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Abstract: Migraine and headache frequently co-occur with type 2 diabetes (T2D), suggesting a shared
aetiology between the two conditions. We used genome-wide association study (GWAS) data to
investigate the genetic overlap and causal relationship between migraine and headache with T2D.
Using linkage disequilibrium score regression (LDSC), we found a significant genetic correlation
between migraine and T2D (rg = 0.06, p = 1.37 × 10−5) and between headache and T2D (rg = 0.07,
p = 3.0 × 10−4). Using pairwise GWAS (GWAS-PW) analysis, we identified 11 pleiotropic regions
between migraine and T2D and 5 pleiotropic regions between headache and T2D. Cross-trait SNP
meta-analysis identified 23 novel SNP loci (Pmeta < 5 × 10−8) associated with migraine and T2D, and
three novel SNP loci associated with headache and T2D. Cross-trait gene-based overlap analysis iden-
tified 33 genes significantly associated (Pgene-based < 3.85× 10−6) with migraine and T2D, and 11 genes
associated with headache and T2D, with 7 genes (EHMT2, SLC44A4, PLEKHA1, CFDP1, TMEM170A,
CHST6, and BCAR1) common between them. There was also a significant overlap of genes nomi-
nally associated (Pgene-based < 0.05) with both migraine and T2D (Pbinomial-test = 2.83 × 10−46) and
headache and T2D (Pbinomial-test = 4.08 × 10−29). Mendelian randomisation (MR) analyses did not
provide consistent evidence for a causal relationship between migraine and T2D. However, we found
headache was causally associated (inverse-variance weighted, ORIVW = 0.90, Pivw = 7 × 10−3) with
T2D. Our findings robustly confirm the comorbidity of migraine and headache with T2D, with shared
genetically controlled biological mechanisms contributing to their co-occurrence, and evidence for a
causal relationship between headache and T2D.

Keywords: migraine; headache; GWAS; type 2 diabetes; genetic correlation; shared genetics; Mendelian
randomisation; genetic overlap; pleiotropy

1. Introduction

Migraine is a chronic recurrent neurological condition, typically characterised by
repeated attacks of headache lasting between 4 and 72 h, often accompanied by nausea,
vomiting, photophobia, and phonophobia, that affects up to 14.7% of the world’s population
and is the second leading cause of disability [1]. The vascular system has long been
considered to play a role in migraine pathophysiology. GWAS have recently provided
evidence for vascular involvement in migraine [2,3]. The association between migraine
and the vascular system is supported by several physiologic and observational studies,
including migraine comorbidity with other vascular traits, such as blood pressure [4],
stroke [5], and coronary artery disease [6]. T2D is a well-established risk factor for vascular
disease [7] and observational studies have found that people with migraine and headaches
are more likely to develop T2D than the general population [8,9]. Some studies have
suggested that migraine and headaches increase the risk of T2D, while others have found
an inverse or no association between them [10,11]. Additionally, a recent cross-trait GWAS
reported an association between migraine and T2D [12]. Despite the epidemiological
evidence, there are still many unanswered questions regarding the relationship between
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migraine and headaches with T2D. T2D is a long-term risk factor for various debilitating
and potentially life-threatening complications. T2D affects an estimated 462 million people
worldwide, accounting for 6.28% of the world’s population, imposing huge burdens on
individuals and healthcare management systems [13]. Migraine, headache, and T2D are
common complex traits with multiple aetiologic contributors [14,15]. Among these, genetic
predisposition factors play a significant role in all these conditions. In combination with
environmental factors, multiple genetic factors influence susceptibility to such complex
traits. A strong genetic base for each trait has been discovered [2,16,17]. However, whether
there is a shared or interactive genetic background behind all three traits remains largely
unknown. We hypothesise that T2D may share underlying genetic aetiologies with migraine
and headaches. The existence of these shared genetic aetiologies between these traits in
a subset of people may lead to migraine and headaches and the long-term development
of T2D.

GWAS has been successfully used to identify genetic risk variants for complex traits,
in which hundreds of thousands to millions of single nucleotide polymorphisms (SNPs)
are genotyped and tested for association [18]. Several GWAS studies in migraine, headache,
and T2D have been published, some of which have been robustly replicated in large sample
sizes [2,16,17]. This increasing number of GWAS studies allows combining recent results
from various investigations to improve statistical power and identify regions and variants
with small effects. Furthermore, combining data from multiple interactive traits may un-
cover underlying shared genetic mechanisms. The growing availability of GWAS datasets
has fuelled the development of methods to investigate the shared genetic architecture and
casual genetic relationships between traits [18]. The current study used multiple GWAS
methods to determine whether migraine and headaches share similar genetic etiological
factors with T2D and, if so, to decipher the potential impacts of these genetic factors on
cellular or molecular pathways, leading to the development of migraine, headache, and
T2D. Our results provide a deeper understanding of the relationship between migraine,
headache, and T2D. This knowledge is of primary importance in directing efforts towards
possible therapeutic strategies in a particular migraine subpopulation and the long-term
management of migraine and T2D.

In addition, several epidemiological observational studies have shown that women
have a substantially higher risk of migraine than men [19,20]; however, the sex difference
in migraine risk in diabetic patients is currently ambiguous. Therefore, we used combined
and sex-stratified GWAS summary statistics for migraine, headache, and T2D from dif-
ferent sources (i.e., International headache genetic consortium (IHGC), Diabetes genetics
replication and meta-analysis consortium (DIAGRAM), and UK Biobank (UKB) Neale Lab)
to explore the genetic association between migraine and headache with T2D in Europeans.

2. Materials and Methods
2.1. Study Population and Design

The overall study design (summarised in Figure 1) included three key data sources:
the IHGC, UK Biobank, and DIAGRAM consortiums. We used combined and sex-stratified
GWAS summary statistics for migraine and broadly defined headache (experienced last
month), including data from the IHGC and the UKB sample analysed by the Neale group,
respectively. In addition, GWAS summary statistics for T2D (combined) were obtained from
the DIAGRAM consortium, and sex-specific T2D were included from the UKB (Neale Lab).
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Figure 1. Overall study design and outline of the analysis. IHGC, International headache genetic con-
sortium; DIAGRAM, Diabetes genetics replication and meta-analysis consortium; UKBB, UK Biobank
(Neale Lab); PPA, Posterior probabilities of association; LD, Linkage disequilibrium; GATES, Gene-
Based Association Test Using Extended Simes Procedure; GEC, Genetic type 1 error calculator; GWAS,
Genome-wide association study; KEGG, Kyoto Encyclopedia of Genes and Genomes; LCV, Latent
causal variable; MR, Mendelian randomisation; MR-PRESSO, Mendelian randomisation pleiotropy
residual sum and outlier; GSMR, Generalised summary data-based Mendelian Randomisation; SNP,
Single-nucleotide polymorphism.

2.2. Summary Statistics for Migraine, Headache, and T2D

The genetic overlap analyses utilised the largest available GWAS summary statistics.
The migraine GWAS summary statistics were obtained from a GWAS of 102,084 cases
and 771,257 controls of European descent [2]. More information about data collection
methods and techniques can be found in the original publication [2]. The T2D GWAS
summary statistics were obtained from the DIAGRAM consortium (https://www.diagram-
consortium.org/ (accessed on 10 August 2019)) from a T2D GWAS of 74,124 cases and
824,006 controls [17]. The headache GWAS summary statistics were obtained from the UKB
GWAS for ‘headache pain experienced last month’ (UKB data field: 6159_1), comprising
71,672 cases and 288,719 controls, which are publicly accessible at http://www.nealelab.is/
uk-biobank/ (accessed on 15 March 2021) [21]. Headache cases in our study were those
who experienced a headache in the last month that interfered with their usual activities [21].
Detailed phenotypic descriptions for headache GWAS are available at the following link
(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=6159 (accessed on 15 March 2021)).

According to the International Headache Society, headaches are classified into primary
and secondary headaches [22]. Migraine, tension-type, and cluster headaches are all exam-
ples of primary headaches. In contrast, secondary headaches are associated with certain
medical conditions such as head injury, neoplasm, and head pain caused by infection [22].
Given over 90% of migraine sufferers also have tension-type headaches, and ~50% of
genetic risk loci for headaches overlapped with previously reported migraine loci [16], we
also examined the relationship between headache and T2D to identify genetic variants
associated with headache and compare these findings to the analysis of migraine and T2D.

https://www.diagram-consortium.org/
https://www.diagram-consortium.org/
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=6159
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2.3. Summary Statistics for Sex-Stratified Migraine, Headache, and T2D

We analysed GWAS sex-stratified summary statistics for migraine from the study
of Anttila et al. (2013), which analysed a total of 23,285 cases and 95,425 controls, of
which 3083 cases and 31,832 controls were male; and 20,202 cases and 63,593 controls
were female, obtained from the IHGC (http://www.headachegenetics.org/ (accessed on
15 March 2020)) [23]. From the Neale Lab (http://www.nealelab.is/uk-biobank/ (accessed
on 15 March 2021)) we downloaded UKB sex-stratified GWAS summary statistics for T2D,
of which 10,686 cases and 155,780 controls were male, and 6589 cases and 187,137 controls
were female; and headache, of which 26,324 cases and 140,340 controls were male and
45,348 cases and 148,379 controls were female. UKB data field 2443 was used to determine
doctor-diagnosed diabetes, and data field 6159_1 was used to determine headache pain
experienced last month for sex-specific GWAS data. These GWAS studies were conducted
on individuals of European ancestry.

2.4. Analysis of Sex-Stratified Effects

Previous studies have demonstrated that the association between migraine and
headache with T2D differs by sex [10], and females are at increased risk for migraine [24].
In addition, migraine and headaches are more prevalent in females than males, and sex
hormones, particularly oestrogen and progesterone fluctuations, are thought to play an
important role [11,25]. Therefore, we conducted sex-specific analyses to determine if the
genetic relationship between migraine and headache with T2D differs by sex.

2.5. Pre-Processing of GWAS Data

Where available, we obtained missing rsIDs for SNPs using dbSNP151 (http://www.
ncbi.nlm.nih.gov/SNP (accessed on 10 December 2020)). We dropped SNPs if multiple
SNPs were assigned to the same chromosomal location in separate datasets. In addition,
SNPs with conflicting alleles across datasets were eliminated. For each SNP, a Z-score for
association was calculated by β/SE(β) or LN(OR)/SE(LN(OR)), where β, OR, and SE are
the beta coefficient, odds ratio, and standard error of the effect estimate, respectively. After
variant extraction, the numbers of remaining variants were 23,352,867 for T2D.

