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Abstract: Cancer prognosis analysis is of essential interest in clinical practice. In order to explore
the prognostic power of computational histopathology and genomics, this paper constructs a multi-
modality prognostic model for survival prediction. We collected 346 patients diagnosed with hepato-
cellular carcinoma (HCC) from The Cancer Genome Atlas (TCGA), each patient has 1–3 whole slide
images (WSIs) and an mRNA expression file. WSIs were processed by a multi-instance deep learning
model to obtain the patient-level survival risk scores; mRNA expression data were processed by
weighted gene co-expression network analysis (WGCNA), and the top hub genes of each module
were extracted as risk factors. Information from two modalities was integrated by Cox proportional
hazard model to predict patient outcomes. The overall survival predictions of the multi-modality
model (Concordance index (C-index): 0.746, 95% confidence interval (CI): ±0.077) outperformed
these based on histopathology risk score or hub genes, respectively. Furthermore, in the prediction of
1-year and 3-year survival, the area under curve of the model achieved 0.816 and 0.810. In conclusion,
this paper provides an effective workflow for multi-modality prognosis of HCC, the integration of
histopathology and genomic information has the potential to assist clinical prognosis management.

Keywords: multi-modality; hepatocellular carcinoma; prognosis; deep learning

1. Introduction

Liver cancer is one of the most commonly diagnosed cancer with the sixth incidence
rate and the third mortality rate all over the world in 2020 [1]. In this study, we focus on
hepatocellular carcinoma (HCC), which is the most prevalent subtype of primary liver
cancer. The poor prognosis of liver cancer whose general 5-year survival rate is just 20%,
has attracted the attention of doctors and researchers [2].

Prognosis prediction is essential in clinical practice which models time-to-event out-
comes. It is useful for strategy optimization and effect evaluation of treatment [3]. However,
because of the highly heterogeneous of cancer, the prognosis of patients is usually affected
by many factors. It often requires various examinations to collect multi-modality data for a
comprehensive assessment. In addition to the patient’s own physical conditions, the doctor’s
experience will also affect the accuracy of the prognosis. Unlike other diagnoses, a definite
diagnostic standard for an exact survival time prediction is difficult to establish. Accurate
prognosis prediction is still a challenge. With the development of computer science, it is a new
choice to use computational methods to predict the prognosis of cancer patients [4].

Pathological diagnosis is the gold standard of cancer diagnosis that is a necessary
basis for cancer classification, grading, and staging. In clinical practice, pathologists usually
observe pathology sections under a microscope and make a diagnosis according to the
observed morphological features of tumor cells and the histological structure of the tumor
microenvironment.
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With the popularity of digital scanning of pathological images, algorithms based
on the whole slide images (WSIs) have developed rapidly in recent years, and a large
number of papers on cancer diagnosis and prognosis based on digital pathological images
have been published, such as diagnosis algorithm based on weakly-supervised [5], tumor
mutational burden prediction algorithm based on multiscale learning [6], segmentation
and classification algorithm of colonoscopy WSI [7]. H. Bhargava [8] et al. extracted
features from WSIs, which can be used as computational signatures for prostate cancer
prognosis. This research further explored the relationship between tumor biomarkers and
stromal morphological characteristics. X. Zhu [9] et al. proposed a WSIs survival prediction
framework based on deep learning and designed the first loss function for convolutional
neural network prognosis. However, survival prediction just based on WSIs is usually
inaccurate and hardly meets the clinical-grade application.

