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Abstract: Actinidiaceae, an economically important plant family, includes the Actinidia, Clematoclethra
and Saurauia genus. Kiwifruit, with remarkably high vitamin C content, is an endemic species widely
distributed in China with high economic value. Although many Actinidiaceae chloroplast genomes
have been reported, few complete mitogenomes of Actinidiaceae have been studied. Here, complete
circular mitogenomes of the four kiwifruit species and Saurauia tristyla were assembled. Codon usage,
sequence repeats, RNA editing, gene transfers, selective pressure, and phylogenetic relationships in
the four kiwifruit species and S. tristyla were comparatively analyzed. This research will contribute
to the study of phylogenetic relationships within Actiniaceae and molecular barcoding in kiwifruit.

Keywords: Actinidiaceae; mitogenome; comparative analysis; phylogenetic analysis

1. Introduction

According to the endosymbiosis theory, the mitochondrion is an endosymbiotic al-
phaproteobacterium engulfed by the archaeal-derived host cell and eventually evolves
into a semiautonomous organelle [1–3]. Mitochondria, known as energy factories, play a
crucial role in numerous metabolic processes related to energy generation, synthesis, and
degradation in living cells [4]. Mitochondrial DNA is maternally inherited in most seed
plants [5]. With genome sequencing technology’s rapid development, various complete or-
ganelle genomes in plants have been extensively studied [6]. Nearly 7576 chloroplasts and
mitogenomes of land plants have been published in the National Center for Biotechnology
Information (https://www.ncbi.nlm.nih.gov/genome/browse#!/organelles/) (accessed
on 10 January 2022). The number of mitogenomes in land plants published was less than
20 before 2015 (Supplementary Figure S1). In recent years, it is no doubt that the number
of land plant mitogenomes has increased significantly from 2018 to 2021 (Supplemen-
tary Figure S1). However, compared to the completed chloroplast genomes (7246), only
324 completed mitogenomes were assembled (Supplementary Table S1), suggesting that
the interpretation and functional annotation of the mitochondrial genome is complex in
comparison to other organelles.

The intergenomic DNA transfers and highly dynamic, multipartite structures of plant
mitogenomes may make it challenging to build plant mitogenomes [7]. Several articles
have reported that most plant mitogenomes range from 200 to 2000 kb in size [8]. Dif-
ferences in mitogenome size can be attributed to repetitive sequences and foreign DNA
derived from other organisms during evolution [9]. Many intramolecular recombination
events and subgenomic conformations have been found in some land plants, such as
Scutellaria tsinyunensis [10], Cucumis sativus [11], Ipomoea batatas [12], and Brassica napus [13].
In extreme environments, gene loss and RNA edits may occur during plant mitogenome
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rearrangement [14]. Several separate chromosomes can be found in some higher plant
mitochondrial genomes. The cucumber mitogenome, for instance, has three separate
chromosomes [11]. The mitogenomes of Globodera ellingtonae and Camellia sinensis have
two separate chromosomes [15,16]. The mitogenomes of the plant’s seeds contain many
repeating sequences, including simple sequence repeats (SSRs), tandem repeats, and scat-
tered repeats. In addition, there are also many insertions/deletions (indels) and single
nucleotide polymorphisms (SNPs) within mitogenomes [17,18]. SSRs and SNPs have been
widely applied to identify species rapidly and for phylogenetic plant analyses, especially
in Chinese herbal medicine classification [19,20]. Moreover, it is an essential feature for
mitogenome evolution via intracellular transfer between the mitochondria and the chloro-
plast genomes [21]. Most of the transferred sequences are transferred from the nucleus
to the mitochondria, but several chloroplast-derived tRNA genes are transferred to the
mitochondria and perform essential functions [22]. The horizontal gene transfer (HGT)
phenomenon also plays a significant role in the evolution of plant mitogenomes [9]. These
findings suggested the existence of instability in higher plants’ mitogenome structures.
Finally, a long-reads strategy in combination with short-reads technologies (Pacbio SMRT,
Oxford Nanopore, or Illumina mate-pair) were applied to solve the problem caused by this
structural instability in mitogenome assembly.

