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Abstract: Gene editing (GE) is an efficient strategy for correcting genetic mutations in monogenic
hereditary diseases, including β-thalassemia. We have elsewhere reported that CRISPR-Cas9-based
gene editing can be employed for the efficient correction of the β039-thalassemia mutation. On the
other hand, robust evidence demonstrates that the increased production of fetal hemoglobin (HbF)
can be beneficial for patients with β-thalassemia. The aim of our study was to verify whether the
de novo production of adult hemoglobin (HbA) using CRISPR-Cas9 gene editing can be combined
with HbF induction protocols. The gene editing of the β039-globin mutation was obtained using a
CRISPR-Cas9-based experimental strategy; the correction of the gene sequence and the transcription
of the corrected gene were analyzed by allele-specific droplet digital PCR and RT-qPCR, respectively;
the relative content of HbA and HbF was studied by high-performance liquid chromatography
(HPLC) and Western blotting. For HbF induction, the repurposed drug rapamycin was used. The
data obtained conclusively demonstrate that the maximal production of HbA and HbF is obtained in
GE-corrected, rapamycin-induced erythroid progenitors isolated from β039-thalassemia patients. In
conclusion, GE and HbF induction might be used in combination in order to achieve the de novo
production of HbA together with an increase in induced HbF.

Keywords: β-thalassemia; gene editing; CRISPR-Cas9; fetal hemoglobin induction; rapamycin

1. Introduction

The β-thalassemias are hereditary pathologies caused, at the molecular level, by more
than 300 mutations of the adult β-globin gene, leading to low or absent production of adult
hemoglobin (HbA) in erythroid cells [1–4]. Together with sickle cell disease (SCD), the
economic and clinical impacts of β-thalassemias are devastating in developing countries,
where the frequency of these diseases is very high, mainly due to the lack of genetic
counseling and prenatal diagnosis [1,2]. The therapeutic protocols for patients affected by
β-thalassemia are currently based on blood transfusion, chelation therapy and, alternatively,
bone marrow transplantation [3,4].

Within the clinical community, it is known that high blood content of fetal hemoglobin
(HbF) is highly beneficial for patients with β-thalassemia [5–7], leading to milder forms
of the disease. The earliest clinical observations indicating a key role of HbF in amelio-
rating the β-thalassemia phenotype came from patients with rare forms of β-thalassemia,
particularly those with large deletions responsible for δβ0-thalassemia or the hereditary
persistence of fetal hemoglobin (HPFH), characterized by the absence of β-globin and HbA
in the presence of elevated levels of γ-globin chain production, resulting in high levels of
HbF accumulation with a relatively benign clinical course [8]. More recently, clinical studies
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have shown that naturally elevated production of HbF improves the clinical course in a
variety of β-thalassemia patients [9–13]. Accordingly, these observations have prompted re-
search studies on HbF inducers that can therapeutically mimic, at least in part, what occurs
in patients characterized by the natural persistence of high levels of HbF [14–17]. Some of
these HbF inducers are presently considered in clinical trials (examples are NCT01245179,
NCT00790127 and NCT03877809).

In addition to the approaches based on the pharmacological induction of fetal hemoglobin,
an exciting strategy recently proposed for β-thalassemia is genome editing using a variety
of protocols widely validated for hematopoietic cells [18]. In this specific field of investiga-
tion, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 nuclease
system, is among the most efficient [19–22].