There is an assumption that multiple modality data can provide information from dif-
ferent perspectives leading to a more accurate prediction of patient outcomes. There is also
some research explored in the field of multi-modality survival prediction. In these research,
the commonly used modalities include histopathology, radiomics, clinical characteristics,
genomics, and other high-throughput molecular data. Genomics can be further divided
into multiple modalities, such as mRNA expression sequence, methylation, and muta-
tion. Similarly, radiomics include computed tomography and nuclear magnetic resonance
imaging of various sequences. The purpose of multi-modality studies [10,11] is usually
to build an automatic diagnosis or prognosis model, extract features from each modality,
integrate features, and use statistical models, machine learning, or deep learning methods
to make the prediction. In most multi-modality prognosis studies, researchers choose the
combination of modalities in genomics [12] or other modalities with genomics [13]. In a
pan-cancer study [14], a prognosis model was developed with six modalities based on
deep learning. For some cancer types, the concordance index (C-index) approached the
optimal score of 1.0. This study also proved gene expression data contributed the most to
the prognosis model through controlled experiments. M. Fan [15] et al. identified heteroge-
neous breast cancer subtypes by radiomics and genomics signatures. The subtypes were
demonstrated to have different biological functions and survival outcomes. J. Cheng [16]
et al. integrated genomic features and morphological features extracted from WSIs to build
a survival prediction model for clear cell renal cell carcinoma and explored the relationship
between the two modalities. These studies demonstrate the effectiveness of genomic data
in prognosis prediction.

Throughout the existing studies, there are fewer studies on multi-modality survival pre-
diction of liver cancer than other cancer. In addition, most of the existing studies use machine
learning methods to extract image features by hand. Therefore, the information extracted by
deep learning methods still needs further exploration to find a new reliable biomarker.

In this paper, we designed a workflow of multi-modality survival analysis for HCC
and built a prognosis prediction model. We collected multi-modality data from the public
dataset The Cancer Genomic Atlas (TCGA) [17] and cBioportal, including WSIs and mRNA
expression profiles. In the workflow, a state-of-the-art deep learning model was used for
WSIs to calculate patient risk scores, and weighted gene co-expression network analysis
(WGCNA) was used to summarize the gene expression information. Then, a multi-modality
integrated prognostic model for HCC was established based on Cox proportional hazards
model. The model performance demonstrated by multiple evaluation metrics. Decision
curve analysis (DCA) was also used to evaluate the clinical value of the integrated model.
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2. Materials and Methods
2.1. Patient Cohorts

In project TCGA liver hepatocellular carcinoma collection (LIHC) on cBioportal, there
are 369 patients diagnosed with HCC. For genomic, we excluded 3 patients without mRNA
expression files and downloaded files of the other 366 patients. These genetic data are
log-transformed mRNA expression z-scores that compared to the expression distribution of
all samples, and each patient has 20,531 gene measurements. Then, 6 patients with missing
follow-up were excluded.

For histopathology, we collected 357 WSIs of 349 patients in project TCGA-LIHC on
TCGA. Each patient has 1–3 WSIs. All the images were obtained by scanning hematoxylin-
eosin-stained paraffin-embedded sections and stored with magnifications from ×5 to ×40.
We matched the samples from TCGA with those from cBioportal and excluded the patients
who just have single modality data.

After screening, 346 patients with WSIs, mRNA expression files, and clinical survival
information were retained totally. The details of including and excluding steps are shown
in Figure 1.

Genes 2022, 13, 1770 3 of 15 
 

 

2. Materials and Methods 

2.1. Patient Cohorts 

In project TCGA liver hepatocellular carcinoma collection (LIHC) on cBioportal, 

there are 369 patients diagnosed with HCC. For genomic, we excluded 3 patients without 

mRNA expression files and downloaded files of the other 366 patients. These genetic data 

are log-transformed mRNA expression z-scores that compared to the expression 

distribution of all samples, and each patient has 20,531 gene measurements. Then, 6 

patients with missing follow-up were excluded. 

For histopathology, we collected 357 WSIs of 349 patients in project TCGA-LIHC on 

TCGA. Each patient has 1–3 WSIs. All the images were obtained by scanning hematoxylin-

eosin-stained paraffin-embedded sections and stored with magnifications from x5 to x40. 