Actinidiaceae, an economically important plant family, includes the Actinidia, Clema-
toclethra, and Saurauia genus [23,24]. Among the Actinidiaceae family of the Asterids,
kiwifruit with remarkably high vitamin C content, commonly known as ‘the king of fruits’,
is an economically important horticultural fruit tree. Kiwifruit is widely cultivated in
Asia, Europe and Oceania (https://www.fao.org/faostat/zh/#data/QCL, Supplementary
Figure S2) (accessed on 3 December 2021). Worldwide annual kiwifruit production in-
creased rapidly from 2012 to 2020 and reached approximately 2 million tons in 2020 (https:
//www.fao.org/faostat/zh/#data/QCL, Supplementary Figure S3) (accessed on 3 Decem-
ber 2021). Total kiwifruit production in Asia was the highest, accounting for 52.5%, followed
by Europe (25.3%) from 2012 to 2020 (https://www.fao.org/faostat/zh/#data/QCL, Sup-
plementary Figure S4) (accessed on 3 December 2021). It is noted that the annual kiwifruit
production in China was the highest in Asia and reached up to 1.49 million tons in 2020
(https://www.fao.org/faostat/zh/#data/QCL, Supplementary Figure S5) (accessed on 3
December 2021). This may be due to the abundant kiwifruit germplasm resources in China.
So far, diploid A. chinensis and hexaploid A. chinensis var deliciosa are the most commercial
kiwifruit varieties. Abiotic and biotic stresses, including drought, salinity, low or high
temperatures, and Pseudomonas syringae pv. actinidiae (Psa) seriously affect the yield
and quality of kiwifruit [25]. After incidence of Psa, there is no remedy available to control
it, except for destroying the tree to prevent the spread of the disease. Thus, Psa seriously
threatens the production and development of the kiwifruit industry worldwide. It has
been reported that A. eriantha var ‘huate’ and A. chinensis var deliciosa ‘jinkui’ strongly
resist Psa [26,27]. Mitochondria genetic engineering would be beneficial in developing a
method of resilience to abiotic and biotic stresses [25]. Hence, the complete mitogenomes
of kiwifruit are sequenced, providing great promise for breeding kiwifruit cultivars with
resilience to abiotic and biotic stresses.

For the last three decades, 4 kiwifruit nuclear genomes and over 29 complete chloro-
plast genomes from the Actinidiaceae family have been sequenced [28–32], while no com-
plete mitogenome of this family has been reported previously. To elucidate the evolutionary
mechanisms and structural features that underlie the Actinidiaceae family’s mitogenomic
diversity, the complete mitochondria genome of the diploid A. chinensis, and the tetraploid
A. chinensis, hexaploid A. chinensis var deliciosa, A. eriantha and S. tristyla were sequenced
and assembled in this study. The mitochondria genome with a two-chromosomal con-
formation was found in diploid A. chinensis, tetraploid A.chinensis and S. tristyla. The
genome size (939 kb) of A. chinensis var deliciosa was significantly more extensive than
other Actiniaceae species. Therefore, we hypothesized that the mitogenome may experience
expansion during A. chinensis ploidy doubling. We analyzed the mitogenome structures of
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four kiwifruit species and S. tristyla to elucidate/unveil the genomic repeats, RNA editing
sites, relative synonymous codon usage, gene transfer, and the evolutionary relationships
among the Actinidiaceae family. To sum up, our study will be instrumental for genetic
engineering and breeding programs.

2. Materials and Methods
2.1. Plant Materials and Genome Sequencing

Table S3 shows details of the tested materials. Fresh leaves were wrapped in aluminum
foil, flash frozen in liquid nitrogen, and stored at −80 ◦C for subsequent use. High-quality
total genomic DNA was extracted using a DNAsecure Plant Kit (Tiangen Biotech, Co.
Ltd., Beijing, China). The DNA library construction and sequencing were performed as
previously reported by Emerman et al. [33].

2.2. Mitogenome Assembly and Annotation

The Oxford Nanopore long-reads were de novo assembled for the five mitogenomes
using SMARTdenovo with default parameters [34]. To obtain high-quality mitogenomes,
the Illumina short-reads were conducted after polishing with minimap2/miniasm [35],
racon (v1.4.20) [36] and pilon (v1.23) [37] to correct nanopore long-read errors. Furthermore,
we used the BWA [38] and SAMtools [39] to map all the raw reads to the assemble mi-
togenomes. In the last step, the assembled PacBio sequences were checked for overlaps and
joined. Mitochondria annotations were achieved using the online Geseq tool [40] with Ac-
tinidia arguta as the reference mitogenomes from GenBank:MH559343. We manually edited
the annotation problems, using Apollo [41], and OGDRAWv1.3.1 [42] to draw the circular
maps of the mitogenomes. All transfer RNA genes were checked by the online tRNAscanSE
service (http://lowelab.ucsc.edu/tRNAscan-SE/, accessed on 1 January 2022) [43].