The possibility of using highly efficient gene-editing protocols opens new opportu-
nities in the field of precision medicine for personalized therapy for β-thalassemia [23].
In this context, we have recently reported a protocol for the CRISPR-Cas9-based gene
correction of the β039-globin gene mutation (HGVS Name: HBB:c.118C > T), very frequent
in the population of the Mediterranean area [24]. In addition to the precise correction
of the β-thalassemia mutations, the CRISPR-Cas9-based gene editing approach has been
extensively applied to the reactivation of HbF production in β-thalassemia erythroid cells,
as demonstrated in the landmark work by Canver et al. [25]. In this case, the objective of the
CRISPR-Cas9-based gene editing was (a) the silencing of transcriptional repressors of the
γ-globin genes (such as BCL11A) [25–30] and (b) the disruption of their regulatory binding
sites within the γ-globin genes, which in some cases mimics the natural HPFH mutations
in the γ-globin gene [31–37]. For instance, Khosravi et al. demonstrated that the CRISPR-
Cas9-based deletion of the BCL11A gene was associated with the reactivation of HbF
production [26,27]. Of great interest is the fact that this strategy is currently under investiga-
tion in the NCT03655678 clinical trial, aimed at studying the safety and efficacy of CTX001
(hematopoietic cells gene-edited for elevated HbF production) on transfusion-dependent
β-thalassemia (TDT) patients [29,38].

To maximize HbF production, these CRISPR-Cas9-based gene editing approaches
can be combined, as recently proposed by Han et al. and by Samuelson et al. [39,40],
who reported on a multiplex gene editing strategy based on the combination of two
single gene editing approaches, one aimed at silencing the BCL11A repressor, the other
aimed at disrupting the BCL11A binding sites present within the γ-globin gene promoter.
Another example of multiplex gene editing approaches is that recently published by Psatha
et al. [41], who studied the combination of CRISPR-Cas9-based cis and trans fetal globin
reactivation mutations, demonstrating that this strategy leads to a significant increase
in HbF production when comparison was performed with the single editing procedures.
Accordingly, multiplex gene editing could be considered in clinical protocols finalized to the
improvement of the clinical status of patients with a severe β-thalassemia phenotype. The
results obtained in these studies concurrently demonstrated that these multiplex genomic
editing protocols efficiently induced high levels of HbF production without increasing
off-target effects [39] and without causing any defects in the proliferation rate or in the
differentiation status of treated cells, either in vitro or in vivo [41].

The present study is aimed at determining whether HbF induction can be combined
with the de novo production of HbA, obtained by the correction of a β039-globin gene
mutation using the CRISPR-Cas9 technology, as recently reported by Cosenza et al. [24].

To obtain co-production of increased levels of HbF and de novo synthesis of HbA, we
first considered the possibility to perform CRISPR-Cas9-based multiplex genomic editing for
BCL11A silencing (as reported by Khosravi et al., Frangoul et al. and Bjurström et al.) [27,29,30]
and β039 correction (as reported by Cosenza et al.) [24]. The advantage of this strategy
is that both protocols use the same target cells (CD34+ erythroid progenitors) and no
differences are expected in the clinical steps to be followed for collecting the CD34+ cells
to be gene edited and for preparing the patients for the infusion of gene-edited cells (e.g.,
stem cells collected via mobilization and apheresis, myeloablative conditioning, infusion



Genes 2022, 13, 1727 3 of 18

of corrected stem cells for the engraftment and immune reconstitution) [29]. On the other
hand, a major drawback is expected, i.e., higher off-targeting effects and genotoxicity [40].
Supporting a caution in using multiplexed CRISPR-Cas9-based approaches, Samuelson
et al. recently reported that multiplex CRISPR-Cas9 genome editing in hematopoietic
stem cells for fetal hemoglobin reinduction generates chromosomal translocations [40].
For these reasons, we therefore decided to use for HbF induction a repositioned drug,
rapamycin [42–48], among those already validated and used in clinical trials [49–52]. To the
best of our knowledge, this strategy is novel, as no study is available on the combination
of pharmacological induction of HbF with gene editing procedures aimed at the de novo
production of HbA following the CRISPR-Cas9-based correction of genetic mutations.

Rapamycin, also known as sirolimus, is a potent inducer of HbF in in vitro
systems [42–47,52], in in vivo animal models [46,47,53,54], and in few but highly infor-
mative patients affected by sickle-cell disease (SCD) [55,56]. In conclusion, all the available
in vitro data concurrently indicate that rapamycin can be repurposed for the treatment
of β-thalassemia for the following reasons: (a) rapamycin increases HbF in cultures from
β-thalassemia patients with different basal HbF levels; (b) rapamycin increases the over-
all Hb content per cell; (c) rapamycin selectively induces γ-globin mRNA accumulation,
with only minor effects on β-globin protein and β-globin mRNAs; (d) there is a strong
correlation between the HbF increase induced by rapamycin and the increase in γ-globin
mRNA content.