We matched the samples from TCGA with those from cBioportal and excluded the 

patients who just have single modality data. 

After screening, 346 patients with WSIs, mRNA expression files, and clinical survival 

information were retained totally. The details of including and excluding steps are shown 

in Figure 1. 

 

Figure 1. Sample screening and data organization flowchart in the study. A total of 346 patients 

were included in the datasets according to the selection criteria. 

2.2. Data Analysis and Integration Workflow 

The workflow consists of three parts: histopathology images processing, mRNA-seq 

analysis by WGCNA, and multi-modality survival analysis. The key steps are shown in 

Figure 2. The three parts will be detailed in the following sections. 

Figure 1. Sample screening and data organization flowchart in the study. A total of 346 patients were
included in the datasets according to the selection criteria.

2.2. Data Analysis and Integration Workflow

The workflow consists of three parts: histopathology images processing, mRNA-seq
analysis by WGCNA, and multi-modality survival analysis. The key steps are shown in
Figure 2. The three parts will be detailed in the following sections.
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Figure 2. The workflow chart of key steps in our study. In the part of histopathology image processing,
patches cut from one patient were clustered into 10 categories. Patches of each category were input into
the multi-instance fully convolutional network (MI-FCN), and then, the outputs were aggregated with
attention mechanism to get a risk score of the patient. In the part of mRNA-seq processing, eigengenes
were obtained by weighted gene co-expression network analysis (WGCNA). Then, modules were
selected by the least absolute shrinkage and selection operator (LASSO) based on eigengenes. Top hub
genes of the retained modules were extracted as risk factors. In the last part, the deep learning risk score
and hub genes were integrated together by Cox proportional hazard model.

2.3. Histopathology Image Processing

The workflow of WSIs processing mainly comes from the DeepAttnMISL proposed
by Yao. J [18]. Due to the gigapixel of the WSIs, it is difficult to calculate them directly.
The first step is cutting WSIs into patches with a small size of 1024 × 1024 (pixel × pixel)
for calculating in the next step. Based on experience, we chose 20× magnified images
for patch sampling. The 20× magnification achieves a balance between cell morphology
and overall cell distribution, taking into account both micro and macro information. The
patches contain all tissue areas except the background. In the cutting process, there is
overlapping between patches, and the patch sampling position is random within a limited
range. The number of patches cut from each WSI varies from 100 to 4000. A patient may
have several WSIs, and the patches cut from these WSIs are put together. To keep the
balance of the patch dataset, we performed data augmentation on the patients with a small
number of patches, including flip horizontal, flip vertical, and rotation. For example, if a
patient has less than 200 patches, we will perform flip horizontal, flip vertical, and rotation
of 90 degrees, 180 degrees, and 270 degrees on each patch, so that 5 amplified patches
produce from 1 patch. There are at least 500 patches per patient after data augmentation.
More details are provided in Supplementary Materials Table S1.

Features of each patch were extracted by the pre-trained VGG19 [19] deep learning
model. The feature is a vector of dimension 1 × 4096. Then, we adopted K-means clustering
to divide these patches into 10 categories based on the features. The cluster number 10
is the optimal parameter selected by controlled experiments. Details are provided in
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Supplementary Materials Table S2. Multi-instance fully convolutional network adopts a
generalized Siamese architecture, which is composed of multiple sub-networks with the
same structure and shared weight parameters. The sub-network is constructed with two
convolution layers and a pooling layer. Each convolution layer is followed by a ReLU
active function. The feature extraction part of the sub-network is designed based on the
fully convolutional neural network. Therefore, the size of the input layer is more flexible,
which is suitable for the research in this paper. Patch features of each category were fed
into the corresponding sub-network, respectively, and the representation of each category
was output. Through the attention mechanism, different weights were given to different
categories. The representations of 10 categories were aggregated to get a patient-level
representation that was relevant to survival. In the previous research, it has been found that
clusters of interest and image regions can be localized through the attention mechanism,
enabling patient-level representations to have strong representational capabilities. Then,
the survival risk score of patients was obtained by reducing representation dimension
through several fully connection layers.