2.3. Repeat Sequences and Chloroplast to Mitochondrion DNA Transformation

The SSR (simple sequence repeats), including mono-, di-, tri-, tetra-, penta-, and
hexanucleotide bases pairs with 12, 6, 4, 3, 3, and 3 repeat numbers, respectively, were
detected using the microsatellite identification tool MISA-web55 (https://webblast.ipk-
gatersleben.de/misa/, accessed on 3 February 2022) with default parameters [44]. Tandem
Repeats Finder v4.09 software [45] (http://tandem.bu.edu/trf/trf.submit.options.html,
accessed on 5 February 2022) with default parameters was employed to detect tandem
repeats (>6 bp repeat units). The chloroplast fragments’ insertion in the mitogenome was
identified using the BLASTN tool according to the following screening criteria: matching
rate ≥ 70%, E-value ≤ 1 × 10−6, and length ≥ 40 [46]. Circos maps were visualized using
the advanced circos module in Tbtools [47].

2.4. RNA Editing Predicting and Codon Usage

We used the online PREP-Mt suite of servers (http://prep.unl.edu/, accessed on
5 March 2022) [48], with a cutoff value of 0.2, to predict the RNA editing sites of the
39 protein-coding genes of the 5 mitogenomes. The relative synonymous codon usage
(RSCU) was calculated by MEGA X53 [49].

2.5. Substitution Rate Calculation and Phylogenetic Inference

Pairwise 19 protein-coding gene sequences of the mitogenomes of Actinidia were
used to estimate the pairwise nucleotide substitution rates, including the non-synonymous
substitution rate (Ka) and synonymous substitution rate (Ks), and the ratio of Ka to Ks.
The Ka/Ks ratios were calculated by PAML (v4.9) [50] using the yn00 module with default
parameters. The Ka/Ks values’ heatmap was plotted using Tbtools [47]. In order to further
analyze the phylogenetic position of the Actinidiaceae species, 23 plant mitogenomes from
GenBank were downloaded for phylogenetic tree construction. A total of 20 orthologous
mitochondrial genes were identified and extracted using PhyloSuite (v1.2.1) [51]. The
corresponding nucleotide sequences were aligned using MAFFT (v7.450) [52] implemented
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in PhyloSuite. The phylogenetic tree was constructed using the maximum likelihood
(ML) method via RAxML v8.1.5 [53] with 1000 bootstrap replicates. Furthermore, the
web iTOL (https://itol.embl.de, accessed on 8 April 2022) [54] was used to visualize the
phylogenetic trees.

3. Results
3.1. Mitogenome Assembly, Annotation and Gene Features

The de novo assembly assembled five complete mitogenomes of Actiniaceae species.
The de novo genome assembly yielded a single circular molecule for A. chinensis var de-
liciosa (939 kb) and A. eriantha (768 kb). In contrast, two distinct circular chromosomal
genomes for A. chinensis (2×), A. chinensis (4×) and S. tristyla (Figure 1A–D and Supple-
mentary Table S2) were reported. A. chinensis (2×) and A. chinensis (4×) mitogenomes
exhibited similar genome size (916 kb vs. 907 kb). The genome size (939 kb) of A. chinensis
var deliciosa was significantly more extensive than the other Actiniaceae species. S. tristyla
(482 kb) has the smallest genome size among them. Interestingly, their mitogenomes,
containing similar GC content, are about 46% (Supplementary Table S2). A comparison of
the annotated genes in Actiniaceae revealed that the pseudogene rps2 is absent in tetraploid
and hexaploid A. chinensis (Supplementary Figure S2). The loss of the sdh4 gene in the A.
arguta mitochondrion genome was also notable (Supplementary Figure S2).