2.6. Genetic Overlap between Migraine and Headache with T2D

SNP effect concordance analysis (SECA) [26] of GWAS summary statistics was used
as our first test for genetic overlap between migraine and T2D and headache and T2D.
We used SECA to calculate empirical p-values for concordance, defined as an increased
agreement in the SNP effects across a pair of GWAS traits. SECA first aligned the SNP
effects across the two GWAS summary statistic datasets (dataset 1 and dataset 2) to the
same effect allele and extracted a subset of independent SNPs (r2 < 0.1) using ‘p-value
informed’ linkage disequilibrium (LD) clumping. The LD-independent SNPs were then
partitioned into 12 subsets based on their association p-values, where p ≤ {0.01, 0.05, 0.1,
0.2, 0.3. 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, yielding 144 subsets from all possible combinations of
SNPs for each dataset. Fisher exact tests were carried out on the 144 SNP subsets to assess
whether there was an excess of SNPs where the effect directions were concordant across two
datasets. More details of the SECA approach are provided in the original publication [26].

We first used migraine and headache GWAS (combined and sex-stratified) as dataset 1
and T2D GWAS (combined and sex-stratified) as dataset 2. We also reversed the datasets
using T2D GWAS as dataset 1 and migraine and headache GWAS as dataset 2 to allow
for power differences of each GWAS to produce robust p-values on which to perform
LD-clumping and SNP subsetting.

http://www.headachegenetics.org/
http://www.nealelab.is/uk-biobank/
http://www.ncbi.nlm.nih.gov/SNP
http://www.ncbi.nlm.nih.gov/SNP
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2.7. SNP-Based Heritability and Genome-Wide Genetic Correlation

We applied univariate LD-score regression (LDSC) (https://github.com/bulik/ldsc
(accessed on 12 October 2019)) [27] to calculate the proportion of phenotypic variance
explained by common genetic variants, a measure called SNP-based heritability, h2

SNP. We
utilised pre-computed LD scores derived from 1000 Genomes Project European reference
genotype data provided by the LDSC developers. Genetic correlations (rg) were also
estimated for combined and sex-specific studies using bivariate LDSC between migraine
and headache with T2D. LDSC provides an unbiased estimate of rg, which may exceed the
range (−1 to 1) when standard errors are large and genetic correlations between studies are
highly significant. The SNP-based heritability estimates were transformed to the liability
scale using the trait sample and population prevalence. Population prevalences of 16%
for migraine (18.9% for women, 9.8% for men) [28] and 10% for T2D (9% for women, 9.6%
for men) [29] were used. For headache, the observed sample prevalence was used as the
population prevalence. There was no significant sample overlap between the migraine,
headache, and T2D GWAS; thus, we constrained the genetic covariance intercepts to zero
to estimate genetic correlations.

2.8. Regional Pleiotropic Genetic Effects

We applied pairwise GWAS (GWAS-PW) to find genomic regions associated with a pair
of traits. This program uses a Bayesian statistical model to assess the probability (posterior
probabilities of association (PPA)) for four models: (1) the region contains a genetic variant
only associated with trait 1 (PPA1); (2) the region contains a genetic variant only associated
with trait 2 (PPA2); (3) the region contains a genetic variant that is associated with both traits
(PPA3), and (4) the region contains different genetic variants that are separately associated
with each trait (PPA4). The posterior probability of each independent genomic region for
each pair of traits was calculated using the software GWAS-PW v0.21 [30]. The GWAS
summary statistics data were analysed by partitioning them into predefined independent
genetic regions (1703 in total) based on LD patterns in the 1000 Genomes Project European
reference data provided by the GWAS-PW developers. We considered genomic regions with
PPA3 > 0.9 to influence both traits significantly, whereas segments with PPA3 > 0.5 were
deemed suggestive.

2.9. Cross-Trait Meta-Analysis between Migraine and Headache with T2D

Methods for cross-trait meta-analysis are advantageous for identifying novel genetic
variants or loci associated with multiple traits. We performed cross-trait GWAS meta-
analyses using two models: the fixed effect (FE) and the modified random effects (RE2)
models [31], which are integrated into the METASOFT software (http://genetics.cs.ucla.
edu/meta/ (accessed on 10 December 2020)). The FE model used the inverse variance
weighted approach to estimate the SNP meta-analysis p-value, assuming the GWAS traits
examined the same (fixed) effect. Therefore, when SNP effects are heterogeneous, the
modified random effects (RE2) model may be more appropriate to estimate the SNP meta-
analysis p-value. The RE2 model [31] accounts for differences in SNP effects and is robust in
the presence of heterogeneity. After a meta-analysis, SNPs and loci that became significant
(Pmeta < 5 × 10−8) but were not genome-wide significant in any of the two individual
trait GWAS datasets (5 × 10−8 < Psingle-trait < 0.05) were considered novel. We further
evaluated SNPs and loci from the meta-analysis of migraine and T2D, and headache and
T2D, using the METASOFT m-value approach [32]. The m-value is the posterior probability
that the effect exists in each trait of the cross-trait meta-analysis [32]. M-values greater than
0.9 indicate the effect is present, m-values below 0.1 indicate the effect is not present, and
m-values between 0.1 and 0.9 indicate it is ambiguous whether the effect is present.

https://github.com/bulik/ldsc
http://genetics.cs.ucla.edu/meta/
http://genetics.cs.ucla.edu/meta/
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2.10. Identification of Independent Novel Lead SNP or Genomic Loci

FUMA was used to identify independent lead SNPs from a cross-trait meta-analysis
of migraine and T2D, and headache and T2D. FUMA is a web-based tool for functional
mapping of genetic variants (http://fuma.ctglab.nl/ (accessed on 14 November 2021)) [33].
First, we identified genome-wide significant LD-independent SNPs based on their cross-
trait meta-analysis p-value (p < 5 × 10−8) and independence from one another (r2 < 0.6)
within a one Mb window. Next, lead SNPs were classified as significant independent SNPs
independent from one another at r2 < 0.1 within a one Mb window. The 1000 Genomes
Project European reference panel was used to calculate all LD information [34]. All genome-
wide significant lead SNPs in the original GWAS for each trait were considered a known
lead variant. Lead SNPs from our cross-trait meta-analyses that were in LD (r2 > 0.1) with
an original GWAS trait SNP were deemed to be within a known locus and excluded. The
genome-wide significant lead SNPs from our cross-trait meta-analyses that remained were
designated novel lead SNPs. Novel lead SNPs were also examined using PhenoScanner
(v2) [35] to see if they or their LD proxies (r2 > 0.5) were genome-wide significant in
published GWAS studies for migraine, headache, or T2D. Finally, we report only novel lead
SNPs from cross-trait meta-analyses that were also statistically significant in the original
individual trait GWAS at a false discovery rate (FDR) adjusted p < 0.05.

2.11. Gene-Based Association Analysis to Examine the Genetic Overlap
2.11.1. Gene-Based Test

Compared with single SNP-based association analysis, advantages of gene-based
analysis include multiple SNP effects being combined into a single test for a gene and a de-
creased multiple test burden [36]. Combined and sex-stratified gene-based association tests
were carried out between migraine and headache with T2D using the GATES (Gene-Based
Association Test Using Extended Simes Procedure) test [37], within the Fast ASsociation
Tests (FAST) program [38]. Gene-based p values for migraine and T2D, and headache and
T2D, were calculated using the SNPs overlapping the migraine and T2D GWAS, and the
SNPs overlapping the headache and T2D GWAS, in the combined and sex-stratified dataset.
Gene boundaries and positions were taken from the NCBI build 37 (also known as human
genome version 19), and the 1000 Genomes Project European phase 3 release was used to
estimate LD. SNPs were mapped to 19,418 genes based on the NCBI 37 gene coordinate
information, and SNPs found within 10 kb of each gene boundary were allocated to that
gene. The gene-based test takes into account the non-independence (LD) between SNPs
to adjust for testing multiple SNPs. The GATES test is advantageous because it requires
only GWAS summary statistics and a suitable LD reference. It effectively controls the type
1 error rate regardless of gene size and LD pattern among SNPs, and it does not require
permutation or simulation to assess empirical significance. The minSNP gene-based test
was used, which adjusts the smallest p-value associated with the gene by the effective
number of independent SNPs assigned to the gene.

2.11.2. Independent Gene-Based Test

Due to LD between the most significant SNP (‘best SNP’) assigned to each gene,
gene-based association results may be correlated across neighbouring genes; therefore, the
genetic type I error calculator (GEC) [39] was used to estimate the effective number of
independent genes (i.e., number of independent gene-based tests) by examining the LD
between the top most significant SNP assigned to each gene, and produce the correct type
1 error rate. GEC software was used to perform this analysis as implemented in earlier
studies [36,40]. We used the ‘best-SNPs’ identified in our gene-based analyses as GEC
input. The GEC method divides the input SNPs into LD blocks, assuming that these blocks
are independent by ensuring that the SNPs between the blocks are not in LD (r2 < 0.1).
Analysis of gene-based associations using GEC controls type 1 errors, by correcting for
multiple testing using an estimate of the effective number of independent genes [39]. We
calculated the number of independent genes for each GWAS trait separately.

http://fuma.ctglab.nl/
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2.11.3. Test for Gene-Level Genetic Overlap

We evaluated whether the proportion of associated genes overlapping migraine and
T2D, and headache and T2D (combined and sex-stratified) was more than expected by
chance at three different nominal p-values thresholds (gene with Pgene ≤ 0.01, Pgene ≤ 0.05,
and Pgene ≤ 0.1). First, the raw number of overlapping genes was defined as the number
of genes overlapping both traits in each of the three p-value levels. To assess whether the
proportions of overlapping genes were more than expected by chance, we estimated the
effective number of independent overlapping genes [36,40,41]. We assigned the migraine
or headache GWAS as the ‘discovery’ dataset and the T2D GWAS as the ‘target’ dataset.
Then, we conducted independent gene-based tests using only the genes that overlapped
both migraine and T2D, and headache and T2D, at each of the three nominal p-value
thresholds for GEC analysis. The observed number of overlapping genes was defined as
the number of effective genes with p-values smaller than the threshold in the discovery
and target datasets [36,40]. The observed proportion of genes overlapping the pair of
traits was calculated by dividing the observed effective number of overlapping genes by
the observed effective number of genes in the discovery dataset with a p-value less than
the threshold [36]. The effective number of genes with p-values below the threshold in
the target dataset was divided by the total effective number of genes in that dataset to
calculate the expected proportion of genes overlapping the two traits [36]. Finally, we used
an exact binomial test to compare the proportion of observed and expected overlapping
independent genes for the three p-value thresholds to determine statistical significance.
We examined whether the proportion of overlapping genes was larger than expected by
chance [36]. Lastly, we performed a cross-trait gene-based association meta-analysis to
identify novel genes associated with migraine and T2D, and headache and T2D. We used
Fisher’s combined p-value (FCP) approach to combine gene-based association p-values
across two traits. Several studies recently used this gene-based approach to demonstrate
gene-based pleiotropy across different traits [36,40,42,43].

