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Abstract: This study aimed to apply transcriptomics to determine how Molor-Dabos-4 (MD-4)
protects healthy rats against indomethacin (IND)-induced gastric ulcers and to identify the mechanism
behind this protective effect. Rats were pretreated with MD-4 (0.3, 1.5, or 3 g/kg per day) for 21 days
before inducing gastric ulcers by oral administration with indomethacin (30 mg/kg). Unulcerated
and untreated healthy rats were used as controls. Effects of the treatment were assessed based on
the ulcer index, histological and pathological examinations, and indicators of inflammation, which
were determined by enzyme-linked immunosorbent assay. Transcriptomic analysis was performed
for identifying potential pharmacological mechanisms. Eventually, after identifying potential target
genes, the latter were validated by quantitative reverse-transcription polymerase chain reaction
(qRT-PCR). After pretreatment with MD-4, gastric ulcers, along with other histopathological features,
were reduced. MD-4 significantly (p < 0.05) increased the superoxide dismutase (SOD) levels in ulcers
and reduced pepsin, TNF-α, and IL-6 levels. RNA-seq analysis identified a number of target genes
on which MD-4 could potentially act. Many of these genes were involved in pathways that were
linked to anti-inflammatory and antioxidant responses, and other protective mechanisms for the
gastric mucosa. qRT-PCR showed that altered expression of the selected genes, such as Srm, Ryr-1,
Eno3, Prkag3, and Eef1a2, was consistent with the transcriptome results. MD-4 exerts protective effects
against IND-induced gastric ulcers by reducing inflammatory cytokines and pepsin and increasing
the expression of SOD levels. Downregulation of Srm, Ryr-1, Eno3, Prkag3, and Eef1a2 genes involved
in regulating arginine and proline metabolism, calcium signaling pathway, HIF-1 signaling pathway,
oxytocin signaling pathway, and legionellosis are possibly involved in MD-4-mediated protection
against gastric ulcers.

Keywords: Molor-dabos-4; gastric ulcer; transcriptomic analysis; mechanism of action; Mongolian medicine

1. Introduction

Gastric ulcers are one of the most common upper digestive disorders. An epidemio-
logical survey on peptic ulcers showed that the prevalence of gastric ulcer disease increased
from approximately 6 million in 1990 to 8 million in 2019 globally [1]. In China, about 10%
of people have suffered from gastric ulcers at some time in their life [2]. An increase in
aggressive agents (gastric acid, pepsin, and oxidative stress) and a decrease in protective
factors (adhesive mucus, bicarbonate secretion, antioxidant defenses, and blood flow)
causes ulcerations [3]. Other etiological variables, including heavy alcohol consumption,
sedentary lifestyle stress, and chronic nonsteroidal anti-inflammatory drug (NSAID) use
can also contribute to gastric ulcers [4]. In fact, in the latter case, even though NSAIDs are
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extensively used as analgesics, antipyretics and anti-inflammatory compounds, their use
also promotes neutrophil adhesion, damage to the mucosal integrity and gastric ulcera-
tions [5–7]. Although proton-pump inhibitors and other synthetic medicines are available
for treatment, their adverse effects may cause headache, dizziness, and gastrointestinal
symptoms including abdominal pain, constipation, and diarrhea [8,9]. As a result, re-
search has been focused on identifying medicines with greater effectiveness and safety and
compounds that confer additional protection against stomach ulcers [10,11].

The use of herbal medications for treating gastric ulcers has been gaining popularity.
This is not only because studies involving humans and animal models have shown that
their efficacy was equivalent or even better than that of drugs, such as cimetidine and
omeprazole [12], but also because ulcer therapies based on herbal medicine tend to be less
expensive than chemical-based ones [13,14]. For instance, the South Korean multiherbal
formula SR-5 has been reported to considerably decrease the ulcer index in mice, with
agarwood extracts producing similar effects, along with reduced inflammation, against
stomach ulcers in rats [15,16]. Herbal medicines normally act by stimulating the prolif-
eration of mucous cells, triggering antioxidation mechanisms, inhibiting the secretion of
gastric acid, and increasing the activity of H(+)/K(+)-ATPases [17], and thus their use can
represent a valuable alternative for the effective treatment of gastric ulcers, while limiting
the side effects.