2.4. Loss Function for Deep Learning Training

The model was built based on deep learning that the loss function is the key in model
training. The follow-up record of patients usually contains two pieces of information,
observed time and censoring indicator. In the model training, the follow-up record of the
ith patient was regarded as a label with the format of (ti, δi), ti is the observed time and
δi is the censoring indicator which had two values. δi = 0 indicates death not observed,
and vice versa. The loss function was designed according to concordance. Assume that the
observed time of the jth patient is longer than that of the ith patient, that is, the jth patient
is a low-risk patient and the ith patient is a high-risk patient. At the time point ti that the
death event is observed (δi = 1), the predicted value of the jth patient’s risk score is rj,
that should be lower than ri of the ith patient, otherwise, the model will be penalized. The
total number of patients is N. The loss function collected patients with wrong predictions
for calculating, and then, model parameters were updated by backpropagation. The loss
function is shown in Formula (1).

L(ri) =

N

∑
i

δi(−ri + log ∑
j:tj≥ti

exp
(
rj
)
) (1)

2.5. Pathology Model Training

In deep learning, training set data is used to train the model, and test set data is used
to test the performance of the trained model. Therefore, we divide the patient dataset
into a training set and a test set with a ratio of 2:1 based on experience. For training,
5-fold cross-validation is a commonly used method. We split the training set into 5 groups
randomly. Each unique group will be taken for validation, and the remaining 4 groups will
be taken for training. We fitted the model on the 4 groups and evaluated it on the one group.
Therefore, each sample is given the opportunity to be used in validation and used to train
the model. We saved the model parameters from each round of training. Then, we selected
the optimal model according to the evaluation scores and tested it on the test set. More
details are provided in the Supplementary Materials Section 3 (Figure S1 and Table S3).
Because the model was constructed based on deep learning, the calculation amount and
time consumption are mainly in this step. The trained model will output a risk score of
each patient as a representation of the WSIs.

2.6. Gene Coexpression Analysis

WGCNA is a method to analyze the gene expression patterns of multiple samples
that can cluster genes into co-expression modules [20]. It has been commonly used in
bioinformatics. In this paper, we adopted WGCNA to get co-expression modules of HCC
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patients and eigengene, which is the first principal component of each module. The details
of each co-expression module are listed in Table S6. In this way, the expression patterns of
different gene modules can be highly summarized, and the relationship between different
modules and case survival will be analyzed in the next step.

For the collected mRNA-seq data in our study, firstly, the missing values were removed,
and then the top 5000 genes with the most obvious variance were picked out based on the me-
dian absolute deviation for downstream analysis. Calculate the interaction coefficient between
genes, get the adjacency matrix, and then calculate the topological overlap measure. After that,
we get 8 gene co-expression modules by hierarchical clustering and dynamic tree cut. The
eigengenes of each module were extracted as the representation of the module. To avoid the
final integrated model overfitting, we performed the least absolute shrinkage and selection
operator (LASSO) to select an informative subset of factors. The description of this pro-
cess is provided in Supplementary Materials Section 4 (Figures S2 and S3, Tables S3 and S4).
5 modules were retained, and the top hub gene of each module was extracted as a risk factor
in the next step. The 5 hub genes are DCAF13, ELAC2, ZNF320, KIF18B, and FERMT3.

2.7. Integrative Multi-Modality Prognosis Model

With the deep learning risk score from histopathology images, module hub genes from
genetic data, and clinical characteristics (age and sex), we built a multi-modality integrative
prognosis model based on Cox proportional hazards model. The integrated model can
estimate survival risk and calculate a comprehensive risk score by which patients can be
stratified into a low-risk or high-risk group.