2.12. Testing Causal Association
2.12.1. Mendelian Randomisation

We investigated bidirectional causal relationships between migraine and headache
with T2D in both combined and sex-stratified datasets using two-sample Mendelian ran-
domisation (2SMR) [44] and generalised summary data-based Mendelian randomisation
(GSMR) [45] analyses. For 2SMR analysis, LD-independent (r2 < 0.001) SNPs with GWAS
p < 5 × 10−8 were used as instrumental variables (IVs). To estimate causal effects, we
employed the inverse-variance weighted (IVW) approach as the primary analysis. This
method can yield a reliable estimate when horizontal pleiotropy is absent or balanced.
However, the IVW model has limitations as one invalid IV can cause the total estimate to be
biased. To address this limitation, several complementary MR approaches were used in sen-
sitivity analyses, including MR-Egger [46], MR-weighted median [47], and MR-pleiotropy
residual sum and outlier (MR-PRESSO) [48], which have all been reported to be robust
to potential violations of IV assumptions. The MR-PRESSO [48] framework was used to
conduct a global pleiotropy test. This approach can examine horizontal pleiotropic outliers
and determine the adjusted causal effect once these outliers are removed. MR-PRESSO
is based on the residual sum of squares (RSS), which measures the heterogeneity of ratio
estimates. Specifically, an IVW estimate is computed using the IVs in a leave-one-out
manner; if the RSS is considerably different from a simulated Gaussian distribution of
predicted RSS, the variant is removed from the IVW model. Simulations showed that this
methodology works best when fewer than half of the IVs display horizontal pleiotropy.

We employed GSMR [45] to determine the putative causal direction between migraine
and headache with T2D. This method uses summary data to assess the possible causal
relationships between the risk factor (exposure) and an outcome utilising independent
genome-wide significant SNPs as IVs. The default threshold of GWAS p≤ 5× 10−8 and LD
r2 < 0.05 was used to select independent IVs. The GSMR guidelines recommend using at
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least ten independent leading SNPs as genetic tools to provide robust results. Therefore, a
threshold of p ≤ 1 × 10−5 was used when less than 10 SNPs exceeded the default threshold.
In addition, HEIDI (heterogeneity in the dependent instrument) outlier detection was
utilised to filter instruments showing clear pleiotropic impacts on exposure and outcome
traits [45]. For the outlier detection analysis in HEIDI, we elected a p-value threshold of
0.01, which excludes 1% of SNPs by chance if no pleiotropic outlier effects are found. The
method estimates a putative causal effect of the exposure on the outcome (bxy) as a function
of the relationship between the SNP’s effects on the exposure (bzx) and the SNP’s effects
on the outcome (bzy), given the assumption that the effect of non-pleiotropic SNPs on an
exposure (x) should be related to their effect on the outcome (y) in an independent sample
only via mediation through the phenotypic causal pathway (bxy) [45]. The calculated
causal effect coefficients (bxy) for the case–control trait are nearly equal to the natural
log odds ratio (OR). An odds ratio of 2 is a doubling risk compared to the population
prevalence of a binary trait for every standard deviation increase in the exposure trait.
This approach can help distinguish the possible causal association between two traits but
cannot explain the intermediary mechanisms involved in any possible causation process.
This study used the ‘TwoSampleMR’ v0.5.6, ‘MR-PRESSO’ v1.0 packages in R version
4.0.2, and the GSMR analysis, integrated into the GCTA v1.93.2 software [49] to perform
all MR analyses. Multiple MR techniques were used in this study due to their different
assumptions, strengths, and limitations. Findings supported by multiple MR approaches
are considered more robust.

2.12.2. Latent Causal Variable Model

A latent causal variable model (LCV) was also applied to examine whether an ob-
served genetic correlation reflects a causal association. The genetic causality proportion of
T2D on risk for migraine and headache was estimated using LCV (https://github.com/
lukejoconnor/LCV (accessed on 17 March 2021)) [50]. Although both the GSMR and the
LCV models estimate causal inference based on GWAS summary statistics, the GSMR
model measures the influence of exposure on the outcome by utilising SNPs strongly asso-
ciated with exposure. In contrast, the LCV model predicts the genetic causality proportion
(GCP) by considering genome-wide SNPs and is robust to horizontal pleiotropy and sample
overlap. In essence, the LCV approach implies that a latent variable L mediates the genetic
correlation between two traits and tests whether this latent variable has a more significant
association with one trait than the other [50]. The GCP estimate determines how much
genetic causality exists between the two traits. GCP values vary from −1 to 1 (complete
genetic causality of trait 2 on trait 1 and vice versa for positive values), with a GCP of
zero indicating the detection of horizontal pleiotropy rather than genetic causality. As
recommended by the LCV developers, only SNPs with a minor allele frequency (MAF)
> 0.05 were retained in the GWAS summary data, and the MHC region was excluded
because of its complex LD structure. Before LCV analysis, migraine, headache, and T2D
GWAS summary statistics were ‘munged’ to extract only HapMap3 SNPs outside the MHC
region (MAF > 0.05). LD scores for HapMap3 SNPs (MHC excluded) estimated from 1000
Genomes Project phase 3 data were used for our LCV analyses.

2.13. Pathway Enrichment Analysis of Cross-Trait-Associated Genes

To help characterise the genes identified from cross-trait gene-based association anal-
ysis, we used the g:GOst webtool [51,52] from g-profiler to test for enrichment of shared
genes in the Gene Ontology (GO) biological process, Kyoto Encyclopedia of Genes and
Genomes (KEGG), Reactome, and Wiki-Pathways. The genes overlapping migraine and
T2D, and headache and T2D, at Pgene < 0.01 for the combined GWAS and Pgene < 0.1 for
the sex-stratified GWAS were used as input to the ‘g:GOSt’ tool to identify pathways with
an adjusted enrichment p-value (Padj) < 0.05 [52]. The default and recommended ‘g:SCS
algorithm’ was used to determine the Padj, which controls for multiple testing. In addition,

https://github.com/lukejoconnor/LCV
https://github.com/lukejoconnor/LCV
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the term sizes of the functional category were limited to values between 5 and 350 [52].
Finally, all advanced options were left as their default values in our analyses.

3. Results
3.1. Genetic Overlap of Migraine and Headache with T2D

Analysis of the combined and sex-specific GWAS data using SECA produced evidence
for significant genetic overlap (p = 9.99 × 10−4) between migraine and T2D, and between
headache and T2D, with an excess of SNPs where the effect directions are concordant,
indicating that SNPs associated with an increase in migraine and headache risk are also
associated with an increased risk of T2D (Figure 2). Of the 144 SNP subsets examined,
132 demonstrated nominally significant concordant effects (OR > 1 and p < 0.05) across
migraine (dataset 1) and T2D (dataset 2), while 141 SNP subsets showed significant con-
cordant effects across headache (dataset 1) and T2D (dataset 2). SECA provided results
that followed a similar pattern in reverse analyses using T2D GWAS data as dataset 1 and
headache or migraine GWAS data as dataset 2. SNPs with lower (more significant) associa-
tion p-values for migraine and headache exhibited a statistically significant trend towards
lower p-values in T2D. In line with expectations for true genetic overlap, an increased con-
cordance was observed in SNP subsets with more robust effect estimates (i.e., represented
by more significant GWAS p-values) (Supplementary Table S2). In addition, we observed
a significant genetic overlap between headache and T2D in males (p = 9.99 × 10−4). Our
SECA results revealed an effect concordance across headache (dataset 1) and T2D (dataset
2) in males, with 102 SNP subsets displaying nominally significant concordant effects. Anal-
ogous results were obtained using the male T2D GWAS data as dataset 1 and the headache
GWAS data as dataset 2. In contrast, no genetic overlap was detected between headache
and T2D in females, nor between migraine and T2D in males and females. A summary of
all SECA analyses is presented in supplementary data (Supplementary Table S2).
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Figure 2. Genetic overlap between migraine and T2D, and headache and T2D. Heatmap plots from
SECA exact Fisher tests for SNP effect concordance between (a) migraine and T2D, and (b) headache
and T2D. Among the 144 SNP subsets examined, 132 and 141 SNP subsets (red colour in the figure)
showed significant concordant effects (OR > 1 and P < 0.05) between migraine and T2D and between
headache and T2D, respectively.
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3.2. Genetic Correlations of T2D with Migraine and Headache

Single-trait LDSC estimated a SNP-based heritability on a liability-scale (h2
SNP) (with-

out constrained intercept) of 11.08% (95% CI: 10.24–11.92%) for migraine, 9.03%
(95% CI: 8.23–9.83%) for headache, and 17.23% (95% CI: 15.72–18.74%) for T2D. Sex-specific
analyses produced similar heritability estimates for males (IHGC-migraine: h2

SNP = 11.25%
[95% CI: 2.16–20.34%]; UKB-headache: h2

SNP = 8.57% [95% CI: 7.39–9.75%]; UKB-T2D:
h2

SNP = 25.33% [95% CI: 21.57–29.09%]) and females (IHGC-migraine: h2
SNP = 10.1%

[95% CI: 7.63–12.57%]; UKB-headache: h2
SNP = 10.01% [95% CI: 8.95–11.07%]; UKB-T2D:

h2
SNP = 24.15% [95% CI: 19.00–28.31%]). Given the observed significant evidence for

SNP-based heritability, we tested for genetic correlation between migraine and headache
with T2D (combined and sex-stratified) using bivariate LDSC. Bivariate LDSC analyses
of the combined GWAS data estimated a significant genetic correlation between T2D and
migraine (rg = 0.06; p = 1.37 × 10−5), and T2D and headache (rg = 0.07; p = 3.0 × 10−4).
Analogous to the SECA results, we also identified a significant genetic correlation between
T2D and headache in males (rg = 0.09; p = 9.4 × 10−3) but not in females and found no
evidence for a genetic correlation between migraine and T2D in males and females. The
SNP-based genetic correlation and heritability estimates for migraine and headache with
T2D are summarised in Table 1 and Supplementary Table S3, respectively.

Table 1. Combined and sex-stratified genetic correlation between migraine and headache with T2D
on a liability scale.

Trait 1 Trait 2 Rg SE p

Migraine T2D 0.0589 0.0135 1.37 × 10−5

Migraine (Male) T2D (Male) 0.0007 0.0759 0.9929
Migraine (Female) T2D (Female) 0.0743 0.0537 0.1663

Headache T2D 0.0657 0.0182 3.0 × 10−4

Headache (Male) T2D (Male) 0.0922 0.0355 9.4 × 10−3

Headache (Female) T2D (Female) 0.0049 0.0396 0.9009
T2D: Type 2 diabetes; Rg: genetic correlation (rg) estimate; SE: standard error of genetic correlation estimate; p:
p-value for test of Rg being different from zero.

