-
lab/OPSM.git (accessed on 22 October 2021). Verification in tissues and blood confirmed
that the combined effect of these five miRNAs provided a novel biomarker system for
diagnosis of BRCA. Furthermore, the study suggested the possibility of using non-invasive
methodologies to achieve an accurate diagnostic and prognostic definition of BRCA cases.

We verified the categorization efficacy of screened miRNAs in terms of BRCA typ-
ing [50–52] and staging [53], indicating that the collection of miRNAs with major synergistic
effects obtained by O-PSM was closely related to BRCA. We also compared with experimen-
tally verified miRNAs (hsa-miR-125a-5p [45,46] and hsa-miR-146b-5p [45,47]) related to
BRCA. By comparing the miRNAs screened by O-PSM with those reported in the literature,
it was determined that miRNAs obtained by O-PSM had better categorization efficiencies.
Thus, we concluded that the fresh markers screened by O-PSM has good robustness.

We conducted preliminary survival analysis of hsa-miR-342-5p, which showed that
the marker is statistically significantly related with prognosis of BRCA patients (p < 0.05),
and the higher the marker expression, the better the survival outcome.

In addition to bioinformatic analysis, we also searched the literature in the hope of
finding the relationship between marker miRNAs and anti-cancer drugs and exploring
the mechanisms by which markers act as potential drug targets to influence patient treat-
ment outcomes and prognosis. The search revealed that hsa-miR-342-5p regulates the
expression of genes involved in tamoxifen-mediated apoptosis and cell cycle progression
in tumor cells. Restoration of hsa-miR-342-5p expression may represent a novel therapeutic
approach to sensitize and inhibit the growth of tamoxifen-refractory breast tumors [80].
Aside from BRCA therapeutics, we also retrieved marker miRNAs that play a role in other
cancer treatments. Deng et al. found that hsa-miR-342-5p may act as a tumor suppressor
in osteosarcoma (OS) by targeting Wnt7b to inhibit the effects on OS cells viability, mi-
gration, invasion, sensitivity to Doxorubicin and apoptosis [81]. Tang et al. found that
hsa-miR-139-5p increased apoptosis and inhibited cisplatin (DDP), induced non-small cell
lung cancer (NSCLC) cell proliferation in vitro by regulating the PI3K/AKT/caspase-3
signaling pathway, and sensitized NSCLC cells to DDP by targeting HOXB2. Modulation
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of hsa-miR-139-5p expression reversed DDP resistance and increased chemosensitivity of
therapeutic NSCLC [82]. Furthermore, Fentanyl can inhibit the viability and invasion of
NSCLC cells by inducing hsa-miR-331-3p and reducing HDAC5 [83]. Hsa-miR-486-3p is an
important mediator in regulating sorafenib resistance by targeting FGFR4 and EGFR, thus
providing a potential target for HCC treatment [84]. Allicin upregulates hsa-miR-486-3p
and enhances the sensitivity of TMZ in glioblastoma. Allicin may be used as adjuvant
chemotherapy for TMZ to improve patient prognosis, while hsa-miR-486-3p may be a
potential target for glioblastoma treatment to improve outcomes [85]. Hsa-miR-654-3p
enhances DDP sensitivity in Ovarian Cancer (OVC) cells by downregulating QPRT ex-
pression, and inhibition of hsa-miR-654-3p reverses the inhibitory effect of QPRT-targeted
short interfering RNA on OVC cell proliferation and chemoresistance [86]. This shows
that marker miRNAs participate in the treatment of diverse cancers, further demonstrating
that our screened miRNAs may serve as potential drug targets for cancer treatment. We
speculate that the drugs mentioned in our review may also have some implications for
BRCA treatment.

Our study has a number of limitations: first, because TCGA BRCA data and GEO data
(GSE42128) had little in common, it might have had an impact on the results. Nonetheless,
because of the good screening capability of O-PSM, this method can also be used for other
diseases to provide theoretical support for the development of better methods of diagnose,
stratification and personalized treatment plans for patients. For example, it has recently
been shown that tumor-specific immuno-profiling based on biomarkers can be used in
bladder cancer patients treatable with immune checkpoints inhibitors [87]. Second, we also
performed permutation on TCGA BRCA data to more accurately confirm the efficacies of
these five miRNAs as BRCA clinical diagnosis markers. However, the data after random
perturbation could not pass O-PSM, further validating the strict screening conditions of
O-PSM. Third, we analyzed the prognostic impact of only one marker (hsa-miR-342-5p)
and may have overlooked information about the prognostic impact of other markers on
BRCA patients. Fourth, there are only a few studies focused on tissue and blood miRNAs
in BRCA; thus, the research studies in comparison with previously reported biomarkers
were limited, which proves that this research is of great significance; therefore, further
study is necessary.

In the future, we hope that more scientists can further explore the miRNAs
(hsa-miR-139-5p, hsa-miR-331-3p, hsa-miR-342-5p, hsa-miR-486-5p, and hsa-miR-654-3p)
screened by O-PSM. Despite the limitations of our study, we believe that our results can
be clinically significant in BRCA cases. Moreover, we hope to be able to extend O-PSM to
more diseases and organs, to find effective and reliable biomarkers, and to contribute to
advancements in the field of accurate non-invasive cancer diagnosis and prognostic stratifi-
cation of cancer patients. The final goal is to be able to design tumor-specific personalized
treatment plans for cancer patients in the next future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13111931/s1, Figures S1–S3: Supplementary Figures in-
formation. Figure S1, the single ROC of each miRNA and their combined ROC in test set of i9k60.
Figure S2, the single ROC of each miRNA and their combined ROC of i9k60 in tissue independent
test set 1. Figure S3, the single ROC of each miRNA and their combined ROC in tissue independent
set 2of i9k60; Table S1: indicators of primary synergy miRNAs in 12 evaluate sets. Table S2: The AUC
and ci value of i9k60 in evaluate set. Table S3: The AUC and ci value of i9k60 in test set. Table S4: The
AUC and ci value of i9k60 in tissue independent set 1. Table S5: The AUC and ci value of i9k60 in
tissue independent set 2. Table S6: The AUC and ci value of i9k60 in blood independent set. Table S7:
Comparison of Methods.
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