2.8. Statistical Analysis and Model Assessment

C-index estimates the probability that the predicted results are consistent with the
observed results. The value of C-index ranges from 0 to 1, the larger the value is, the better
the model predicts. We used C-index with 95% confidence interval (CI) was used to assess
the prognosis model performance. Time-dependent receiver operating characteristic (ROC)
curves of 1-year survival and 3-year survival were plotted, and the areas under the curves
(AUCs) were calculated. The value of AUC ranges from 0 to 1, the larger the value is, the
better the model performance.

Kaplan-Meier (KM) survival curves of high-risk and low-risk groups were plotted,
and the log-rank test was used to test the difference between the two groups (p-value < 0.05
is considered statistically significant).

The predictive factors, including risk scores from histopathology images, top hub
genes of each co-expression module, and clinical characteristics (sex and age) are used to
plot a prognosis nomogram. The impact of factors on prognosis can be seen intuitively in the
nomogram [21]. Nomogram calibration curve was used to test its prediction performance.
Then, DCA [22], which is a method for calculating model clinical net benefit, was used to
assess the clinical value of the multi-modality model.

As a controlled experiment, we built Cox proportional hazards model based on single-
modality factors and multi-modality factors, respectively. The above evaluations of these
models are calculated to prove the prediction effectiveness of the multi-modality model.

In this study, histopathology image processing was performed in Python (3.8.8) and
the deep learning model was constructed based on Pytorch (1.10.2). WGCNA and sta-
tistical analysis were performed in R (4.2.1). The R package includes WGCNA, dynam-
icTreeCut, glmnet, survival, rms, ggDCA, survcomp. Details of data and code are pro-
vided at github (https://github.com/Houjiaxin123/Integrative-Histology-Genomic-HCC-
Prognosis-Analysis (accessed on 24 September 2022)).

https://github.com/Houjiaxin123/Integrative-Histology-Genomic-HCC-Prognosis-Analysis
https://github.com/Houjiaxin123/Integrative-Histology-Genomic-HCC-Prognosis-Analysis
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3. Results
3.1. Patient Characteristics

A total of 346 patients (232 males and 114 females) with HCC were included in this
study. The median age of patients at first diagnosis was 61.0 (range from 16.0 to 85.0). There
were 123 patients died at the last follow-up, and the other 223 patients’ follow-up records
were censored. The median survival time was 19.56 months. TNM stages of patients are
shown in Table 1. In our study, we used 5-cross validation to test the performance of the
integrated model. The dataset was divided into a training set and a test set with a ratio of
2:1. The training set was used to train the deep learning model. The test set is independent.
Details of the two sets are shown in Table 1.

Table 1. Patient Characteristics.

Characteristics Total (N = 346) Train (N = 231) Test (N = 115) p-Value

Age: median (range) 61.0 (16–85) 61.0 (17–85) 61.0 (16–82) 0.679
Gender 0.608

Male 232 (67.1%) 157 (68.0%) 75 (65.2%)
Female 114 (32.9%) 74 (32.0%) 40 (34.8%)

T classification 0.360
T0-T1 169 (48.8%) 114 (49.3%) 55 (47.8%)

T2 88 (25.4%) 62 (26.8%) 26 (22.6%)
T3-T4 88 (25.4%) 55 (23.8%) 33 (28.7%)
NA 1 (0.3%) 0 1 (0.9%)

N classification 0.703
N0 241 (69.7%) 165 (71.4%) 76 (66.1%)
N1 3 (0.9%) 2 (0.9%) 1 (0.9%)
NX 101 (29.2%) 63 (27.2%) 38 (33.0%)
NA 1 (0.3%) 1 (0.4%) 0

M classification 0.177
M0 252 (72.8%) 173 (74.9%) 79 (68.7%)
M1 3 (0.9%) 3 (1.3%) 0
MX 91 (26.3%) 55 (23.8%) 36 (31.3%)

TNM stage 0.487
I–II 242 (69.9%) 166 (71.9%) 76 (66.1%)