3.3. Pairwise GWAS of Migraine and Headache with T2D

GWAS-PW analysis revealed 11 significant pleiotropic regions for migraine and T2D
(chr1:177434054–178944161, chr3:8648561–9541905, chr4:2844097–3845571, chr5:73759326–
75795407, chr6:160581374–162169452, chr9:135298917–137040737, chr11:47008125–49865926,
chr14:57482514–59448252, chr14:94325812–95750857, chr15:53069747–54508497, and
chr17:59312894–61545486) having PPA3 > 0.9, indicating that these regions are pleiotropic
and likely harbour a single causal variant influencing both traits. For headache and
T2D, significant pleiotropy (PPA3 > 0.9) was identified in five regions (chr1:153181186–
154770139, chr3:70449145–72528844, chr5:73759326–75795407, chr7:1353067–2062006, and
chr14:94325596–95750857). Notably, two of these pleiotropic regions (chr5:73759326–75795407
and chr14:94325596–95750857) were common to both migraine and T2D, and headache and
T2D. Additionally, we identified 35 and 13 pleiotropic genomic regions between migraine
and T2D, and between headache and T2D at PPA3 > 0.5; seven regions were common to both
(Supplementary Table S4). These findings provide further support for shared genetic factors
across migraine, headache, and T2D and highlight specific genomic regions harbouring
causal genetic variants influencing both migraine and T2D, both headache and T2D, and all
three traits. Table 2 summarises the combined GWAS-PW results for migraine and headache
with T2D. There were no significant (PPA3 > 0.9) pleiotropic regions in the sex-stratified
GWAS-PW analysis. Relaxing the threshold to PPA3 > 0.5 found one pleiotropic region be-
tween migraine and T2D in females, but none in males (Supplementary Table S4). Whereas
for headache and T2D, three pleiotropic regions were found in females and only one region
was found in males (Supplementary Table S4). Interestingly, the one pleiotropic region for
headache and T2D found in males (chr6:28018353–28917091) was one of the three regions
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found in females. The differences in the pleiotropic genomic regions between migraine
and headache with T2D in males and females may be related to their different GWAS
sample sizes.

Table 2. Pleiotropic genomic regions (posterior probability of association [PPA3] > 0.9) of migraine
and headache with T2D using GWAS pairwise analysis.

Trait 1 Trait 2 Region Chr Start bp End bp Locus PPA1 PPA2 PPA3 PPA4

Genome-Wide Significant
Genes Overlapping both Traits

in the Highlighted Region
(Psingle trait FDR < 0.1 and Pmeta

FCP < 3.65 × 10−6)

Migraine T2D

88 chr1 177434054 178944161 1q25.2 0.00 0.00 0.99 0.01 * SEC16B

283 chr3 8648561 9541905 3p26.1–p25.3 0.00 0.02 0.91 0.07 * SETD5, * LHFPL4

402 chr4 2844097 3845571 4p16.3 0.00 0.00 1.00 0.00 * ADD1, * MFSD10, * NOP14, *
HTT, * MSANTD1

564 a chr5 73759326 75795407 5q13.3 0.00 0.00 0.93 0.07
GCNT4, ANKRD31, * HMGCR, *

COL4A3BP, * POLK, * ANKDD1B,
* POC5

734 chr6 160581374 162169452 6q25.3–q26 0.00 0.01 0.95 0.04 * SLC22A3

1005 chr9 135298917 137040737 9q34.13–q34.20 0.00 0.00 0.97 0.03 * ABO, BRD3

1123 chr11 47008125 49865926 11p11.2–p11.12 0.00 0.00 0.97 0.03

DDB2, MYBPC3, * SPI1,
SLC39A13, PSMC3, * RAPSN, *
CELF1, * PTPMT1, * KBTBD4, *

NDUFS3, * FAM180B, *
C1QTNF4, * MTCH2, * AGBL2, *

FNBP4, * NUP160

1348 chr14 57482514 59448252 14q22.3–q23.1 0.00 0.00 0.96 0.04 * PSMA3, * ACTR10, * ARID4A,
TOMM20L, TIMM9

1370 a chr14 94325812 95750857 14q32.12–q32.13 0.00 0.00 1.00 0.00 SERPINA2, * SERPINA1

1400 chr15 53069747 54508497 15q21.3 0.00 0.00 0.95 0.04 * ONECUT1, * LOC101928499

1518 chr17 59312894 61545486 17q23.2–q23.3 0.00 0.00 1.00 0.00 EFCAB3, METTL2A, * TLK2, *
MRC2

Headache T2D

76 chr1 153181186 154770139 1q21.3 0.04 0.00 0.94 0.02 * AQP10, * ATP8B2

324 chr3 70449145 72528844 3p13 0.01 0.00 0.93 0.05 -

564 a chr5 73759326 75797683 5q13.3 0.02 0.00 0.98 0.01 HMGCR, COL4A3BP, POLK, *
ANKDD1B, * POC5

745 chr7 1353067 2062006 7p22.3 0.00 0.00 0.97 0.03 * MAD1L1

1370 a chr14 94325596 95750857 14q32.12–q32.13 0.00 0.00 1.00 0.00 SERPINA2, * SERPINA1

T2D: Type 2 diabetes; Chr: chromosome; Start bp: Start base pair; End bp: End base pair; PPA1: posterior
probability for model 1 (association only to trait 1); PPA2: posterior probability for model 2 (association only to
trait 2); PPA3: posterior probability for model 3 (shared association to both traits); PPA4: posterior probability for
model 4 (two distinct associations of both trait). a Genomic regions are common to both migraine and T2D, and
headache and T2D. * Genes have top SNP with single-trait p value < 1 × 10−5 for migraine, headache, and T2D.

3.4. Identification of Novel Lead SNPs between Migraine and Headache with T2D

Following the exclusion of genome-wide significant SNPs in the corresponding original
single-trait GWAS, and SNPs in LD (r2 ≥ 0.1) with these SNPs, our cross-trait GWAS meta-
analysis identified 23 LD-independent novel lead SNPs for migraine and T2D. These lead SNPs
achieved genome-wide significance in the cross-trait meta-analysis (Pmeta < 5 × 10−8) and
nominal significance (FDR-adjusted p < 0.05) in the original single trait GWAS (Table 3). The
posterior probability (m-value) results indicated that all detected lead SNPs were associated
with both migraine and T2D (i.e., the m-value was equal to one for both migraine and T2D).
The top significant SNP was rs11590235 (Pmeta ≤ 3.11× 10−12), located at the DENND1A locus.
Cross-trait GWAS meta-analysis identified three novel lead SNPs significantly associated with
headache and T2D (Table 4). The posterior probability (m-value = 1) results indicate that
the identified lead SNPs are associated with both headache and T2D. The most significant
locus for headache and T2D was near ELFN1 (lead SNP: rs73050128, Pmeta ≤ 1.50 × 10−11).
Notably, two of these lead SNPs, rs546738 and rs73050128, mapped to regions near the protein-
coding genes NLGN1 and ELFN1, respectively. These two gene regions were also implicated
in the cross-trait GWAS meta-analysis of migraine and T2D, by rs536445 and rs62442924,



Genes 2022, 13, 1845 12 of 25

respectively; and SNPs rs546738 and rs536445, and SNPs rs73050128 and rs62442924, were in
significant LD (r2 = 0.87 and r2 = 0.76, respectively). Results for all novel lead SNPs found in
the cross-trait meta-analysis between migraine and T2D (38 lead SNPs), and headache and
T2D (17 lead SNPs), and an unadjusted p < 0.05 in their respective single-trait GWAS, are
provided in Supplementary Tables S5 and S6.

Table 3. Novel LD-independent (r2 < 0.1) lead SNPs from cross-trait meta-analysis of migraine and
T2D GWAS (Pmeta < 5 × 10−8; single-trait FDR-adjusted p < 0.05).

Lead SNP CHR BP EA NEA
FE Meta-Analysis Migraine T2D Variant

Annotation

Nearest
Coding
Gene

OR p-Value OR p-Value FDR OR p-Value FDR

rs11590235 1 2208123 T C 1.05 4.33 × 10−9 1.05 3.59 × 10−6 1.77 × 10−3 1.05 3.00 × 10−4 3.22 × 10−2 Intronic SKI
rs1841499 1 72836456 A T 0.98 2.86 × 10−8 0.98 2.64 × 10−4 3.78 × 10−2 0.97 1.65 × 10−5 4.03 × 10−3 Intergenic NEGR1

rs6748072 2 202980887 A G 0.98 3.00 × 10−8 0.98 7.20 × 10−5 1.62 × 10−2 0.98 9.37 × 10−5 1.45 × 10−2 Non-coding
transcript exon KIAA2012

rs9817547 3 18753414 C A 0.98 1.88 × 10−8 0.98 5.34 × 10−5 1.31 × 10−2 0.97 8.02 × 10−5 1.30 × 10−2 Intronic SATB1
rs536445 3 173120103 C T 0.98 1.35 × 10−9 0.98 2.07 × 10−5 6.66 × 10−3 0.97 1.21 × 10−5 2.85 × 10−3 Intronic * NLGN1
rs4619890 4 7853160 G A 1.02 2.84 × 10−9 1.03 7.54 × 10−7 5.30 × 10−4 1.02 8.58 × 10−4 4.79 × 10−2 Intronic AFAP1
rs6829081 4 48693247 T A 0.97 1.17 × 10−10 0.98 3.89 × 10−5 1.05 × 10−2 0.96 2.71 × 10−7 1.18 × 10−4 Intronic FRYL
rs171697 5 103956516 G C 1.03 7.73 × 10−10 1.03 7.93 × 10−7 5.52 × 10−4 1.03 2.36 × 10−4 2.74 × 10−2 Intronic NUDT12
rs29648 5 170559580 A G 0.98 3.10 × 10−8 0.98 3.26 × 10−5 9.30 × 10−3 0.97 2.50 × 10−4 2.27 × 10−2 Intronic TLX3

rs62442924 7 1989976 T C 0.97 1.94 × 10−8 0.98 3.33 × 10−4 4.37 × 10−2 0.96 6.80 × 10−6 1.06 × 10−3 Intronic * ELFN1
rs6947337 7 41854681 A G 0.98 3.90 × 10−8 0.98 7.78 × 10−5 1.70 × 10−2 0.98 1.20 × 10−4 1.60 × 10−2 Intergenic INHBA

rs10101067 8 72407374 C G 1.05 9.71 × 10−10 1.04 1.40 × 10−5 5.00 × 10−3 1.05 1.47 × 10−5 4.15 × 10−3 Intronic EYA1
rs11140324 9 86634309 T C 0.97 1.65 × 10−9 0.97 7.51 × 10−6 3.09 × 10−3 0.97 5.11 × 10−5 7.49 × 10−3 Intergenic RMI1
rs2670139 9 126634255 C T 1.03 3.11 × 10−12 1.03 1.43 × 10−6 8.71 × 10−4 1.04 2.82 × 10−7 1.24 × 10−4 Intronic DENND1A

rs72854192 11 9587144 T A 1.06 3.52 × 10−8 1.06 2.27 × 10−5 7.14 × 10−3 1.06 4.16 × 10−4 3.07 × 10−2 Intergenic WEE1
rs11233452 11 82796110 G A 1.03 9.52 × 10−9 1.02 1.32 × 10−4 2.45 × 10−2 1.03 1.08 × 10−5 2.15 × 10−3 Intronic RAB30
rs10875762 12 48580759 G A 1.03 1.83 × 10−9 1.02 8.09 × 10−5 1.75 × 10−2 1.04 3.06 × 10−6 7.87 × 10−4 Downstream CCDC184
rs116862713 12 120185393 T C 1.07 1.01 × 10−8 1.06 8.87 × 10−5 1.86 × 10−2 1.08 2.42 × 10−5 5.46 × 10−3 Intronic PRKAB1

rs4902684 14 69445385 T G 1.03 1.56 × 10−10 1.02 2.81 × 10−5 8.37 × 10−3 1.04 5.73 × 10−7 2.55 × 10−4 5′ UTR ACTN1
rs299717 18 46163555 T C 1.03 3.98 × 10−8 1.03 3.62 × 10−4 4.60 × 10−2 1.04 1.59 × 10−5 2.29 × 10−3 Intronic CTIF
rs1013710 20 39882781 A G 1.02 7.42 × 10−9 1.02 3.25 × 10−6 1.64 × 10−3 1.02 5.87 × 10−4 4.86 × 10−2 Intronic ZHX3
rs4809370 20 62470872 T C 0.98 1.06 × 10−8 0.98 1.34 × 10−4 2.47 × 10−2 0.97 1.50 × 10−5 2.85 × 10−3 Downstream ZBTB46

rs28457031 22 41597228 A G 1.07 9.99 × 10−9 1.07 1.10 × 10−5 4.17 × 10−3 1.07 2.29 × 10−4 1.67 × 10−2 Upstream L3MBTL2