Molor-dabos-4 (MD-4) is a Mongolian folk medicinal prescription that is clinically
used to treat gastric ulcers, gastroenteritis, and dyspepsia [18]. The recommended clinical
dosage for humans is 3 g per day for a patient weighing about 60 kg, and a therapy
cycle lasts 21 consecutive days. MD-4 is composed of one mineral (halite) and three
medicinal herbs, namely rhizome of Zingiber officinale Rosc. (ZOR), seed of Piper longum L.
(PLL) and fruit of Terminalia chebula Retz. (TCR) with equal ratio combinations (Table 1).
Halite is composed of NaCl and trace elements including Br, Rb, Cs, Sr [19]. The active
substances of ZOR are volatile oil and gingerol; piperlongumine and piperine are proved
to be effective components of PLL A number of glycosides and coumarin and phenolic
acid have been isolated from TCR, including chebulosides, gallic acid, and chebulic acid.
The research data on the chemical composition analysis of MD-4 are limited [20–24]. Based
on ethnopharmacological records, MD-4 is also effective for gastric protection, improving
digestion and detoxification. However, its mode of action and antiulcer effects are yet to
be determined. The current study examined how MD-4 affected indomethacin-induced
gastric ulcers in healthy rats by measuring the extent of mucosal damage and the effects of
gene expression on inflammation and gastrointestinal functions. Furthermore, using data
mining and transcriptomic analyses, the underlying mechanism behind MD-4’s protective
effects against indomethacin-induced ulcers were unraveled.

Table 1. Components of MD-4.

No Genus Species Common Names Plant Part Content (%)

1 Halite Salt - 25
2 ZOR Ginger Rhizome 25
3 PLL Piper longum Immature fruits 25
4 TCR Chebulae Fructus Fruits 25

Total content (%) 100

2. Materials and Methods
2.1. Ethics Statements

Six-week-old male Sprague Dawley rats (SPF grade, batch C-NMG2021012507) of
weight 200± 20 g were obtained from Liaoning Chang-Sheng Biotechnology Co. (Shenyang,
Liaoning, China) The Committee on the Ethics of Animal Experiments at Inner Mongolia
Minzu University reviewed and approved the experimental protocols (approval NM-
LL-2021-06-15-1), in compliance with the criteria and general principles of the Chinese
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Experimental Animals Administration Legislation. All surgical procedures were performed
after the animals were euthanized using sodium pentobarbital, while minimizing suffering.

2.2. Animal Treatment

Thirty-six male rats were allowed to acclimatize for seven days in a controlled environ-
ment (12 h light/dark cycle, 22 ± 2 ◦C, relative humidity of 50% ± 5%) with unrestricted
access to water and food. Rats were randomly assigned to six groups: control group, IND
group, 0.3, 1.5, and 3 g/kg MD-4 and ranitidine groups (a clinical antiulcer drug). They
were then given a 21-day pretreatment as follows: sodium carboxymethylcellulose water
solution (CMC-Na, Sigma; 0.5%, St. Louis, MO, USA) was given to the control and IND
groups throughout the trial, while MD-4 groups at 0.3, 1.5, or 3 g/kg doses (provided by
the Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China) and ranitidine
(30 mg/kg) were suspended in 0.5% CMC-Na solution and provided once daily through
gastric administration.

2.3. Gastric Ulcer Induction by Indomethacin

The use of IND is a proven method for inducing gastric ulcerations in rats by a single orally
administered dose. All rats were subjected to fasting for 24 h prior to the final drug administra-
tion. Three hours after providing the last treatment, IND (30 mg/kg) was orally administered
to induce gastric ulcerations as previously described [25]. Food and water were then withheld
for six hours before eventually injecting pentobarbital intraperitoneally to euthanize the rats.
To analyze the effects of treatments, gastric tissues were dissected and Guth’s method [26] was
subsequently applied to determine ulcer length and ulcer index. Percentage inhibition was then
calculated as follows: inhibition rate = [(UImodel − UItreated)/UImodel] × 100%, where UI is
ulcer index.

2.4. Pathological and Histopathological Observation

Rats were euthanized as described above to obtain gastric tissues for pathological
examinations. In this case, the tissues were fixed for 48 h in 4% paraformaldehyde prior
to decalcification in EDTA (10%; Sigma-Aldrich, Darmstadt, Germany), processed and
embedded in paraffin. Samples were then sliced into sections of 4 µm thickness and after
dewaxing in xylene two times for 15 min and at 37 ◦C, ethanol of decreasing concentrations
was used for rehydrating the tissues. This was followed by a 5 min washing step with
distilled water at room temperature before eventually staining the tissues with hematoxylin
and eosin (Nanjing Jiancheng Bioengineering Institute, Nanjing, China).

2.5. Measurement of Cytokine Levels

Blood collected from the rats was first centrifuged at 4 ◦C and 4500× g for 10 min.
The resulting serum samples were then analyzed using ELISA kits to determine IL-6 and
TNF-α levels. Washing and subsequent homogenization of tissues in ice-cold 10X Tris
buffer (50 mM; pH = 7.4) was followed by centrifugation at 4 ◦C and 12,000× g for 10 min.
Prostaglandin E2 (PGE2), superoxide dismutase (SOD), and malondialdehyde (MDA) levels
were then determined for the resulting supernatant using commercially available assay kits
(Jiangsu Jingmei Bioengineering Institute, Yancheng, China).