Accordingly, rapamycin is at present employed in two clinical trials recruiting β-
thalassemia patients, NCT03877809 and NCT04247750 [57,58].

2. Materials and Methods
2.1. Isolation of Erythroid Precursor Cells (ErPCs) and ErPCs Cultures

ErPCs cultures were prepared from 25 mL of peripheral blood, following the Fibach
protocol [59], as described by Zuccato et al. [58] and fully reported in the Supplementary
Materials (SM1). Immunological flow cytometry (FCM) characterization using antibodies
for CD71 and CD235a demonstrated that the yield (% of ErPCs) was always higher than
85%, in agreement with previously reported data [58]. Representative FCM data and mor-
phological analysis are shown in Figures S3 and S4. Elsewhere, published data demonstrate
that the large majority of ErPCs undergo erythroid differentiation, as demonstrated with
flow cytometry analysis using antibodies against transferrin receptor and glycophorin [60].
We carefully considered the fact that FBS might heavily affect ex vivo erythroid differentia-
tion and hemoglobin production, thereby creating variability. For this reason, we screened
all the FBS batches, selecting only those lacking effects on the differentiation of ErPCs and
on HBF production after exposure to HbF inducers. Moreover, the same batch of FBS was
used throughout all the experiments reported in the present study.

2.2. Treatment of Cells with β039 CRISPR-Cas9 System and Rapamycin

On the third day of phase II, the ErPCs were considered ready to be treated with
rapamycin, with β039 CRISPR-Cas9 system or with the combined β039 CRISPR-Cas9
system and rapamycin. Rapamycin (sirolimus, SIR, cat. R0395, Sigma Aldrich, St. Louis,
MO, USA) was administered at the starting point of the ErPCs cultures at a concentration
of 200 nM, and the stock solution was prepared by diluting the powder in EtOH 96% to
reach a 50 µM concentration.

2.3. Cell Electroporation with CRISPR-Cas9 System for Correction of the β039-Globin
Gene Mutation

We followed the protocol described by Cosenza et al. [24], further detailed in Supple-
mentary Materials (SM4). Briefly, the genomic sgRNA target sequence was 5′-TGGTCTACC
CTTGGACCTAGAGG-3′ (sgRNA target sequence underlined, PAM in bold); the gRNA
complex begins by joining a tracrRNA (ATTO 550 labeled Alt-R® CRISPR-Cas9 tracrRNA,
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IDT, USA), and the Alt-R® CRISPR-Cas9 crRNA (IDT) oligonucleotide in thermoblock at
95 ◦C for 5 min.

2.4. Genomic DNA Extraction

The DNA was extracted from 200–300 µL of whole blood as described by Cosenza
et al. [24] and detailed in the Supplementary Materials (SM5). The quality of the genomic
DNA was verified by gel electrophoresis using 0.8% agarose gels and quantified by spec-
trophotometry using the SmartSpec™ Plus instrument (Biorad Smartspec Plus, Bio-Rad).

2.5. RNA Isolation, cDNA Reverse Transcription and RT-qPCR

The total cellular RNA was extracted using the TRI Reagent® (Sigma-Aldrich). After
washing once with cold 75% ethanol, the RNA was dried and dissolved in diethylpyrocar
bonate-treated water (WMBR: Water Molecular Biology Reagent nuclease-free, Sigma-
Aldrich). For analysis of gene expression, 0.5 µg of total RNA was reverse transcribed
by using the TaqMan® Reverse Transcription Reagents and Random Hexamer (Applied
Biosystems, Life Technologies, Thermo-Fisher, Waltham, MA, USA). The relative content
of α-, β-, and γ-globin mRNAs were quantified by multiplex qPCR using primers and
FAM, HEX and Cy5/ZEN/IBFQ-labeled hydrolysis probes purchased as custom-designed
PrimeTime qPCR Assays from IDT and listed in Table 1.