3.2. Repeat Sequences and Chloroplast-Derived Region Analysis

As shown in Figure 2A, a total of 49–124 tandem repeats were found in the Actiniaceae
mitogenome. The number of tandem repeats, comprising between 10 and 20 bp in the A.
chinensis (2×) mitogenome, was significantly lower for the other species. Compared to the
tetraploid and hexaploid A. chinensis, the number ranged from 40 bp to 105 bp in diploid A.
chinensis. About half of the tandem repeats ranged from 10 bp to 20 bp in kiwifruit, whereas
most of the tandem repeats ranged from 41 bp to 105 bp in S. tristyla. A. eriantha contained
the fewest tandem repeats. A wealth of SSRs was identified (Figure 2). SSRs in hexamers
were discovered in all species except S. tristyla (Figure 2C). Nearly 78% of the SSRs belonged
to monomers and dimers (Figure 2B). Tetramers and pentamer-nucleotide repeats were
less frequent in the Actiniaceae mitogenome. A. chinensis mitogenomes contained a higher
number of SSRs than those of S. tristyla and A. eriantha. S. tristyla had the lowest number of
SSRs (Figure 2B).

Plastid-derived sequences were detected in five Actiniaceae species’ mitogenomes.
Three species of chloroplasts and mitogenomes have high and widespread homologies in
A. chinensis (2×–6×) (Figure 3E). A total fragment length of 50–55 kb of the tandem repeats
red transferred fragment, which accounts for about 1/3 of the chloroplast genome, was
identified in the A. chinensis (2×–6×) mitogenome (Figure 3F). Plastid-derived sequences
in A. chinensis (2×–6×) were significantly higher in number than in A. eriantha and S.
tristyla (Figure 3F). Five intact chloroplast genes (rpoC1, ndhB, rps7, rps19, and rpl23)
were transferred into the mitogenome in the A. chinensis (2×–6×) species (Supplementary
Table S2).
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Figure 1. (A–D) Gene map of four kiwifruit species (A. chinensis (2×–6×), A. eriantha) and S. tristyla,
representing the mitogenome structure. Genes drawn outside the circle are transcribed clockwise,
and those inside are counterclockwise. Genes that belong to different functional groups are color
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Figure 3. (A–E) Shared genome regions of each species between chloroplasts and mitochondria
of A. chinensis (2×), A. chinensis (4×), A. chinensis var deliciosa (6×), A. eriantha and S. tristyla,
respectively. The green circular segment represents the mitogenome, and the purple circular segment
represents the chloroplast genome. (F) Shared sequence length of each species between chloroplasts
and mitochondria genomes.
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3.3. RNA Editing Sites and Codon Usage Analysis of PCGs

As shown in Figure 4, the RNA editing sites of 39 PCGs of the mitogenomes of
5 Actinidiaceae plants were predicted in this study. Three cytochrome c biogenesis genes,
including ccmFn, ccmB, and ccmC, displayed the most RNA editing sites in five Actinaceae
sp. plants. Interestingly, we found that the number of NAD1 gene RNA editing sites in A.
chinensis var deliciosa was significantly higher than in the other species (Figure 4). Only
the rpl2 gene in the A. chinensis (4×) had no RNA editing sites (Figure 4). The rpl16, rps1,
and rps2 genes contained the same number of editing sites in the A. chinensis (2×) and A.
eriantha, but not in the other species (Figure 4).

Atp1 Atp4 Atp6 Atp8 Atp9 ccmB ccmC ccmFcccmFn cob cox1 cox2 cox3 matR mttB nad1 nad2 nad3 nad4 nad4L nad5 nad6 nad7 nad9 rpl2 rpl5 rpl10 rpl16 rps1 rps2 rps3 rps4 rps7 rps12 rps13 rps14 rps19 sdh3 sdh4
RNA-editing
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Figure 4. The distribution of RNA editing sites in mitogenome protein-coding genes.

The codon distribution and relative synonymous codon usage (RSCU) of five Actinidi-
aceae species’ mitogenomes were analyzed. The RSCU analysis showed that Leu, Ser, and
Arg appeared the most frequently, whereas those that encoded Met and Trp were relatively
less abundant in five Actinidiaceae species’ mitogenomes. Five species in the Actinidiaceae
family share a similar RSCU style (Figure 5A–E).