III–IV 85 (24.6%) 54 (23.4%) 31 (27.0%)
NA 19 (5.5%) 11 (4.8%) 8 (6.9%)

OS (months): median 19.56 19.56 19.53 0.903
Event 0.654
Alive 223 (64.5%) 147 (63.6%) 76 (66.1%)
Dead 123 (35.5%) 84 (36.4%) 39 (33.9%)

3.2. Multi-Modality Model Perfomance Evaluation

The C-indexes with 95% confidence intervals of single-modality and multi-modality
models are listed in Table 2. To validate the model generalization performance, we cal-
culated C-index and AUC on the training set and test set, respectively. We collected the
predictions of the selected optimal model in the training process to calculate the training set
C-indexes. The test set C-indexes are based on the trained model predictions of test set sam-
ples. Results of C-index difference test between single-modality and multi-modality models
are shown in Table 3. The results prove that the C-index of multi-modality model is higher
than that of single-modality models with statistically significant. Therefore, multi-modality
model has stronger prognosis power.
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Table 2. Concordance index (C-index) of single-modality and multi-modality models.

Modality C-Index 1

(Training Set n = 231)
C-Index

(Test Set n = 115)

Pathology 0.776 (±0.054) 0.714 (±0.088)
Hub gene 0.692 (±0.061) 0.666 (±0.081)

Multi-modality 0.796 (±0.055) 0.746 (±0.077)
1 95% confidence intervals (CIs) are in parentheses.

Table 3. C-index significant difference test between single-modality and multi-modality models.

Model p-Value
(Training Set)

p-Value
(Test Set)

Pathology to Multi-modality 2.582 × 10−2 1.946 × 10−2

Hub gene to Multi-modality 4.295 × 10−5 1.269 × 10−2

In addition, we used ROC and AUC which are more comprehensive assessments to
describe the model performance on the test set. The ROCs are shown in Figure 3. For
1-year survival prediction, AUCs of pathology, gene, and multi-modality models are 0.782,
0.736, and 0.816, respectively. For 3-year survival prediction, AUCs of pathology, gene, and
multi-modality models are 0.785, 0.637, and 0.810, respectively. The results also proved
multi-modality model is superior to single-modality models.
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Figure 3. Receiver operating characteristic (ROC) curves of single-modality and multi-modality
models in the test set. (a) 1-year hepatocellular carcinoma (HCC) overall survival prediction ROC of
the models; (b) 3-year HCC overall survival prediction ROC of the models. Red, blue, and green plots
represent the pathology prediction model, gene prediction model, and multi-modality prediction
model, respectively.

3.3. Survival Prediction by Multi-Modality Model

To further assess the model in the test set, we divided the patients into high-risk and
low-risk groups according to the median value of the predicted risk score by each model.
KM curves of overall survival are shown in Figure 4. The survival rate of the low-risk group
is significantly better than the high-risk group, and the result of multi-modality model
(p = 0.001) is more significant than gene model (p = 0.23).
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Figure 4. Single-modality and multi-modality models were tested on the test set for hepatocellular
carcinoma (HCC). (a) Kaplan-Meier (KM) curves of overall survival with the prediction of pathology
prognosis model (p = 0.00017, two-sided log-rank test). (b) KM curves of overall survival with the
prediction of gene prognosis model (p = 0.23, two-sided log-rank test). (c) KM curves of overall
survival with the prediction of multi-modality prognosis model (p = 0.001, two-sided log-rank test).
Red and blue plots represent high-risk and low-risk groups, respectively.