Table 1. List of oligonucleotides (primers and probes) used to evaluate the correction degree obtained
on the β-globin gene and study the accumulation of α-, β- and γ-globin mRNAs.

Oligonucleotides
(Primers and Probes) Sequence Application

α-globin Forward Primer 5′-GGTCTTGGTGGTGGGGAAG-3′ RT-qPCR

α-globin Reverse Primer 5′-CGACAAGACCAACGTCAAGG-3′ RT-qPCR

α-globin Probe 5′-/5HEX/ACATCCTCT/ZEN/CCAGGGCCTCCG/3IABkFQ/-3′ RT-qPCR

β-globin Forward Primer 5′-GGTGAATTCTTTGCCAAAGTGAT-3′ RT-qPCR

β-globin Reverse Primer 5′-GGGCACCTTTGCCACAC-3′ RT-qPCR

β-globin Probe 5′-/5Cy5/ACGTTGCCCAGGAGCCTGAAG/3IAbRQSp/-3′ RT-qPCR

γ-globin Forward Primer 5′-TTCTTTGCCGAAATGGATTGC-3′ RT-qPCR

γ-globin Reverse Primer 5′-TGACAAGCTGCATGTGGATC-3′ RT-qPCR

γ-globin Probe 5′-/56-FAM/TCACCAGCA/ZEN/CATTTCCCAGGAGC/3IABkFQ/-3′ RT-qPCR

GAPDH Forward Primer 5′-TGTAGTTGAGGTCAATGAAGGG-3′ RT-qPCR

GAPDH Reverse Primer 5′-ACATCGCTCAGACACCATG-3′ RT-qPCR

GAPDH Probe 5′-/56-FAM/AAGGTCGGTCGGA/ZEN/GTCAACGGATTTGGTC/3IABkFQ/-3′ RT-qPCR

β-actin Forward Primer 5′-ACAGAGCCTCGCCTTTG-3′ RT-qPCR

β-actin Reverse Primer 5′-ACGATGGAGGGGAAGACG-3′ RT-qPCR

β-actin Probe 5′-/5Cy5/CCTTGCACATGCCGGAGCC/3IAbRQSp/-3′ RT-qPCR

β-glob Forward Primer 5′-CACTGACTCTCTCTGCCTATTG-3′ ddPCR
β-globin gene

β-glob Reverse Primer 5′-ACC TTA GGG TTG CCC ATA AC-3′ ddPCR
β-globin gene

β-glob β039 Probe (HEX) 5′-/5HEX/TCTACCCTT/ZEN/GGACCTAGAGGTTCT/3IABkFQ/-3′ ddPCR
β-globin gene
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Table 1. Cont.

Oligonucleotides
(Primers and Probes) Sequence Application

β-glob edit Probe (FAM) 5′-/56-FAM/TCTACCCTT/ZEN/GGACCCAGAGATTCT/3IABkFQ/-3′ ddPCR
β-globin gene

β-glob Forward Primer 5′-TGGATGAAGTTGGTGGTGAG-3′
ddPCR
β-globin
mRNA

β-glob Reverse Primer 5′-CCTTAGGGTTGCCCATAACA-3′
ddPCR
β-globin
mRNA

β-glob β039 Probe (HEX) 5′-/5HEX/TCTACCCTT/ZEN/GGACCTAGAGGTTCTT/3IABkFQ/-3′
ddPCR
β-globin
mRNA

β-glob edit Probe (FAM) 5′-/56-FAM/TCTACCCTT/ZEN/GGACCCAGAGGTTCTT/3IABkFQ/-3′
ddPCR
β-globin
mRNA

Data of RT-qPCR experiments were analyzed using CFX Manager™ software (Bio-
Rad). The relative expression of globins’ mRNAs was calculated using the compara-
tive cycle threshold method (∆∆Ct method) using as reference genes human GAPDH
sequences [24,58,61].