2.6. Transcriptome Analysis

Six samples of gastric tissues were taken from the rats in the control, IND, and MD-4
treated (3 g/kg) groups and sent for sequencing in BioTree (BioTree, Shanghai, China). The
integrity and purity of the extracted RNA were then measured using a NanoPhotometer®

UV/vis spectrophotometer (IMPLEN, Westlake Village, CA, USA), and a Bioanalyzer
2100 (Agilent, Santa Clara, CA, United States) respectively. With the help of poly(dT)
oligos coupled to magnetic beads, mRNA was purified before being fragmented at high
temperature using divalent cations. This was followed by the reverse transcription of
fragments using random hexamer primers, with the resulting cDNA strands subsequently
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adenylated and ligated to NEBNext® adapters with hairpin loop structures. After PCR
amplification of the DNA fragments using universal PCR primers, Phusion High-Fidelity
DNA polymerase and Index (X) Primer, the products were purified (AMPure XP system),
and a library was prepared, with the latter’s quality assessed with an Agilent Bioanalyzer
2100 system. The TruSeq PE Cluster Kit v3-cBot-HS kit (Illumina) was then used for cluster
amplification of the samples on a cBot Cluster Generation System prior to sequencing on
an Illumina Novaseq platform to generate 150 bp paired-end reads. Eventually, KEGG
pathway and GO functional analyses were used to identify genes that were differentially
expressed (DEGs) between groups. In this case, an absolute fold change of ≥2 and a
corrected p-value of 0.05 were selected as thresholds for considering a gene as being
differentially expressed.

2.7. Validation by Real-Time Quantitative Reverse Transcription PCR (RT-qPCR)

Based on the antiulcer results of MD-4, regulated cytokine levels, and transcriptomic
analysis, six key DEGs related to inflammation and oxidative stress from six key KEGG
pathways were validated by RT-qPCR to analyze the expression of Srm, Ryr1, Eno3, Prkag3,
RPl3l and Eef1a2 for the MD-4, IND, and control groups. Using an oligo(dT) primer, a
Quantiscript reverse transcriptase (Qiagen, Hilden, Germany) and the same RNA samples
that were used for transcriptomics, cDNA strands were synthesized according to the
manufacturer’s instructions. The sequences available in GeneBank were also used to design
primers for the amplification of the selected genes (Table 2). Eventually, qRT-PCR was
carried out on a LightCycler 480 SW 1.5.1 (Roche LightCycler 480 II, Basel, Switzerland)
with an initial 10 min denaturation step at 50 ◦C, followed by 40 amplification cycles, each
with denaturation performed for 1 min at 95 ◦C, prior to a 1 min annealing and extension
step at 60 ◦C. The process concluded with a melt curve obtained through an incremental
increase in temperature from 72 ◦C to 95 ◦C before finally cooling to 40 ◦C. The β-actin gene
was selected as an internal control and gene expression (∆∆ct) relative to the control was
determined as a fold change for plotting.

Table 2. Primers used for qRT-PCR to determine gene expression in gastric tissues.

Gene Accession No. Forward Primer Reverse Primer

Srm NM_053464 ACTCTTGCCCACCAACCAAG TTGTTGGGTCACAGGGCATAG
Ryr1 XM_001078539 CTGAGCTGAATGAATACAACGC CCATGAGCCTTTCTAGCACTG
Eno3 NM_012949 CTGATGACTCTTCCAGCCTC ACACTTAGTTTCTTTTCCAGCA

Prkag3 NM_001106921 AGTCTGCAGGAAACATCGCT CTCTCTCTGCATTGGACCCC
Rpl3l NM_005061.3 GCTGGCACCAAGAAGAGAGT AGCATCCGTGGCCAAACTTA
Eef1a2 NM_012660 CGGTATCCTCCGTCCTGGTA CGGCGAATGTCCTTGACAGA
β-actin NM_031144.3 GGAGATTACTGCCCTGGCTCCTA GACTCATCGTACTCCTGCTTGCTG