SNP: Single nucleotide polymorphism; CHR: Chromosome; BP: Base pair position (NCBI37/hg19); EA: Effect
allele; NEA: Non-effect allele; OR: Odds ratio for EA; FE: Fixed effect; FDR: FDR-adjusted p value; T2D: Type
2 Diabetes, * These mapped genes are common with the genes found in cross-trait meta-analysis of headache
and T2D.

Table 4. Novel LD-independent (r2 < 0.1) lead SNPs from cross-trait meta-analysis of headache and
T2D GWAS (Pmeta < 5 × 10−8; single-trait FDR-adjusted p < 0.05).

Lead SNP CHR BP EA NEA
FE Meta-Analysis Headache T2D

Variant Annotation

Nearest
Coding
GeneOR p-Value OR p-Value FDR OR p-Value FDR

rs546738 3 173117548 G T 1.03 3.38 × 10−10 1.03 6.48 × 10−6 7.69 × 10−3 1.03 1.21 × 10−5 3.26 × 10−3 Non-coding
transcript exon NLGN1

rs73050128 7 1961882 A C 0.96 1.50 × 10−11 0.96 3.04 × 10−7 5.53 × 10−4 0.96 1.06 × 10−5 2.87 × 10−3 Intronic ELFN1
rs12432645 14 69599483 T G 1.03 8.47 × 10−10 1.03 1.21 × 10−5 1.26 × 10−2 1.03 1.67 × 10−5 4.53 × 10−3 Intronic DCAF5

SNP: Single nucleotide polymorphism; CHR: Chromosome; BP: Base pair position (NCBI37/hg19); EA: Effect
allele; NEA: Non-effect allele; OR: Odds ratio for EA; FE: Fixed effect; FDR: FDR-adjusted p value; T2D: Type
2 Diabetes.

3.5. Utility of the Cross-Trait GWAS Meta-Analysis Approach

To assess the utility of cross-trait GWAS meta-analysis to identify novel risk loci, we
performed a cross-trait GWAS meta-analysis of migraine and T2D, using a previous and
less powerful migraine GWAS dataset by Gormley et al. (2016) [3]. Of the 25 novel lead
SNPs (Pmeta < 5 × 10−8, single-trait p < 0.05) identified from cross-trait meta-analysis of the
2016 migraine GWAS [3] and T2D GWAS [17], 15 (60%) had a more significant p-value in
the recent and more powerful Hautakangas et al. (2022) migraine GWAS [2] than in the
Gormley et al. (2016) migraine GWAS, of which four SNPs (rs2150866, rs169381, rs9894634,
and rs2834435) became genome-wide significant, and an additional three SNPs (rs11140324,
rs2670139, and rs11646063) became genome-wide suggestive (p < 1× 10−5) (Supplementary
Table S7). Furthermore, of the six SNPs (Pmeta < 5 × 10−8, single-trait FDR-adjusted
p < 0.05) identified from cross-trait meta-analysis, five (83%) had a more significant p-value
in the recent and more powerful migraine GWAS [2], of which two (33%) SNPs (rs2150866
and rs169381) became genome-wide significant, and an additional SNP (rs11140324) became
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genome-wide suggestive (p < 1 × 10−5) (Supplementary Table S7). These results provide
important proof-of-principle that our cross-trait GWAS meta-analysis approach identifies
true novel risk loci.

3.6. Gene-Based Genetic Overlap between Migraine and Headache with T2D

The results presented in Tables 5 and 6, respectively, describe a significant genetic
overlap between migraine and T2D, and between headache and T2D at the gene level.
GATES gene-based association analysis of the migraine and T2D GWAS data produced
results for 18,309 genes, while results for 18,261 genes were produced for headache and
T2D analysis. Our results demonstrated a significant gene-level genetic overlap between
migraine and headache with T2D across all three p-value thresholds using a binomial test for
an increase in genes associated across the traits (Tables 5 and 6). For example, the observed
proportion (0.403) of genes with a gene-based p value ≤ 0.05 for both migraine and T2D
was significantly larger than the expected proportion (0.281) (Pbinomial-test = 2.83 × 10−46).
Similarly, the observed proportion (0.412) of genes with a gene-based p value ≤ 0.05 for
both headache and T2D was significantly larger than the expected proportion (0.287)
(Pbinomial-test = 4.08 × 10−29). Significant gene-based genetic overlap was also observed for
both the male- and female-specific analysis of headache and T2D, and the female-specific
analysis of migraine and T2D (Supplementary Table S8).

For the migraine and T2D overlap analysis, we used a genome-wide significant thresh-
old of Pgene < 3.63 × 10−6 for migraine (i.e., Bonferroni adjustment for testing 13,757
effectively independent gene-based association tests [0.05/13,757]) and Pgene < 3.65 ×
10−6 for T2D (i.e., Bonferroni adjustment for testing 13,694 effectively independent genes
[0.05/13,694]) and identified 303 genome-wide significant genes associated with migraine
(Supplementary Table S9a) and 607 genes associated with T2D. For the headache and
T2D overlap analysis, we used a genome-wide significant threshold of Pgene < 3.85 ×
10−6 for headache (Bonferroni adjustment for testing 13,002 effectively independent genes
[0.05/13,002]) and Pgene < 3.65 × 10−6 for T2D (Bonferroni adjustment for testing 13,694
effectively independent genes [0.05/13,694]) and identified 161 genes associated with
headache (Supplementary Table S9b) and 592 genes associated with T2D. At the genome-
wide significant level, a total of 33 genes were associated with both migraine and T2D
(Table 7), and ten genes were associated with both headache and T2D (Table 8). Notably,
seven of these genes (EHMT2, SLC44A4, PLEKHA1, CFDP1, TMEM170A, CHST6, and
BCAR1) were genome-wide significant for all three traits (migraine, headache, and T2D).
Using the FCP approach, we combined evidence for a gene-based association for genes over-
lapping migraine and T2D, and headache and T2D, with an FDR-adjusted single-trait Pgene
< 0.1. FCP results show that 440 genes overlapping migraine and T2D (PFisher’s-combined
< 3.63 × 10−6), and 204 genes overlapping headache and T2D (PFisher’s-combined < 3.65 ×
10−6) reached a gene-based genome-wide significant level (Supplementary Tables S10 and
S11). Of the 440 genes overlapping migraine and T2D, 165 had their top SNP associated
with both traits at a genome-wide suggestive significant level (PSNP < 1 × 10−5). Of the
204 genes overlapping headache and T2D, 78 had their top SNP associated with both traits
at a genome-wide suggestive significant level (Supplementary Tables S10 and S11). No
genome-wide significant genes overlapped migraine and T2D, or headache and T2D, in the
male- and female-specific analyses—most likely due to a lack of power in the sex-specific
GWAS datasets. Therefore, we did not perform FCP for the genes overlapping migraine
and T2D, and headache and T2D.
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Table 5. Results for independent gene-based and gene-level genetic overlap analysis between
migraine and T2D.

Discovery Target
Number of Overlapping
Genes between Migraine

and T2D

Proportion of Overlapping
Genes between Migraine and T2D

Binomial Test
p-Value

Trait Migraine T2D Expected Observed

Total number of genes

Raw number of genes 18309 18309
Effective number of independent genes 13757 13694

Genes with p-value ≤ 0.1 Genes with p-value ≤ 0.1

Raw number of genes 5965 7305 2786
0.367 0.474 1.29 × 10−44Effective number of independent genes 4102 5023 1943

Proportion of effective number of genes 0.298 0.367

Genes with p-value ≤ 0.05 Genes with p-value ≤ 0.05

Raw number of genes 4421 5677 1774
0.281 0.403 2.83 × 10−46Effective number of independent genes 2959 3850 1193

Proportion of effective number of genes 0.215 0.281

Genes with p-value ≤ 0.01 Genes with p-value ≤ 0.01

Raw number of genes 2236 3348 662
0.159 0.295 1.24 × 10−37Effective number of independent genes 1391 2171 411

Proportion of effective number of genes 0.101 0.159

Migraine: Migraine 2022 GWAS data from IHGC; T2D: T2D 2018 GWAS data from DIAGRAM consortium;
Expected: Expected proportion of overlapping genes between migraine and T2D; Observed: Observed proportion
of overlapping genes between migraine and T2D.

Table 6. Results for independent gene-based and gene-level genetic overlap analysis between
headache and T2D.

Discovery Target
Number of Overlapping

Genes between Headache
and T2D

Proportion of Overlapping Genes
between Headache and T2D

Binomial Test
p-Value

Trait Headache T2D Expected Observed

Total number of genes

Raw number of genes 18261 18261
Effective number of independent genes 13002 13143

Genes with p-value ≤ 0.1 Genes with p-value ≤ 0.1

Raw number of genes 3993 7350 1844
0.380 0.477 5.99 × 10−25Effective number of independent genes 2719 4997 1297

Proportion of effective number of genes 0.209 0.380

Genes with p-value ≤ 0.05 Genes with p-value ≤ 0.05

Raw number of genes 2659 5612 1050
0.287 0.412 4.08 × 10−29Effective number of independent genes 1731 3770 714

Proportion of effective number of genes 0.133 0.287

Genes with p-value ≤ 0.01 Genes with p-value ≤ 0.01

Raw number of genes 1163 3257 353
0.161 0.325 6.36 × 10−25Effective number of independent genes 653 2119 212

Proportion of effective number of genes 0.050 0.161

Headache: Headache GWAS data from UK Biobank Neale lab; T2D: T2D data from DIAGRAM consortium;
Expected: Expected proportion of overlapping genes between headache and T2D; Observed: Observed proportion
of overlapping genes between headache and T2D.
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Table 7. Genome-wide significant genes for migraine and T2D.