2.6. Droplet Digital PCR (ddPCR) to Evaluate Genomic and Transcriptomic β039
Globin Correction

The evaluation of the β-globin gene correction levels in the position of codon 39 was
carried out with droplet digital PCR [24,62]. In these experiments, Taq-Man probes marked
with FAM and HEX fluorophores were used, designed specifically for the identification of
the sequence containing the β039 mutation (HEX) in the β-globin gene and the correspond-
ing corrected sequence (FAM) (Table 1). The protocols have been reported by Cosenza
et al. [24] and detailed in Supplementary Materials (SM6).

2.7. HPLC Analysis of Hemoglobins

Analysis of HbA, HbF and free α-globin chains was performed with HPLC as else-
where reported [24,58,61,63]. Lysates have been loaded into a PolyCAT-A cation exchange
column and then eluted in a sodium-chloride-BisTris-KCN aqueous mobile phase using
HPLC Beckman Coulter instrument System Gold 126 Solvent Module-166 detector, which
allows to obtain for the quantification of the hemoglobins present in the sample. Further
details can be found in Supplementary Materials (SM7 and SM9).

2.8. Western Blotting Analysis

The accumulation of β-globin (16 kDa) and γ-globin (15 kDa) proteins was assessed
with Western blotting as described by Cosenza et al. [24] and detailed in Supplementary
Materials (SM8).

2.9. Amplicon Sequencing and Whole Genome Sequencing

All the experiments for the construction of the amplicon libraries, the sequencing of
the fragments, and all the bioinformatics analysis (including the estimation of CRISPR-
Cas9 OFF-target sites and analysis of OFF-target insertion) were performed at Genartis—
Innovative Genomic Technologies laboratories (Genartis Srl, Verona, Italy, https://genartis.
it/, accessed on 1 June 2022), following the same protocols reported in the previous work
by Cosenza et al. [24].

https://genartis.it/
https://genartis.it/


Genes 2022, 13, 1727 6 of 18

2.10. Statistical Analysis

All the data are presented as mean ± S.D. Statistical differences have been determined
using ANOVA (analyses of variance between groups) followed by Dunnett’s post hoc tests.
Statistical differences were considered significant when p < 0.05, highly significant when
p < 0.01 [58].

3. Results

3.1. Experimental Strategy for CRISPR-Cas9 Correction of the Thalassemia β039 Mutation and for
Co-Treatment with Rapamycin

Figures S1 and S2 show the experimental strategy for the CRISPR-Cas9-based cor-
rection of the β039-globin gene mutation in erythroid precursor cells (ErPCs) isolated
from β-thalassemia patients and for the combination of this CRISPR-Cas9 treatment with
rapamycin-based HbF induction. Rapamycin was used at 200 nM final concentration.
ErPCs were first cultured for 7 days without erythropoietin (EPO) (Phase I). Then, the cells
were transferred to a medium containing EPO (Phase II), for stimulating the erythroid
differentiation and the production of hemoglobin. After three days of Phase II culture, the
cells were electroporated in the presence of a reaction mix containing all the elements of
the CRISPR-Cas9 system and/or treated with 200 nM rapamycin. After electroporation
and genomic editing and/or rapamycin treatment, the cells were maintained in Phase II
medium and, after 5 days, analyzed to evaluate the biological effects of the treatments. The
immunophenotype of ErPCs and further details concerning morphology and key features
of in vitro ErPCs differentiation are reported in Figures S3 and S4. In addition, key features
of in vitro ErPCs differentiation have been reported elsewhere and discussed in the study
published by Bianchi et al. [60]. In brief, the flow cytometry analysis of transferrin receptor
(TR) and glycophorin A (GYPA) surface marker expression in ErPCs phase II cultures from
β-thalassemia patients revealed GYPA as a late erythroid marker, with an increase from
day 4 to day 8 along with Hb production, and TR as an early marker with unchanged
expression from day 4, at >80% cells positive for either marker at both time points [60].