2.8. HPLC-MS/MS Analysis of Chemical Constituents of MD-4 Extract

The chemical composition of MD-4 was identified using liquid chromatography- tan-
dem mass spectrometry (LC-MS/MS). MD-4 aqueous extract (145.54 mg) was poured
into a 2 mL centrifuge tube, added 1 mL of 70% methanol and 3 mm steel balls, vi-
brated and crushed with a fully automatic sample rapid grinder (jxfstprp-48, 70 Hz) for
3 min, low-temperature ultrasound (40 KHz) for 10 min, and centrifuged at 4 ◦C 12,000
rmp for 10 min. The analysis was performed on a Thermo Ultimate 3000 LC-MS Sys-
tem (Waltham, MA, USA). The column is Zorbax eclipse C18 chromatographic column
(1.8 µm × 2.1 × 100 mm) operated at 40 ◦C. The elution solvents were aqueous 0.1% formic
acid (A) - acetonitrile (B). Samples were eluted using a linear gradient from 0–2.0 min,
5% B; 2.0–6.0 min, 30% B; 6.0–7.0 min, 30% B; 7–12 min, 78% B; 14–17 min, 95% B; 17–20 min,
95% B; 20–21 min, 5% B; and 21–25 min, 100% B. The flow rate was 0.3 mL/min. Mass
spectrometry was performed using full scan (m/z 100~1500) and data-dependent secondary
mass spectrometry scanning mode (dd-ms2, topN = 10). Primary mass spectrometry reso-
lution was set at 120,000, secondary mass spectrometry resolution was 60,000. Collision
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mode was set as high-energy collision dissociation and ion heater temperature was 325 ◦C.
Gas flow rate was 45 arb and auxiliary air velocity was 15 arb. Electric spray voltage was
3.5 kV and S-lens RF level was 55%. The chemical structures of MD-4 were characterized
based on their retention behavior and MS information, and from reference to databases
such as Scifinder and Chemspider, as well as the general literature.

2.9. Statistical Analysis

All results were provided as means ± standard error of mean (SEM). Using the
GraphPad Prism 5® software (GraphPad software, San Diego, CA, USA), one-way analysis
of variance (ANOVA) and LSD tests were then performed to analyze differences between
means at 5% significance levels.

3. Results
3.1. Effects of MD-4 on IND-Induced Gastric Ulcers

Macroscopic observations showed that, unlike the control for which hemorrhages
were practically absent from gastric tissues, the IND-treated group displayed ulcerations
and hemorrhagic lesions on the stomach’s mucosal layer. In contrast, both MD-4 and
ranitidine reduced ulcerations in the treated groups, with the greatest change in terms
of increased inhibition rate and decreased ulcer index being 53.27% after treatment with
MD-4 at a dose of 3 g/kg. Histopathological observations indicated that, in addition to
serious damage to epithelial tissues, the IND group also had necrotic lesions and extensive
edematous submucosal layers, all of which were clear indications of ulcerations. MD-4-
and ranitidine-treated groups showed less mucosal damage and milder inflammation in
contrast to the IND group (Figure 1A–C).
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Figure 1. (A,B): Histopathological features after MD-4 treatment on IND-induced gastric ulcers in rats.
In the IND group, rats showed severe injury and inflammation of the gastric epithelium and edema of
submucosa. MD-4 improved these alterations dose-dependently and showed less mucosal damage and
milder inflammation in contrast to the IND group. IND: indomethacin; MD-4: molor dabos-4 decoction.
(C): Ulcer index. Data are reported as means ± SEM (n = 6). ** p < 0.01 vs. IND group; *** p < 0.001 vs.
IND group. (D–I): Levels of TNF-α, IL-6 and pepsin in serum and SOD, MDA and PGE-2 in gastric
tissues. Data are expressed as means ± SEM (n = 6). # p < 0.05 vs. control group; ## p < 0.01 vs. control
group; * p < 0.05 vs. IND group; ** p < 0.01 vs. IND group; *** p < 0.001 vs. IND group.

3.2. Modulation of Inflammatory and Oxidative Processes by MD-4 in IND-Induced Ulcers

IND administration significantly increased the levels of IL-6, TNF-α and PP compared
with the controls (p < 0.05), as shown in Figure 1D–F, while treatment with MD-4 signifi-
cantly decreased their concentrations (p < 0.05). In contrast, Figure 1G shows that the IND-
and MD-4-treated groups, respectively, showed a decrease and an increase in the SOD
levels of gastric tissues (p < 0.05). Although IND did not influence MDA or PGE-2 levels in
gastric tissue, MD-4 reduced MDA (at 0.3 mmol/L) and PGE-2 (at 1.5 and 3.0 mmol/L) at
certain doses (Figure 1H,I).