Genes Chr
Start

Position
(hg19)

End
Position

(hg19)

LD
Relationship
between Top

SNPs (r2)

Migraine T2D

Gene
p-Value Top SNP Top SNP

p-Value
Gene

p-Value Top SNP Top SNP
p-Value

MACF1 1 39549839 39952810 0.920 2.76 × 10−6 rs1472662 1.75 × 10−8 1.25 × 10−22 rs61779275 7.90 × 10−25

KIAA0754 1 39875176 39882154 1.000 1.04 × 10−6 rs113214136 8.05 × 10−8 2.18 × 10−23 rs113214136 2.30 × 10−24

BMP8A 1 39957318 39995541 0.703 2.74 × 10−6 rs61779314 9.60 × 10−8 1.51 × 10−23 rs72663520 3.10 × 10−25

THADA 2 43457975 43823185 0.062 6.29 × 10−8 rs12712881 3.50 × 10−10 4.13 × 10−28 rs80147536 2.70 × 10−30

SLC9B1 4 103806205 103947552 0.520 3.47 × 10−6 rs4645215 9.53 × 10−8 2.34 × 10−7 rs13150953 6.70 × 10−9

ANKDD1B 5 74907301 74967671 0.499 4.80 × 10−11 rs42854 9.39 × 10−13 2.27 × 10−12 rs34341 5.70 × 10−14

POC5 5 74970023 75013313 0.650 4.20 × 10−11 rs42854 9.39 × 10−13 1.48 × 10−14 rs2307111 3.30 × 10−16

NEU1 6 31826829 31830709 0.010 1.38 × 10−7 rs41267082 5.50 × 10−9 6.02 × 10−9 rs9267653 2.40 × 10−10

* SLC44A4 6 31830969 31846823 0.005 1.72 × 10−7 rs74434374 4.51 × 10−9 4.58 × 10−14 rs9267658 1.20 × 10−15

* EHMT2 6 31847536 31865464 0.005 1.59 × 10−7 rs74434374 4.51 × 10−9 4.22 × 10−14 rs9267658 1.20 × 10−15

* PLEKHA1 10 124134094 124191871 0.070 2.78 × 10−7 rs76568359 6.38 × 10−9 8.73 × 10−12 rs2280141 2.00 × 10−13

CALCB 11 15095143 15103888 0.011 4.56 × 10−7 rs10741662 2.16 × 10−8 7.82 × 10−7 rs74643981 3.70 × 10−8

CELF1 11 47487489 47574792 1.000 9.73 × 10−7 rs7124681 2.15 × 10−8 2.90 × 10−7 rs7124681 6.40 × 10−9

PTPMT1 11 47586888 47595013 1.000 3.77 × 10−7 rs12798028 2.86 × 10−8 1.21 × 10−7 rs12798028 9.20 × 10−9

KBTBD4 11 47593749 47600567 1.000 4.50 × 10−7 rs12798028 2.86 × 10−8 1.45 × 10−7 rs12798028 9.20 × 10−9

NDUFS3 11 47600562 47606115 1.000 3.06 × 10−7 rs11039307 1.84 × 10−8 1.46 × 10−7 rs12798028 9.20 × 10−9

FAM180B 11 47608230 47610746 1.000 3.36 × 10−7 rs11039307 1.84 × 10−8 1.60 × 10−7 rs12798028 9.20 × 10−9

C1QTNF4 11 47611216 47615961 1.000 3.26 × 10−7 rs11039307 1.84 × 10−8 1.55 × 10−7 rs12798028 9.20 × 10−9

MTCH2 11 47638858 47664206 1.000 1.11 × 10−7 rs12419507 4.53 × 10−9 7.36 × 10−7 rs11039324 3.00 × 10−8

PSMA3 14 58711523 58738727 0.523 2.71 × 10−7 rs9323331 8.89 × 10−9 2.59 × 10−6 rs12892257 8.50 × 10−8

* BCAR1 16 75262928 75301951 0.084 7.91 × 10−8 rs2865826 1.07 × 10−9 8.87 × 10−22 rs72802395 1.20 × 10−23

* CFDP1 16 75327608 75467387 0.001 1.46 × 10−11 rs34624768 1.71 × 10−13 8.56 × 10−13 rs72804157 1.00 × 10−14

* TMEM170A 16 75477136 75498584 0.142 5.74 × 10−11 rs1030261 1.38 × 10−12 2.20 × 10−9 rs56258397 5.30 × 10−11

* CHST6 16 75507022 75528926 0.088 2.86 × 10−7 rs12924333 4.95 × 10−9 6.94 × 10−8 rs72789426 1.20 × 10−9

SUGP1 19 19387320 19431321 0.003 5.01 × 10−7 rs74182632 1.43 × 10−8 2.94 × 10−13 rs8107974 6.30 × 10−15

MAU2 19 19431496 19469563 0.003 4.55 × 10−7 rs34351431 1.48 × 10−8 1.10 × 10−11 rs73001065 3.00 × 10−13

GATAD2A 19 19496642 19619741 0.002 1.95 × 10−6 rs113920263 3.26 × 10−8 2.69 × 10−10 rs3794991 4.50 × 10−12

TSSK6 19 19625028 19626469 0.215 8.70 × 10−7 rs34183201 5.24 × 10−8 1.83 × 10−7 rs7252888 1.10 × 10−8

NDUFA13 19 19626550 19639858 0.209 5.61 × 10−7 rs34539063 2.70 × 10−8 2.29 × 10−7 rs7252888 1.10 × 10−8

CILP2 19 19649057 19657468 0.003 6.41 × 10−7 rs34539063 2.70× 10−8 2.37 × 10−9 rs17216525 1.00 × 10−10

LPAR2 19 19734464 19739039 0.003 3.03 × 10−6 rs2304129 1.73 × 10−7 2.98 × 10−9 rs73004975 1.70 × 10−10

EYA2 20 45523263 45817492 0.005 1.56 × 10−6 rs6124969 7.81 × 10−9 1.67 × 10−8 rs6063048 5.80 × 10−11

L3MBTL2 22 41601312 41627276 0.243 1.99 × 10−6 rs5751069 6.92 × 10−8 2.86 × 10−6 rs2038209 1.20 × 10−7

Chr: Chromosome, T2D: Type 2 Diabetes, hg19: human genome version 19, Genes: RefSeq genes, * These genes
are common with the genome-wide significant genes found in headache and T2D.

Table 8. Genome-wide significant genes for headache and T2D.

Gene Chr
Start

Position
(hg19)

End
Position

(hg19)

LD
Relationship
between Top

SNPs (r2)

Headache T2D

Gene
p-Value Top SNP Top SNP

p-Value
Gene

p-Value Top SNP Top SNP
p-Value

HLA-C 6 31236526 31239913 0.06 3.11 × 10−6 rs9264490 1.66 × 10−7 1.73 × 10−9 rs9264533 9.00 × 10−11

SLC44A4 6 31830969 31846823 0.03 3.77 × 10−6 rs652888 9.05 × 10−8 5.00 × 10−14 rs9267658 1.20 × 10−15

EHMT2 6 31847536 31865464 0.03 3.77 × 10−6 rs652888 9.05 × 10−8 4.99 × 10−14 rs9267658 1.20 × 10−15

CYP21A2 6 32006093 32009447 0.00 2.74 × 10−6 rs433061 1.52 × 10−7 1.01 × 10−6 rs115521560 5.60 × 10−8

ATF6B 6 32083045 32096017 0.01 1.71 × 10−6 rs1269852 7.46 × 10−8 4.81 × 10−14 rs3130342 2.10 × 10−15

PLEKHA1 10 124134094 124191871 0.07 2.66 × 10−9 rs78438709 5.37 × 10−11 1.04 × 10−11 rs2280141 2.00 × 10−13

BCAR1 16 75262928 75301951 0.08 4.79 × 10−7 rs12928974 6.04 × 10−9 9.52 × 10−22 rs72802395 1.20 × 10−23

CFDP1 16 75327608 75467387 0.11 2.38 × 10−9 rs3863442 2.48 × 10−11 1.05 × 10−12 rs72804157 1.00 × 10−14

TMEM170A 16 75477136 75498584 0.14 5.40 × 10−9 rs7198873 1.28 × 10−10 2.68 × 10−9 rs56258397 5.30 × 10−11

CHST6 16 75507022 75528926 0.09 2.65 × 10−7 rs12446877 3.88 × 10−9 8.20 × 10−8 rs72789426 1.20 × 10−9

Chr: Chromosome, T2D: Type 2 Diabetes, hg19: human genome version 19, Genes: RefSeq genes, Top SNP:
Smallest p-value SNP associated with each gene.

3.7. Causal Inference between Migraine and Headache with T2D

The results of our MR analysis examining the causal relationship between migraine
and T2D, and headache and T2D are summarised in Table 9. 2SMR analysis using the
IVW MR model found no evidence for a significant causal association (OR = 0.98, 95% CI:
0.96–1.00, p = 0.1) between T2D (exposure variable) and migraine (outcome variable). The
results of the weighted median (OR = 0.99, 95% CI: 0.97–1.02, p = 0.47) and MR-Egger (OR
= 0.96, 95% CI: 0.91–1.02, p = 0.18) models were similar to the IVW result (Figure 3 and
Table 9). There was significant evidence of heterogeneity (Cochran’s Q Pivw = 4.59 × 10−50);
however, the MR-Egger intercept (p = 0.48) showed that the observed heterogeneity was
not the result of horizontal pleiotropy. The raw estimate from MR-PRESSO after removing
eight outliers (OR = 0.98, p = 0.11) also agreed with the IVW results, and the MR-PRESSO
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‘global test’ showed significant evidence for horizontal pleiotropy (Pglobal-test < 2 × 10−5).
In contrast, GSMR found significant evidence for a causal association (OR = 0.97, 95% CI:
0.96–0.98, p = 9.92 × 10−7). Reverse 2SMR analyses also found no evidence for a causal
association of migraine (exposure variable) on T2D (outcome variable) utilising the IVW
(OR = 0.98, 95% CI: 0.91–1.05, p = 0.59), weighted median (OR = 0.96, 95% CI: 0.92–1.02,
p = 0.18), and MR-Egger models (OR = 0.87, 95% CI: 0.73–1.05, p = 0.16). MR-PRESSO
(OR = 1.00, Pglobal-test < 2 × 10−5) and GSMR (OR = 0.99, 95% CI: 0.96–1.02, p = 0.34) both
support this finding (Figure 3 and Table 9).