3.4. The Synonymous and Nonsynonymous Substitution Rate (Ka/Ks) and Phylogenetic Analysis

Nineteen protein-coding genes of six Actinidiaceae mitogenomes were used to cal-
culate the Ka/Ks ratios. As shown in Figure 6, we observed that the sdh3 gene had an
abnormally high Ka/Ks ratio > 1 compared to the other genes between S. tristyla and the
kiwifruit, indicating possible positive selection. The Ka/Ks values of most PCGs were less
than 1, such as atp9, ccmB, ccmC, cox3, nad6 and rps12, indicating that most PCGs were
under purification selection (Figure 6). These results suggested that most PCGs may be
highly conservative in the evolutionary process of Actinidiaceae.
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Figure 5. Relative synonymous codon usage (RSCU) in mitochondrial protein-coding genes of five
Actinidiaceae mitogenomes. The y-axis represents the value for RSCU. (A) The RSCU value of A.
chinensis (2×). (B) The RSCU value of A. chinensis (4×). (C) The RSCU value of A. chinensis var
deliciosa (6×). (D) The RSCU value of A. eriantha. (E) The RSCU value of S. tristyla.
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Figure 6. The pairwise Ka/Ks ratios among each mitochondrial gene in the six Actinidiaceae
family species.

In order to further analyze the phylogenetic position of Actinidiaceae, 23 plant mi-
togenomes from GenBank were downloaded for phylogenetic tree construction based on
20 PCGs. Phylogenetic analysis showed that 23 plant mitogenomes were divided into
6 categories (Figure 7). We selected V. vinifera and N. nucifera as outgroups. The phyloge-
netic tree strongly demonstrated that five kiwifruit species (A. chinensis (2×), A. chinensis
(4×), A. chinensis var deliciosa (6×), A. eriantha and A. arguta) clustered into one clade with
a 100% bootstrap value (Figure 7). It also revealed that S. tristyla was closely related to five
kiwifruit species (Figure 7).

Castilleja paramensis
Erythranthe guttata
Ajuga reptans
Salvia miltiorrhiza
Utricularia reniformis
Dorcoceras hygrometricum
Hesperelaea palmeri
Asclepias syriaca
Rhazya stricta
Solanum lycopersicum
Solanum pennellii
Capsicum annuum
Hyoscyamus niger
Nicotiana attenuata
Nicotiana tabacum
Ipomoea nil
Diplostephium hartwegii
Helianthus annuus
Platycodon grandiflorus
Daucus carota
Actinidia chinensis var deliciosa 6x
Actinidia chinensis 4x
Actinidia chinensis 2x
Actinidia arguta
Actinidia eriantha
Saurauia tristyla
Vaccinium macrocarpon
Camellia sinensis
Nelumbo nucifera
Vitis vinifera

0.01

Ericales

Gentianales

Solanales

Asterales

Apiales

Lamiales

outgroup

Figure 7. Maximum likelihood phylogenetic tree analysis of Actinidiaceae mitogenomes based on
20 PCGs of 23 plant mitogenomes with V. vinifera and N. nucifera as outgroups.

4. Discussion

So far, 25 Actinidia genus chloroplast genomes have been reported [32], and our group
has comprehensively analyzed them. Unlike conserved genome structures and small Actini-
dia chloroplast genomes, Actinidia mitogenomes generally have multiple different sizes and
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structural variations [55]. This makes Actinidia mitogenome research relatively challenging.
Here, complete mitogenomes of five Actinidiaceae plants were sequenced and assembled.
Two subgenomic circles were found in A. chinensis (2×–4×) and S. tristyla. Similar results
have been reported in C. sinensis var. assamica and C. assamica [16,56]. The GC content of
five Actinidia mitogenomes is about 46%, similar to most other mitogenomes [57]. Among
the observed size variations, the genome size in A. chinensis var deliciosa (6×) was about
twice that of the S. tristyla (482 kb) and the closely related species Vaccinium macrocarpon
(459 kb) [58]. The genome size of the hexaploid A. chinensis var deliciosa was nearly 20 kb
larger than that of diploid and tetraploid A. chinensis, which is probably the result of a
gradual increase in sequence duplication and intracellular transfer of the plastid or nuclear
genome or horizontal transfer of mitochondrial DNA during evolution [59,60].