3.3. Altered Gene Expression by MD-4 in Ulcerated Rats

The results of sequencing data quality showed that the base quality of sequences
was above Q20 and there was no base shift (Figure 2A). The sample correlation heat map
showed the gene expression of the three groups showed intragroup correlation (Figure 2B).
A Venn diagram showed that 210 out of 821 DEGs responding to GU treatment were related
to DEGs caused by MD-4 (Figure 2C). Hierarchical clustering analysis showed that in each
group DEGs expression was dramatically different (Figure 2D). An analysis of the number
of DEGs in ulcerated gastric tissues and subsequent volcano plots showed that 874 genes
(403 downregulated and 471 upregulated) were differentially expressed between the control
and the IND-treated groups while a comparison of the IND and MD-4 groups revealed
821 DEGs (388 downregulated and 433 upregulated) (Figure 2E,F).
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Figure 2. Transcriptomic analysis of MD-4-treated IND-induced gastric ulcerated rats. (A): Venn
diagram shows the number of differentially expressed genes. Different colors represent different
comparisons, adding all the numbers in one circle provides the number of differentially expressed
genes for a particular comparisons, while overlapping areas represent common differentially ex-
pressed genes when two groups were compared. (B): Pearson correlation heat map between samples.
The abscissa and ordinate are the square of the correlation coefficient of each sample. (C): Cluster
heat map of genes that were differentially expressed. The abscissa indicates sample names, with the
ordinate being the normalized FPKM vale. Red and green colors indicate upregulation and downreg-
ulation, respectively. (D,E): Volcano plots showing transcriptome data. (A,B): 874 and 821 genes were
differentially expressed when comparing the control with IND treatment (A) and between IND- and
MD-4-treated groups (B), respectively. Vertical lines indicate a log2 fold change, while the horizontal
ones represent p-value of 0.05. Red and green colors indicate significant up- and downregulation
of genes, respectively. Significant DEGs were identified based on a p-value of <0.05 and a log2 fold
change of at least 2.0. Control: normal control, IND: indomethacin, MD-4: molor-dabos-4 decoction.

3.4. KEGG Pathway Analysis

RNA-seq data were analyzed with R software, along with the KEGG database, to iden-
tify enriched pathways after treatment with IND and MD-4. Results of KEGG enrichment
analysis indicated that genes that were differentially expressed between the control and
the IND-treated groups (Figure 3A) were mostly enriched for pertussis, fluid shear stress,
atherosclerosis, rheumatoid arthritis, osteoclast differentiation, TNF, IL-17, glucagon, type
C lectin receptor, and AGE-RAGE signaling pathways (padj < 0.05). On the other hand,
when comparing the IND- and MD-4-treated groups (Figure 3B), the DEGs were mainly
enriched for ribosome, hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy
(DCM), malaria, cardiac muscle contraction, vascular smooth-muscle contraction, and
the IL-17, calcium, and oxytocin signaling pathways (padj < 0.05). Overall, six pathways
involving 18 DEGs were common to the IND- and MD-4-treated groups when compared to
the control and these included arginine and proline metabolism, ribosome, legionellosis,
and the HIF-1, oxytocin, and calcium signaling pathways. Interestingly, patterns of gene
expression followed a similar but opposite trend for the IND- and MD-4-treated groups, as
the upregulation of one gene observed for one group was matched with the downregulation
of the same gene in the second one (Table 3).
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Table 3. Main genes involved in the six major enriched Kyoto Encyclopedia of Genes and Genomes
pathways common to IND- and MD-4-treated groups.

KEGG Pathway Gene Symbol Official Full Name
Log2 Fold Change GeneBank

Accession No.Control vs.
IND IND vs. MD-4

Arginine and proline
metabolism

Ckm creatine kinase, M-type +2.894 −3.376 NM_012530
Srm spermidine synthase +2.146 −2.099 NM_053464

Calcium signaling
pathway

Casq1 calsequestrin 1 +3.041 −2.955 NM_001159594
Ryr1 ryanodine receptor 1 +3.152 −4.929 XM_039100854

AABR07005775.1
Rattus norvegicus strain mixed

contig_5872, whole genome
shotgun sequence

+4.672 −8.455 AABR07005775

Hrc histidine rich calcium
binding protein +2.700 −2.963 NM_181369

Mylk3 myosin light chain kinase 3 +3.985 −4.653 NM_001110810
Tnnc2 troponin C2, fast skeletal type +2.653 −4.315 NM_0010373510
Trdn triadin +2.934 −3.886 NM_021666

Mylk2 myosin light chain kinase 2 +4.898 −7.565 NM_057209
HIF-1 signaling

pathway Eno3 enolase 3 +2.209 −2.069 NM_012949

Oxytocin signaling
pathway

Cacng6 calcium voltage-gated channel
auxiliary subunit γ 6 +3.491 −2.382 NM_080694

Prkag3 protein kinase AMP-activated
non-catalytic subunit γ 3 +4.891 −4.264 NM_001106921