Concerning the analysis of gene editing, the used techniques allowed us to evaluate
gene correction at the following levels: genomic (using sequencing and ddPCR protocols),
transcriptomic (using RT-qPCR and RT-ddPCR approaches) and proteomic (using Western
blotting and HPLC). Concerning the analysis of HbF induction, RT-qPCR and HPLC
allowed us to compare the effects of the treatments on the accumulation of γ-globin mRNA
and increased production of HbF, respectively.

The CRISPR-Cas9 model used for the correction of the β039-globin gene mutation has
been described by Cosenza et al. [24] and presented in Figure S2.

3.2. End-Point of the Gene Editing of the β039-Globin Gene: Genomic Analyses and RT-ddPCR to
Detect Corrected Normal β039-Globin Gene and mRNA

In order to verify the presence of the normal β-globin gene after CRISPR-Cas9 correc-
tion of the β039-thalassemia mutation, two complementary approaches were employed:
(a) allele-specific PCR, performed using droplet-digital PCR and (b) amplicon sequencing.
Figure 1A,B, shows a representative analysis of gene correction with the CRISPR-Cas9
system performed on ErPCs genomic DNA isolated from a homozygous β039-thalassemia
patient and cultured without treatments (−) or using the following experimental conditions:
(a) CRISPR-Cas9 gene editing (GE); (b) 200 nM rapamycin (RAPA); (c) GE and rapamycin
treatment (200 nM) (GE + RAPA). The correction data plotted are represented in the 1d dot
plot, obtained from the ddPCR analysis software.
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Figure 1. Evaluation of the effects of CRISPR-Cas9 system on β-globin gene and mRNA in ErPCs
cultures. The panels show the data relating to a representative result obtained after gene correction
treatments performed with the CRISPR-Cas9 system on a culture of β039 ErPCs and analyzed with
ddPCR assay. (A,B) and (E,F) refer to 1d dot plots obtained after analysis of mock treated (A,E—green
dots) and edited (B,F—blue dots) β-globin gene and mRNA, respectively. (C,G) Correlation between
the concentration of the samples (expressed in copies/µL) and the fractional abundance (purple
dot) related to the representative example reported in panels (A,B) and (E,F). (D,H) Histograms
extrapolated from the analysis of the fractional abundance of the representative sample used in the
experiment. (−) control untreated cells; GE (cells treated with the CRISPR-Cas9 system), RAPA
(rapamycin 200 nM) and GE + RAPA (cells treated with the CRISPR-Cas9 system and then cultured
in the presence of rapamycin).

As is clearly evident, the presence of amplified edited β-globin gene sequences is
absent in control untreated (−) and in rapamycin-treated (RAPA) ErPCs but present in
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both genome edited (GE) and edited + rapamycin-treated (GE + RAPA) cultures. The
correction level obtained is reported as concentration (copies/µL of reaction) and in the
form of fractional abundance %, calculated as an edited/edited + mutated concentration.

In Figure 1C,D the fractional abundance of corrected gene sequences is shown, ob-
tained from four ErPCs populations. Results from amplicon sequencing (Figure S5) con-
firmed the editing of ErPCs.

Figure 1E,F shows a representative example of accumulation of β-globin mRNA
using ErPCs from a β039/β039 homozygous β-thalassemia patient treated as described in
Figure S1 and analyzed by RT-ddPCR assay.

In Figure 1G,H, the data obtained from the same representative experiment are re-
ported as concentration (copies/µL of reaction) and in the form of fractional abundance
%, calculated as an edited/(edited + mutated) concentration. The fractional abundance
data shown in Figure 1G,H demonstrate a high content of the edited β-globin mRNA in
CRISPR-Cas9 treated ErPCs either in the absence or in the presence of the HbF inducer ra-
pamycin.

Despite the fact that a direct translation from “fractional abundance” to “% of corrected
cells” cannot be proposed, the data shown in Figure 1 clearly indicate that corrected β-
globin gene (Figure 1A–D) and corrected β-globin mRNA (Figure 1E–H) are detectable
only in gene-edited (GE) ErPCs populations. The high content of corrected β-globin mRNA
is expected since it is well established that the β039-globin mRNA (as most of mRNAs
carrying stop-codon mutations) are highly unstable [24].