3.4. Nomogram and Clinical Benefit Evaluation

We constructed a nomogram system with deep learning pathology risk scores, hub
genes, and clinical characteristics (sex and age) by Cox regression. It integrates histopathol-
ogy and genomics for 1-year and 3-year survival predictions of patients. The nomogram
and its calibration curves are shown in Figure 5. In Figure 5a, different values of each factor
correspond to different points on the first axis. According to the nomogram, patients can be
scored based on their own factors. The obtained total points can be mapped to the 1-year
and 3-year survival probability axis to get prediction results. Nomogram visualizes the
prognosis model in the form of a scale, which may be helpful for clinical practice. The
calibration curve is plotted according to the nomogram predictions and the actual outcomes
of patients. The closer the calibration curve is to the diagonal, the stronger the predictive
power that the model has. The calibration curve in Figure 5b demonstrated the survival
predictions of the nomogram are close to the actual survival, especially the 3-year predic-
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tions. We also processed external validation on the test set, and the calibration is shown in
Figure 5c. It proved the integrated model has a good prognosis ability. Nomogram with
only clinical characteristics is provided in Supplementary Materials Figure S4. Table S5
demonstrated the prognosis power of clinical characteristic.
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Figure 5. Evaluation of the predictive performance of the integrated prognostic model. (a) The
nomogram incorporates deep learning pathology risk score, genomic module hub genes, and clinical
characteristics of the patients in the training set; (b) The calibration curve of the nomogram for 1−year
and 3−year overall survival prediction in the training set; (c) the calibration curve of the nomogram
for 1−year and 3−year overall survival prediction in the test set.

Moreover, we used DCA to evaluate the clinical value of the integrated model. The
results in the training set were regarded as internal validation and the results in the test set
were regarded as external validation. Curves are shown in Figure 6. Whether in the training
or test set, the net benefit of multi-modality model was higher than single-modality models.
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Figure 6. Decision curve analysis (DCA) of single−modality and multi−modality models. (a) DCA
for models of survival prediction on the training set. (b) DCA for models of survival prediction on
the test set. Red, blue, and green plots represent pathology, gene, and multi−modality modes. Grey
and black plots are two net benefit reference lines in an extreme situation.

4. Discussion

In this study, we designed a workflow for HCC prognosis that integrated histopathol-
ogy and genomics to make a more accurate prediction of patient overall survival. For WSIs,
we calculated a risk score of each patient by using DeepAttnMISL, which is a state-of-the-
art deep learning algorithm. For mRNA expression, we clustered genes into 8 modules
by WGCNA and extracted the top hub genes of modules as risk factors for each patient.
Then, histopathology risk score, hub genes, and clinical characteristics were integrated by
constructing a Cox proportional hazard model. We verified the prediction performance of
the integrated model by several evaluations, such as C-index, ROC, and AUC. KM curves
were used to show the stratification ability of the model. Whereafter, we constructed a
nomogram based on the multi-modality factors and validated the clinical value of the
integrated model by DCA.

Aiming at the heterogeneity of cancer, the application of multi-modality data analysis is
the trend in cancer study of the occurrence and development, as well as clinical diagnosis and
treatment. The experimental results in this paper prove a key point that compared with the
single-modality, the multi-modality model can predict the survival risk more accurately. It is
very promising to carry out the next research in the direction of multi-modality data analysis.

Pathological sections have always played a necessary role in clinical diagnosis. With
the development of digital technology and computer vision, WSIs have gradually become
an important modality in computer-aided survival prediction. Genomics contains molecu-
lar information, while WSI contains morphology information of cells. Some studies [23–26]
have tried to extract morphological biomarkers from WSIs, which may become an indicator
for clinical application. These research also confirmed the effectiveness of pathological
images for survival prediction. Through the performance comparison between histopathol-
ogy modality and gene modality, our study also confirmed that pathological images have
prognosis power in the clinic.