Ryr1 ryanodine receptor 1 +3.152 −4.929 XM_039100854
Mylk3 myosin light chain kinase 3 +3.985 −4.653 NM_001110810
Mylk2 myosin light chain kinase 2 +4.898 −7.565 NM_057209

Ribosome Rpl3l ribosomal protein L3 like +3.479 −4.562 NM_001191589

Legionellosis Eef1a2 eukaryotic translation
elongation factor 1 α 2 +2.396 −2.477 NM_012660
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3.5. qRT-PCR Validation

The MD-4 mediated changes in the expression of Srm, Ryr1, Eno3, Eef1a2, Rp131 and
Prkag3 genes that could actually be related to anti-inflammatory or antioxidant responses
were selected for further validation by qRT-PCR. Changes in the expression patterns of
three out of five selected genes were consistent with the transcriptome results (Figure 4).
Expression of Srm, Ryr1, Eno3, Eef1a2 and Prkag3 mRNA were increased in the IND group
and decreased by MD-4 treatment. No similar expression patterns were observed in the
Rp131 gene.
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# p < 0.05 vs. control, ##: p < 0.01 vs. control. * p < 0.05 vs. IND-treated, ** p < 0.01 vs. IND-treated.

3.6. Chemical Components of MD-4 Extract

All compounds detected by HPLC-MS/MS and provided accurate relative molecular
weight compared with the references. A total of 12 compounds were identified with an
inclusion rate above or closer to 1%. Piperine and gallic acid were the two main compounds,
accounting for 23.57% and 12.02%, respectively. The total inclusion rate of the 12 identified
compounds reached 61.14% in MD-4 extract (Table 4).

Table 4. HPLC-MS/MS identification of MD-4 aqueous extract.

Chemical Name Formula Theoretical Value Test Value Content

1 Piperine C17H19NO3 285.13 285.13 23.54%
2 Gallic acid C7H6O5 170.02 170.02 12.02%
3 3-(3,5-Dinitrophenyl)-2-methyl-4(3H)-quinazolinone C15H10N4O5 326.06 326.06 5.10%
4 Piperinine C17H21NO3 287.15 287.15 4.43%

5 MLS002473214-01!(2E,4E)-5-(1,3-benzodioxol-5-yl)-N-(2-
methylpropyl)penta-2,4-dienamide C16H19NO3 273.13 273.13 3.49%

6 4,5-Dinitro-9-oxo-9H-fluorene-2,7-dicarboxamide C15H8N4O7 356.03 356.03 3.16%
7 1,3,6-Trigalloyl glucose C27H24O18 636.09 636.09 2.63%
8 Methanediol,di-p-toluenesulfonate C15H16O6S2 356.03 356.03 1.93%
9 D-(+)-Galactose C6 H12O6 180.06 180.06 1.47%

10 4-{[(7-Isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-
octahydrophenanthren-1-yl)methyl]amino}-4-oxobut-2-enoic acid C24H33NO3 383.24 383.24 1.42%

11 1,6-Bis-O-(3,4,5-trihydroxybenzoyl)hexopyranose C20H20O14 484.08 484.08 1.23%
12 6-shogaol C17H24O3 276.17 276.17 0.72%



Genes 2022, 13, 1740 10 of 15

4. Discussion

Previous studies have reported the therapeutic benefits of MD-4 against functional
dyspepsia and fatty liver [27] and similar effects against ulcers, and the underlying mecha-
nism of action are yet to be thoroughly investigated. Thus, this study aimed to investigate
whether MD-4 could display protective effects against IND-induced gastric ulcers in a
rat model while uncovering the mode of action based on transcriptomic approaches. The
results of histopathological examinations showed that MD-4 provided significant protection
against gastric mucosal hemorrhage and inflammation. Mucosal proliferation is important
for healing ulcers. According to research, MD-4 composition also has an antiulcer effect.
For example, ginger has a protective effect on acute gastric ulcers in rats. The protective
mechanism may be to enhance the gastric defense mechanism, gastric antioxidant capacity,
and anti-inflammatory capacity by increasing mucosal PGE2 [28]. Pepsin also causes an
imbalance between the protective and invasive factors of the mucosal layer, resulting in the
corrosion of gastric mucosa [29]. The current data showed that IND induced acute gastric
ulcers in rats by upregulating pepsin, which is consistent with previous reports [30], while
MD-4 decreased pepsin level in the gastric tissue, thus suggesting that MD-4 protected the
gastric mucosa by inhibiting pepsin levels and reducing risks of gastric ulcer recurrence.