Repeat sequences widely exist in plant mitogenomes, including tandem repeats and
SSRs [61]. Positive correlations between genome size and repeat sequences were identified
in 38 Rosaceae mitogenomes [62]. As shown in Figure 2A, tandem repeats from 10 to 30 bp
were the most abundant for the Actinidiaceae mitogenomes, with similar results in Diospyros
oleifera [63]. Guo et al. [64] have reported that SSRs played a pivotal role in intermolecular
recombination during evolution. The number of SSRs in the A. chinensis mitogenome
(18.24%) was higher than that of S. tristyla and A. eriantha (Figure 2B), which may cause
the A. chinensis mitogenome size to be larger than S. tristyla and A. eriantha. It is consistent
with the findings of previous studies [65,66]. Dimer repeats were the most abundant SSR
type (about 48%) in the Actinidia mitogenome (Figure 2C), which is commonly found in
Suaeda glauca [67]. Gene transfer from the chloroplast to the mitogenome frequently occurs
during long-term plant evolution [68]. A total of 9–55 kb of plastid-derived sequences
was observed, which occupied 3–6% of the Actinidiaceae mitogenomes (Figure 3). Similar
results have been reported by Adams et al. [69]. Some plastid-derived protein-coding
genes (cp-derived PCGs), such as rpoC1, ndhB, rps7, rps19, and rpl23, were identified in
the A. chinensis (2×–4×) mitogenomes, which is commonly found in angiosperms [70]. In
addition, we also found that psbJ, petL and petG cp-derived genes only exist in hexaploid
A. chinensis var deliciosa (Supplementary Table S2), suggesting that special evolutionary
events may have occurred during genome evolution.

Mitochondrial gene expression may be affected by RNA editing [71]. The number of
RNA editing sites varies in different species [72]. Previous studies identified approximately
491 RNA editing sites within 34 genes in rice [68] and 486 RNA editing sites within
31 genes in Primula vulgaris [73]. In Actinidiaceae, the number of RNA editing sites in
most PCGs was extremely conserved in Actinidiaceae, similar to other plant studies [74].
Interestingly, we also observed that the number of NAD1 gene RNA editing sites increased
with ploidy in A. chinensis (2×–4×) (Figure 4). Whether the number of RNA editing sites
is positively correlated with the ploidy of the kiwifruit requires further research. Relative
synonymous codon usage (RSCU) refers to the relative probability of a specific codon
between the synonymous codons that encode the corresponding amino acid [75]. The
RSCU value showed that the codon usage pattern in the Actinidiaceae plants’ mitogenomes
shared a similar RSCU style (Figure 5A–E), which was commonly found in higher plant
mitogenomes [76].

Calculating the Ka/Ks ratio plays a vital role in understanding the dynamics of
molecular evolution [77]. As shown in Figure 6, the Ka/Ks ratios of most PCGs were less
than 1 (Figure 6), suggesting that these genes were highly conserved and had undergone
neutral and negative selections in Actinidiaceae. These results were also supported in
the report on Lamiales [78]. However, among the five Actinidiaceae plants, sdh3 with
dN/dS values greater than 1.0 was found between the S. tristyla and kiwifruit mitogenomes,
indicating that this gene may have suffered from positive selection during the evolution in
Actinidiaceae. The phylogenetic trees in this study showed a close relationship between the
Actinidiaceae and other Ericaceae plants (Figure 7), as Wang et al. [56] proposed. Notably,
our analyses also demonstrated that the Actinidiaceae is monophyly, with the sampled five
Actinidia taxa clustering in a clade as a sister to S. tristyla (Figure 7), in agreement with the
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result of Wang et al. [32]. Moreover, A. chinensis (2×–4×) was closely related to A. chinensis
var deliciosa (6×) (Figure 7), which was consistent with the results of a previous study [79].

5. Conclusions

The large size variation in Actinidiaceae mitogenomes appeared due to increasing
sequence duplication and intracellular transfer of the plastid. The number of RNA editing
sites and codon usage in most PCGs of five Actinidiaceae plants’ mitogenomes were highly
conserved. Most of the coding genes had undergone negative selection, indicating the
conservation of mt genes during evolution. We found that sdh3 may have suffered from
positive selection during the evolution in Actinidiaceae. Kiwifruit species showed high
similarities and were highly similar to S. tristyla and A. chinensis (2×–4×) was closely
related to A. chinensis var deliciosa (6×). This study provides important mitochondrial
genome resources for the Actinidiaceae species and has deepened our understanding of
organelle genome evolution in flowering plants.
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