2SMR analysis found no evidence to support a causal effect of T2D (exposure variable)
on headache (outcome variable) using the IVW (OR = 0.98, 95% CI: 0.96–1.00, p = 0.12),
weighted median (OR = 0.98, 95% CI: 0.95–1.00, p = 0.21), MR-Egger (OR = 0.96, 95% CI:
0.92–1.01, p = 0.12), and MR-PRESSO (OR = 0.99, p = 0.19) models. While GSMR analysis
found some evidence for a causal effect of T2D on headache (OR = 0.98, 95% CI: 0.97–1.00,
p = 0.01). Reverse 2SMR found some evidence for a causal association of headache on T2D
using the primary IVW model (OR = 0.90, 95% CI: 0.84–0.97, p = 7 × 10−3); moreover, in
line with the IVW model, the weighted median (OR = 0.90, 95% CI: 0.83–0.97, p = 8 × 10−3)
and MR-Egger (OR = 0.77, 95% CI: 0.62–0.97, p = 3.5 × 10−2) sensitivity analyses also
found significant evidence for causal association. There was evidence for heterogeneity
(Cochran’s Q Pivw = 3.21 × 10−3), although the MR-Egger intercept (p = 0.17) indicated
that this was not likely caused by horizontal pleiotropy. Similarly, MR-PRESSO produced
a significant raw estimate after excluding two outliers (OR = 0.90, p = 7 × 10−5) and a
global test for horizontal pleiotropy (Pglobal-test = 4.7 × 10−3). Furthermore, GSMR found
significant evidence for a causal association (OR = 0.90, 95% CI: 0.84–0.95, p = 3.32 × 10−5)
(Figure 3 and Table 9).

Table 9. Results of the Mendelian randomisation analyses between migraine and headache with T2D
using combined and sex-stratified summary-level GWAS data.

Exposure Outcome nSNPs
IVW Weighted Median MR-Egger MR-PRESSO

nSNPs
GSMR

OR (95% CI) p OR (95% CI) p OR (95% CI) p OR p Global p OR (95% CI) p

T2D Migraine 195 0.98
(0.96–1.00) 0.1 0.99 (0.97–1.02) 0.47 0.96 (0.91–1.02) 0.18 0.98 0.11 <2 × 10−5 314 0.97

(0.96–0.98) 9.9 × 10−7

T2D Headache 195 0.98
(0.96–1.00) 0.124 0.98 (0.95–1.01) 0.206 0.96 (0.92–1.01) 0.119 0.99 0.19 <2 × 10−5 321 0.98

(0.97–1.00) 0.01

Migraine T2D 96 0.98
(0.91–1.05) 0.59 0.96 (0.92–1.02) 0.18 0.87 (0.73–1.05) 0.16 1 0.89 <2 × 10−5 117 0.99

(0.96–1.02) 0.342

Headache T2D 30 0.90
(0.84–0.97) 0.007 0.90 (0.83–0.97) 0.008 0.77 (0.62–0.97) 0.035 0.9 7 × 10−5 4.7 × 10−3 35 0.90

(0.84–0.95) 3.3 × 10−5

T2D (M) Migraine (M) 19 1.02
(0.91–1.14) 0.743 0.96 (0.81–1.12) 0.592 0.97 (0.73–1.29) 0.825 1.02 0.71 0.80 29 1.02

(0.92–1.12) 0.69

T2D (M) Headache (M) 33 0.97
(0.93–1.00) 0.072 0.99 (0.94–1.04) 0.711 0.93 (0.85–1.03) 0.18 0.97 0.12 0.02 50 0.99

(0.96–1.02) 0.43

Migraine (M) T2D (M) 6 1.04
(0.93–1.15) 0.499 1.01 (0.90–1.14) 0.809 0.98 (0.46–2.07) 0.958 1.04 0.53 0.19 na * - -

Headache (M) T2D (M) 6 0.84
(0.71–0.99) 0.049 0.83 (0.68–1.01) 0.062 0.64 (0.18–2.21) 0.519 0.84 0.007 0.96 74 * 0.97

(0.90–1.04) 0.37

T2D (F) Migraine (F) 6 0.93
(0.85–1.02) 0.117 0.96 (0.86–1.08) 0.496 1.45 (0.58–3.64) 0.464 0.93 0.076 0.78 16 0.93

(0.88–0.98) 5.0 × 10−3

T2D (F) Headache (F) 16 0.95
(0.92–0.98) 0.001 0.97 (0.93–1.01) 0.159 0.92 (0.85–1.00) 0.066 0.95 0.004 0.11 27 0.97

(0.95–0.99) 4.0 × 10−3

Migraine (F) T2D (F) 6 0.95
(0.74–1.21) 0.666 0.96 (0.77–1.20) 0.701 0.63 (0.12–3.34) 0.613 0.95 0.68 0.07 27 * 0.97

(0.97–1.17) 0.21

Headache (F) T2D (F) 21 1.04
(0.87–1.24) 0.701 1.11 (0.90–1.37) 0.343 1.15 (0.56–2.37) 0.7 1.04 0.705 0.14 22 0.98

(0.83–1.13) 0.8

IVW, Inverse variance weighted; MR Egger, Egger regression approach; MRPRESSO, Mendelian randomization
pleiotropy residual sum and outlier; GSMR, Generalized summary data-based Mendelian randomization; nSNPs,
Total number of SNPs used as genetic instruments; na, Number of SNPs was not sufficient for the GSMR analysis;
OR, Odds ratio; CI, Confidence interval; M, Male; F, Female, Global p, Global test p-value; * p < 1 × 10−5 threshold
used to extract genetic instruments.
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Figure 3. The forest plot presents ORs and 95% CIs for MR analyses testing genetic predisposition
to T2D on migraine and headache (A), and genetic predisposition to migraine and headache on
T2D (B). IVW: Inverse variance weighted, GSMR: Generalised summary data-based Mendelian
Randomisation, T2D: Type 2 Diabetes.

Using the same MR methods, we tested for sex-specific causal association(s) between
migraine and T2D, and headache with T2D (Table 9). In males, we found no significant
evidence for a causal effect of T2D on migraine or a causal effect of migraine on T2D.
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In females, only GSMR analysis found evidence for a causal effect of T2D on migraine
(OR = 0.93, p = 5.0 × 10−3). Reverse MR analyses found no significant evidence for a causal
effect of migraine on T2D. In contrast, IVW, MR-PRESSO, and GSMR found significant
evidence for a causal effect of T2D on headache in females, and no causal association in
males, whereas reverse MR analyses found no significant evidence for a causal effect of
headache on T2D in females, and IVW and MR-PRESSO found evidence for a causal effect
of headache on T2D in males.

Given the significant genetic correlation between migraine and T2D in the sex-combined
LDSC analysis and the significant genetic correlation between headache and T2D in sex-
combined and male-specific LDSC analyses, we used the LCV approach to test for a
significant genetic causality proportion of T2D on risk for migraine or headache, defined
as the mean posterior estimate of the GCP. The GCP estimate for migraine (GCP = 0.27,
SE = 0.47, p = 0.32) and for headache (GCP = 0.15, SE = 0.49, p = 0.74) with T2D indicates
that T2D is not genetically causal for migraine and headache, and vice versa (i.e., the
sign of the GCP parameter indicates causal direction). Similarly, LCV found no evidence
(GCP =−0.08, SE = 0.52, p = 0.98) for genetic causality between T2D with headache in males
(Supplementary Table S12). The genetic instruments used for migraine, headache, and
T2D in the sex-combined 2SMR and GSMR analyses are also provided in Supplementary
Tables S13–S16.

3.8. Pathway Enrichment Analysis of Genes Associated across Migraine and Headache with T2D

Pathway-based analysis was performed to identify biological pathways enriched for
genes overlapping migraine and T2D (662 genes), and headache and T2D (353 genes) with
a Pgene < 0.01 in the sex-combined analyses. For the sex-stratified pathway analyses, we
used genes overlapping migraine and T2D, and headache and T2D with a Pgene < 0.1. For
the migraine and T2D, and headache and T2D overlapping genes, 90 and 118 biological
pathways or processes were significantly enriched, respectively. Pathways related to cell
signalling (e.g., ‘signalling by notch’), cellular processes, epigenetic mechanisms, oxidative
stress, and immune system (e.g., ‘systemic lupus erythematosus’) were observed to be
significantly (P(adjusted) < 0.05) enriched for both migraine and T2D, and headache and T2D
overlapping genes (Supplementary Tables S17 and S18). Additional information, including
the genes involved in these pathways, can be found in Supplementary Tables S17 and
S18. Pathway enrichment analyses for headache and T2D identified 26 and 161 biological
pathways that were significantly (P(adjusted) < 0.05) enriched in females (Supplementary
Table S19) and males (Supplementary Table S20), respectively. No pathway was significantly
enriched by the genes overlapping migraine and T2D in both males and females.

4. Discussion

This deep investigation using large and well-powered GWAS datasets provides new
and important insight into the genetic relationship between migraine, headache, and T2D.
We observed similar significant genetic correlations between migraine and T2D (rg = 0.0589;
95% CI: 0.0324–0.0854) and headache and T2D (rg = 0.0657; 95% CI: 0.03–0.1014), indicating
shared genetic factors contribute to the co-occurrence of migraine and headache with T2D.
These findings substantiate previous observational studies that found a higher co-occurrence
of T2D with migraine [8] and headache [53]. Additionally, these findings confirm and extend
the recent report of a positive genetic correlation between T2D and migraine (rg = 0.09,
p = 0.004) [12], using independent GWAS datasets. Interestingly, our sex-stratified analyses
identified a significant genetic correlation between headache and T2D in males (rg = 0.0922;
95% CI: 0.0226–0.1618) but not in females (rg = 0.0049; 95% CI: −0.0727–0.0825), and found no
evidence for a genetic correlation between migraine and T2D in males or females. Considering
the increased prevalence of migraine and headache in females compared to males [54,55],
and larger female migraine and headache GWAS sample sizes, this finding suggests that the
relationship between migraine, headache, and T2D is stronger in males, and the relationship
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between migraine and T2D is perhaps driven by the symptom of headache pain rather than
the other symptoms of migraine.

GWAS-PW analysis identified several specific genomic regions shared between mi-
graine and headache with T2D (Table 2). A total of 11 pleiotropic regions were found
across migraine and T2D. While five pleiotropic regions were found across headache and
T2D, of which two were among the 11 pleiotropic regions associated with migraine and
T2D. These two common regions harbour genetic variants mapped to several gene-based
genome-wide significant genes with top SNPs p < 1.0× 10−5 (ANKDD1B, POC5, SERPINA1,
HMGCR, and COL4A3BP) (Table 2). ANKDD1B and SERPINA1 were the nearest genes
to a genome-wide significant migraine risk SNP [2], and POC5 was the nearest gene to a
genome-wide significant T2D risk SNP [17]. Identifying these pleiotropic gene associations
provides leads on the likely underlying biological mechanisms and thus improves our
understanding of their role in migraine and T2D. More generally, pleiotropy has applica-
tions in drug discovery and genomic editing [56]. For example, ANKDD1B, a T2D-related
gene, is involved in metabolism and inflammation [57], which may play a role in the
pathophysiology of migraine, as previous research reported that inflammatory processes
are associated with migraine [58]. No significant pleiotropic regions (PPA3 > 0.9) were
found across migraine and T2D, and headache and T2D, in the male- and female-specific
GWAS datasets (Supplementary Table S4). However, this may be due to the reduced power
in the sex-specific GWAS datasets to identify genome-wide significant SNP loci; indeed,
relaxing the pleiotropy threshold to PPA3 > 0.5 found suggestive evidence for pleiotropic
association. Therefore, GWAS-PW analysis of larger female- and male-specific GWAS
datasets will be required to identify significant (PPA3 > 0.9) sex-specific pleiotropic regions
are shared between migraine and headache with T2D.