MD-4 was demonstrated to protect against oxidation in cases where cells increased
the production of antioxidant factors such as SOD, HO-1, and GSH and reduced MDA
level [31,32]. However, the ability of MD-4 to regulate inflammatory factors as an antioxi-
dant mechanism has not yet been reported. TNF-α contributes to gastropathy induced by
Helicobacter pylori, alcohol consumption and NSAIDs, with studies carried out on NSAID-
treated rats showing that it can increase the expression of adhesion molecules, regulate
apoptosis in gastric epithelial cells, and promote neutrophil adherence [6]. The results
of this study showed that, compared with the IND-treated group, MD-4 significantly re-
duced TNF-α and IL-6 levels, thus indicating that it could exert antiulcer effects through
anti-inflammatory activity. The continuous production of reactive oxygen species (ROS)
under normal conditions is balanced by their rapid removal through the body’s antioxidant
mechanisms. However, an imbalance in this process can result in gastric damage [33], and
therefore synthetic or herbal sources of drugs that scavenge free radicals can significantly
protect tissues against oxidative damage and enhance wound healing by decreasing, deac-
tivating or eliminating ROS [34]. Given that gastric ulcers represent one of the damages
caused by oxidative stress, it is believed that antioxidant mechanisms may also mediate
inhibitory effects on indomethacin-induced gastric ulcers [35]. In this context, studies
on humans and animal models have suggested that a number of mechanisms could be
involved in the observed effects of herbal medicines on ulcers and these include antioxidant
activities, increased production of mucus, stimulated proliferation of mucosal epithelial
cells, reduced inflammation and reduced production and secretion of acid [36]. While de-
creased levels of SOD have been associated with indomethacin-induced gastric ulcers [37],
this study showed that MD-4 could increase its levels in gastric tissues, thereby suggesting
that MD-4 can protect gastric mucosa by regulating SOD results, as shown in this study.
Histological examination further indicated that, in addition to reduced ulcer sizes and
ulcer formation, treatments with MD-4 also minimized congestions, hemorrhages and
mucosal necrosis. Altogether, the above results highlight the potential mechanism behind
the antiulcer effects of MD-4 in IND-treated rats.

Halite, as the main component of MD-4, is a natural mineral salt that aids digestive
functions. Similarly, it has been reported that within the gastrointestinal environment,
bismuth salts, including salicylate, can protect the gastric mucosa, form a demulcent film
that provides quick relief against irritation or even adhere to mucus and ulcerative lesions,
along with bile acids, to provide a protective coating [38,39]. Other natural compounds
include ZOR (ginger) extracts, whose active constituents have been shown to possess antiox-
idant, anti-inflammatory and antitumor properties in in vitro and in vivo studies [40,41].
In addition, a previous study reported the antibacterial and antioxidant effects of TCR [42]
while Hu et al. discovered that PLL could not only exert anti-inflammatory effects against
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human osteoarthritis chondrocytes but also reverse the inhibitory effects of IL-1β on cell
viability [43]. Although only 0.72% inclusion of 6-shagaol was found in MD-4, it has been
reported that 6-shagaol is the main active compound of ginger and exerted significant anti-
inflammatory and antioxidant actions that promoted mucosal repair of ulcerated rats [44].
In addition, the contents of piperine and piperidine were identified as 23.54% and 4.43%
respectively, which were proved to be anti-inflammatory and antioxidant components in
PLL and ginger [45,46]. Gupta et al. showed that gallic acid had antiulcer effects through
antioxidation, and the results of this study showed that the content of gallic acid in MD-4
was 12.02% [47]. The findings of this study thus support the above studies by suggesting
that the compounds present in MD-4 could display protective effects mainly by modulating
inflammatory and antioxidant mechanisms.

Transcriptomics is useful to better understand the biological effects of traditional
compounds and reveal their targets or underlying mechanisms of action [48]. In this context,
NF-κB and IL-17 are responsible for regulating genes that are linked to inflammatory
responses [49], with studies revealing that biochemical factors, including IL-17 levels,
were significantly increased in ulcerated rats [50]. Similarly, the IL-17 signaling pathway
regulates both the development and the recovery of stress gastric ulcers in a coordinated
manner [51]. In addition, a number of inflammatory cells express the receptor for AGE and
when the latter gets activated by AGE, this causes many downstream signaling pathways
to be activated, with these processes leading to impaired inflammatory responses [52].
VEGF, a specific mitogen of endothelial cells, also regulates angiogenesis [53] and this
process was also found to contribute to the healing of ulcers in rats after VEGF treatment.
In an experimental model of colitis and gastric injury, oxytocin was found to have a
protective effect on the gastrointestinal system. Studies have shown that this compound
reduces inflammatory processes by limiting oxidative stress associated with mitochondrial
dysfunctions and regulating IL-6 and TNF-α levels [54].