Deep learning has gradually become a popular method of big data analysis. Espe-
cially in medical image processing, deep learning is a utility for high-dimensional feature
extraction [27–30]. The convolutional neural network has been used for WSIs feature
extracting in multi-modality prognosis studies as early as 2018 [31]. Compared with the
manually extracted features used in traditional machine learning, deep learning features
are more objective and considered to retain more information. However, its defect is poor
interpretability, which the difficulties to combine high-dimensional features with clini-
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cal phenotypes. In some multi-modality medical research [32–34], the extracted medical
image’s high-dimensional features are fused with other modalities by vector calculation,
which is a relatively effective method used in multimodal fusion at present. Although
most studies used visualization methods to combine high-dimensional vectors with visual
presentation, the limitation of poor interpretability is not solved fundamentally. In our
study, the two modalities are combined by integrating, which avoids some problems of
poor interpretability of vector calculation. It is obvious that the risk score calculated by deep
learning has a strong prognosis power through the comparison between single-modality
models. We can speculate that the network caught the key information in patches by form-
ing a complex nonlinear model of survival risk. However, the integration method doesn’t
achieve the deep fusion of multimodal that may need some prior condition settings based
on the biological connection of modalities. Multimodal fusion still needs more research to
enhance the interpretability of the algorithms.

We plotted hazard ratios (HRs) of factors in Figure 7. The deep learning risk score
(HR = 3.631, p-value < 0.001), DCAF13 (HR = 1.399, p-value = 0.0053), and KIF18B (HR = 1.453,
p-value = 0.0073) are the factors that most significantly associated with prognosis in the test
cohort. KIF18B is a member of superfamily proteins [35]. In previous studies, KIF18B has
been identified as one of the core genes in HCC microenvironment. Upregulation of KIF18B
was related to poor prognosis [36,37]. DCAF13 is a frequently amplified gene in various
cancers. Cao J et al. [38] considered DCAF13 plays a potential role in cell cycle regulation.
They found and proved overexpression of DCAF13 is related to poor prognosis. Luo Y
et al. [39] also thought DCAF13 is one of the genes associated with the prognosis of HCC.
These findings are consistent with the results obtained in our paper.
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Figure 7. Forest plot of the hazard ratios with 95% confidence intervals (CIs) and p-values obtained
from the multi−modality model including the deep learning risk score, hub genes, and clinical
characteristics of the cohort. The ‘***’ indicated p-value < 0.001, and the ‘**’ indicated p-value < 0.01.

Our study also has some limitations. Firstly, the integrated multi-modality model
lacks multi-central data to verify its performance. Secondly, the mechanism between gene
and phenotype also lacks analysis. In particular, the modeling of the potential relationship
between modalities is not clear, and the research results are more at the application level but
have not yet gone deep into the mechanism level. Wu. J [40] et al. identified new subtypes
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across three malignancies by two imaging modalities and proved this discovery by the
different phenotypes after therapies. This study is an exploration of the connection between
tumor morphology and molecular. In the next step, on the one hand, we will explore
more effective algorithms for extracting multimodal data information; on the other hand,
we will try to model the connection between modalities and explain the computational
representation based on biological discoveries.

5. Conclusions

In conclusion, we provided a workflow of multi-modality analysis for HCC prognosis,
mainly including histopathology and genomic data. Through the various assessments
of the integrated model, it can be concluded that multi-modality information has great
potential for cancer prognosis, and the multi-modality model constructed by computational
modeling may become an effective tool to assist clinical practice. However, more research is
needed to explore multi-modality information extraction and feature fusion methods. The
implicit connection between modalities is also a meaningful research topic in the future.
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//www.mdpi.com/article/10.3390/genes13101770/s1, Figure S1. C-index of each epoch in the
training process; Figure S2. The process of coefficients changing with Lambda; Figure S3. Selection
of the optimal Lambda; Figure S4. Nomogram of clinical characteristics; Table S1. Details of data
augmentation; Table S2. C-index with different cluster number; Table S3. C-index of 5 folds on
validation set; Table S4. LASSO sparse matrix; Table S5. C-index of clinical characteristics nomogram;
Table S6. The 8 co-expressed gene modules generated by WGCNA.
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