We used genome-wide cross-trait meta-analysis to enhance our power to identify novel
SNPs significantly (p < 5 × 10−8) associated with migraine, headache, and T2D. We found
23 novel lead SNPs associated with migraine and T2D, and three novel lead SNPs associated
with headache and T2D, that were not at genome-wide significant loci in the respective
single-trait GWAS. Notably, two of these novel lead SNP loci, near the protein-coding genes
NLGN1 and ELFN1, overlapped. The NLGN1 (neuroligin 1) gene is abundant at excitatory
synapses and is essential for synaptic function. In addition, NLGN1 recently revealed
high expression in vascular endothelial cells and was reported to play a crucial function
in vascular development [59]. Therefore, the downregulation of NLGN1 in endothelial
cells may thus play a significant role in the pathogenesis of endothelial cell dysfunction in
T2D. Furthermore, clinical investigations have shown that genetic variants of NLGN1 are
associated with neuropsychiatric conditions such as autism spectrum disorder, memory
loss and depression in Alzheimer’s disease, and post-traumatic stress disorder, indicating a
role for NLGN1 in multiple neurological disorders [60]. ELFN1 (extracellular-leucine-rich
repeat fibronectin domain 1) is highly expressed in GABAergic (γ-aminobutyric acid-ergic)
interneurons in the hippocampus and is involved in the recruitment of metabotropic glu-
tamate receptors, such as mGluR7, to the presynaptic membrane [61]. Mutant mice with
ELFN1 knocked out experience seizures [62]. Overexcitation in one or more brain regions
can cause migraine, headache, and seizures. Of the protein-coding genes near the novel
lead SNPs from analysis of migraine and T2D (Table 3), L3MBTL2 and DENND1A are also
particularly interesting. For example, L3MBTL2 is a transcriptional repressor expressed
in adipose, brain, heart, lung, and muscle; and was very recently implicated in migraine,
schizophrenia, and depression via cross-trait genetic analysis [63]. Positional and eQTL
mapping revealed differential expression of this gene in the anterior cingulate and frontal
cortex [63]. The frontal cortex is the brain region affected in migraine patients [64]. Neuro-
logical conditions such as depression are associated with elevated endoplasmic reticulum
(ER) stress. Dysregulation of the ER stress response is involved in the pathogenesis of
numerous diseases, including T2D and cancer [65]. The protein encoded by DENND1A
is involved in endosomal membrane trafficking [66]. Recent research has shown that
DENND1A is associated with insulin resistance (IR) in women with polycystic ovarian
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syndrome, indicating that metabolic dysfunction may play a pathophysiologic role [67].
Interestingly, migraine is associated with an increased risk of metabolic dysregulation,
including IR [11,68]. Therefore, they are plausible biologically candidate genes for migraine
and T2D. Furthermore, 13 of the novel lead SNPs identified in the cross-trait meta-analyses
were within the pleiotropic genomic regions identified by GWAS-PW (Supplementary
Tables S5 and S6).

One genome-wide significant lead SNP (rs10457469, near HEY2) from the cross-trait
meta-analysis of migraine and T2D was not novel (Supplementary Table S5) as, although
it was genome-wide suggestive in the individual migraine GWAS, it was genome-wide
significant in the individual T2D GWAS [17]. Furthermore, the HEY2 gene is significantly
expressed in vascular tissues and plays a role in vascular function; and was implicated in
a previous migraine [3] and recent Brugada syndrome (a potentially fatal heart rhythm
disease) GWAS [69]. PhenoScanner identified two novel lead SNPs associated with mi-
graine and T2D (rs4809370, rs62442924) and one novel lead SNP associated with headache
and T2D (rs73050128) are also associated with hypertension, blood pressure, body mass
index, and vascular heart problems. In addition, three novel lead SNPs associated with mi-
graine and T2D (rs62442924, rs171697, and rs1841499) were also associated with depression
and neuroticism.

Our gene-based analyses identified 33 and 10 genes significantly associated
(Pgene < 3.85 × 10−6) with migraine and T2D, and headache and T2D, respectively. Among
the overlapping genes between migraine and T2D, seven genes (MACF1, CALCB, THADA,
ANKDD1B, EHMT2, CFDP1, and SUGP1) were the closest gene to a lead migraine SNP
in Hautakangas et al. (2022) [2]. While eight of the 33 shared genes (MACF1, THADA,
SLC9B1, POC5, PLEKHA1, CELF1, BCAR1, EYA2) were the closest gene to a lead T2D
SNP in Mahajan et al. (2018) [17]. For example, the ANKDD1B gene encodes a protein
called ankyrin repeat and death domain-containing 1 B. Recent studies have shown that
the ANKDD1B gene is involved in vascular and endothelial function and contributes to
migraine and blood pressure risk [4]. Although there is little data on ANKDD1B, it may be
relevant to the pathophysiology of migraine and T2D due to its role in vascular function.
Five of the 10 genes overlapping headache and T2D (SLC44A4, EHMT2, PLEKHA1, CFDP1,
and TMEM170A) were previously associated with T2D [17]. Similarly, PLEKHA1 and
BCAR1 overlapping headache and T2D were previously associated with headache [16].
Hence, variation of the genes identified from our cross-trait analyses may explain, at least
in part, the co-occurrence of migraine, headache, and T2D.

Our MR analyses found inconsistent evidence for a causal effect of genetic liability
to T2D on migraine and headache, with only GSMR producing significant evidence for
T2D having a negative causal (i.e., ‘protective’) effect on both migraine and headache.
This inconsistency may be due to the insufficient power of the T2D SNP IVs to detect a
causal association using 2SMR. However, the GSMR finding is consistent with previous
evidence from observational studies showing that T2D patients are less likely to develop
migraine and headaches [70–72]; however, the only other known MR study found no
evidence of a causal association of T2D with migraine, albeit using smaller sample sizes
than utilised here [12]. A plausible explanation for T2D being protective against migraine
and headache could relate to the decreased expression of calcitonin gene-related peptide
(CGRP) reported in diabetic patients [73]. Several studies demonstrate that CGRP plays
an important role in the pathogenesis of migraine via activation of the trigeminovascular
system, where increased CGRP levels cause vasodilation and neurogenic inflammation,
causing the head pain of a migraine attack [74]. Therefore, decreased CGRP levels in
diabetic patients may protect against vasodilation and neurogenic inflammation and hence
protect against migraine and headache [70,75,76]. Additionally, lowered nitric oxide and
substance p levels in diabetic patients were proposed as a potential mechanism for this
association [77,78]. Therefore, the possibility that T2D has a protective effect on migraine
and headache remains plausible and warrants further analysis, including genetic causality
analyses using future more-powerful GWAS datasets.
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Reverse MR analyses using 2SMR and GSMR found no evidence for a causal effect
of migraine on T2D. In contrast, reverse 2SMR and GSMR analyses produced significant
evidence for headache having a negative causal (i.e., ‘protective’) effect on T2D. These
findings were surprising given the positive genetic correlation between migraine and T2D,
and headache and T2D. A possible explanation for this result could be that MR relies on
a subset of genetic variants, whereas genetic correlations quantify the average sharing of
genetic effects between two traits across the entire genome. Therefore, MR may detect
specific relationships that may be ‘washed out’ by other (including opposing) effects when
estimating genome-wide correlation, which may explain why our LCV analyses (which
are based on the genome-wide genetic correlation estimate) found no causal relationship
between migraine and headache with T2D. Previous observational studies reported that
migraine patients have a decreased risk of developing T2D [10]; however, fewer studies are
available for headache and T2D. However, given that migraine and headache are geneti-
cally highly correlated and likely share similar mechanisms [16], a plausible mechanism for
a protective effect of headache on T2D may again relate to CGRP. For example, increased
levels of CGRP in the sensory nerve fibres during headache attacks [74], may relate to the
aberration of glucose metabolism [10]. Interestingly, recent studies reported that CGRP,
and the related peptide amylin, are found in the pancreas, where their function appears
to influence insulin secretion from the β-cells and reduce the risk of developing T2D [78].
Lastly, sex-stratified analyses found no consistent evidence of a female- or male-specific
causal association between migraine and headache with T2D; however, given their consid-
erably smaller GWAS sample sizes, we encourage sex-specific genetic causality analyses
using future more-powerful GWAS datasets to identify sex-specific causal relationships.

Finally, 90 and 118 biological pathways/processes were found to be enriched for genes
associated with migraine and T2D, and headache and T2D (Supplementary Tables S17 and
S18), respectively. Notably, 86 of the 90 pathways enriched by genes overlapping migraine
and T2D, were also enriched by genes overlapping headache and T2D (Supplementary
Tables S17 and S18). Thus, indicating similar pathogenetic pathways contribute to the
co-occurrence of both migraine and T2D, and headache and T2D.

Strength and Limitations

Our study has various strengths. This is the first comprehensive study to explore the
genetic overlap and causal relationship between migraine and headache with T2D. The
analysis utilised the latest and largest (most powerful) available GWAS summary statistic
datasets. Second, we analysed people of European descent to minimise the impact of
genetic heterogeneity related to ancestry. We have used the latest and largest summary data
for migraine in this study, and there are no known replication samples exist. Furthermore,
our findings are more robust since they were based on genetic data than prior observational
research that may have produced unreliable or unclear results due to small sample numbers,
or confounding influences from lifestyles or the environment.

This study had some limitations. Firstly, the GWAS datasets only included people of
European ancestry; hence we cannot determine how relevant these findings are to other
non-European populations. However, we were restricted to performing our analyses using
the available datasets. Unfortunately, adequate migraine and headache GWAS data are
currently not available for population samples of non-European ancestries.

5. Conclusions

In conclusion, our findings robustly confirm the comorbidity of migraine and headache
with T2D, with shared genetically regulated biological mechanisms driving their co-
occurrence, and evidence for a causal relationship between headache and T2D. We identified
novel risk SNP and gene loci that provide new biological insight and intervention targets
underlying migraine, headache, and T2D. Future functional investigations focusing on
specific loci reported through this cross-trait genetic analysis may provide further insights
into the biological mechanism underlying the risk of migraine and T2D. Our findings
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provide important motivation for designing novel treatment strategies to manage T2D in
migraine and headache patients.
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