Analysis of gene expression profiles after treatment with MD-4 resulted in the iden-
tification of 874 genes for IND-induced ulcers, while 821 genes were found in the case
of rats treated with 3 g/kg of MD-4. Many of these genes could actually be related to
anti-inflammatory or antioxidant responses. For instance, Srm (spermidine synthase) was
downregulated after MD-4 treatment. Spermidine, as a polyamine that is present in living
tissues and ribosomes, has a number of metabolic functions, with evidence pointing to its
role in other mechanisms such as lipid metabolism, reduced inflammation and controlled
cell growth, proliferation, and apoptosis [55]. In fact, an increase in spermidine levels tends
to be associated with decreased NO levels [56]. Similarly, ryanodine receptor 1 (Ryr-1),
another protein that is mostly present in skeletal muscles and referred to as the skeletal
muscle calcium release channel or the skeletal muscle-type ryanodine receptor [57], is also
linked to vasodilation, antioxidation, and gastric cancer [58,59]. In addition to Ryr-1, this
study found a similar trend for TrDn, which is known to interact with Ryr-1 to regulate
the latter’s expression, along with the activity of Casq [60]. The identified DEGs also in-
cluded the Eno3 gene, which encodes one type of mammalian enolase isoenzyme known as
enolase 3 or β-enolase. In this case, even though Eno3′s expression is affected by oxidative
stress [61], the gene can also induce inflammatory responses [62]. Another potential target
of MD-4 is the Prkag3 gene, which is linked to oxidative stress and SOD activity through
the AMP-activated protein kinase (AMPK) signaling pathway by encoding a regulatory
subunit of the AMPK enzyme [63,64]. The function of the elongation factor-1 complex is
to deliver aminoacyl tRNAs to the ribosome, and given that one isoform of its α subunit
is encoded by the differentially expressed Eef1a2 gene, this would justify why “ribosome”
was identified as one of the enriched pathways. Studies have shown that Eef1a2 was related
to increased IL-6 levels and the occurrence of gastric cancer [65], while Zhou et al. not only
demonstrated the increased expression of Eef1a2 in gastric cancer but also that this gene
could act as an independent risk factor to predict prognosis for this condition [66].

In addition, the significant differences in KEGG pathways also showed that inflamma-
tory responses and those involved against oxidative stress may protect against IND-induced
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gastric ulcer. These pathways included arginine and proline metabolism, oxytocin signal-
ing, HIF-1 (hypoxia inducible factor 1) signaling and calcium signaling. and it is likely that
they could be the major ones involved in the chrysomycin A treatment of neuroinflamma-
tion injury. Arginine and proline metabolism are related to enzymes that use coenzyme
Q10 as electron acceptors [67], and the latter is often viewed as an important endogenous
antioxidant [68]. Furthermore, Wang et al. demonstrated that triterpenoids had antiulcer
effects on gastric ulcers in rats due to their endogenous metabolites that were related
to the calcium pathway [69]. Finally, under hypoxic conditions, HIF-1 levels increase to
promote angiogenesis by regulating the expression of related genes [70]. Thus, the HIF-1
signaling pathway plays an important role in metabolic adaptation to hypoxic stress [71].
Hypoxia generates reactive oxygen species, leading to oxidative stress, which is known
to activate the transcription of genes involved in promoting angiogenesis. HIF-1 can be
stably expressed only under hypoxic conditions. In the current study, Eno3 (enriched HIF
pathway) was significantly upregulated in IND rats, and this expression trend was also
validated by qRT-PCR. Thus, oxidative stress and angiogenesis may be one of the important
causes of IND-induced gastric ulcers. The significant downregulation of Eno3 in the MD-4
group indicated that pretreatment could prevent gastric ulcers caused by oxidative stress
in rats. MD-4 is currently used clinically to treat symptoms such as indigestion. This study
proved the role of MD-4 in preventing gastric ulcers in experimental animals, and revealed
that its mechanism is to reduce oxidative stress by downregulating key genes, such as Eno3.
Therefore, in the clinical use of NSAID, it is recommended to take MD-4 in advance to
reduce the symptoms of gastric ulcer. In addition, the next study should design clinical
tests to further investigate the antiulcer effect of MD-4.

Our data demonstrate that MD-4 protected against indomethacin-induced gastric
ulceration by reducing pepsin activity and inflammatory cytokines and increasing gastric
SOD secretion. We propose that regulation of Srm, Ryr-1, Eno3, Prkag3 and Eef1a2 genes
involved in regulating arginine and proline metabolism, calcium signaling pathway, HIF-1
signaling pathway, oxytocin signaling pathway and legionellosis are may be involved
in mechanisms by which MD-4 protects against gastric ulcers. The Mongolian medicine
prescription MD-4 is a promising gastroprotective agent with potential use for treating
gastric ulcers in clinical practice.
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