In order to evaluate the correction level of β039-globin gene mutation obtained from
ErPCs treated with our CRISPR-Cas9 system, we analyzed both mutated β039 and edited
β-globin mRNAs, using also an RT-ddPCR approach. γ-globin and α-globin transcripts
were also analyzed.

3.3. De Novo Production of Edited β-Globin mRNA and Induction of γ-Globin Gene Transcription
in the Same ErPCs Populations

Figure 2A,B reports a summary of the genomic and RT-ddPCR analyses to detect
corrected normal β-globin mRNA, as well as the accumulation of α-globin, β-globin and
γ-globin mRNA in the ErPCs analyzed obtained from different patients, comparing control
untreated (−), with cells GE-corrected, cells treated with the HbF inducer rapamycin, and
cells GE-treated and HbF induced. As expected, and in agreement with a previously pub-
lished report from our laboratory [24] corrected β-globin gene sequences are present only in
GE-treated cell populations, irrespectively to co-treatment with rapamycin (Figure 2A). In
all the samples containing GE corrected β-globin gene sequences, the production of normal
β-globin mRNA was readily detectable. The two ErPCs populations (GE and GE plus
rapamycin) did not differ significantly with respect to the presence of the corrected β-globin
gene (Figure 2A) and production of corrected β-globin mRNA (Figure 2B) (p = 0.2695 and
p = 0.8910, respectively).

When the analysis was conducted for the content of α-, β-, and γ-globin mRNAs using
RT-qPCR, the following results were obtained (Figure 2C–E). First of all, in agreement with
Figure 2B, a significant increase in β-globin mRNA was detectable only in GE and GE plus
rapamycin cultures (p = 0.0006 and p = 0.0089, respectively, with respect to rapamycin-only
treated cultures) (Figure 2C,D). Importantly, when GE and GE plus rapamycin cultures
were compared, no significant change in β-globin mRNA content was observed (p = 0.8286),
demonstrating that rapamycin treatment has no major effects on β-globin mRNA content.
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Figure 2. Evaluation of the combination between CRISPR-Cas9 gene editing and rapamycin-mediated
HbF induction. (A,B) Fractional abundance obtained after treatment performed by CRISPR-Cas9
system on ErPCs isolated from β039-thalassemia patients and analyzed by ddPCR assay. The
histograms show the data related to β-globin gene (A) and β-globin mRNA (B). (C–E) The histograms
show the relative content of the β-, γ- and α-globin mRNAs analyzed by multiplex RT-qPCR. (−):
untreated cells; GE: cells treated with the CRISPR-Cas9 system; RAPA: rapamycin 200 nM treated cells;
GE + RAPA: cells treated with the CRISPR-Cas9 system and cultured in the presence of rapamycin.
All the data of RT-qPCR were normalized using GAPDH as housekeeping internal control gene, as
described in Material and Methods. Results are expressed as fold changes with respect to control
untreated cells (−). Results are from independent experiments using ErPCs cultures from three
(A) and five (B–E) homozygous β039-thalassemia patients. The level of statistical significance is
reported as p-value (p).

As a second and most relevant result, a significant increase in γ-globin mRNA was
detectable only in rapamycin and GE plus rapamycin cultures (p = 0.0096 and p = 0.0152,
respectively), with respect to GE-only treated cultures.

Moreover, when rapamycin and GE plus rapamycin cultures were compared, no
significant change in the accumulation of γ-globin mRNA was observed (p = 0.5176),
demonstrating that gene editing has no major effects on the rapamycin-mediated induction
of the expression of γ-globin genes. Interestingly, no change in α-globin mRNA content
was found in the ErPCs populations, indicating that the expression of α-globin genes in
ErPCs treated with GE, rapamycin and GE plus rapamycin is similar to control untreated
ErPCs (−). The data shown in Figure 2C–E were obtained using GAPDH sequences as
internal reference. However, the same conclusion can be reached using RPL13A or β-actin
internal controls (unpublished results).

3.4. Co-Production of HbA (De Novo) and HbF (Induced) in Gene-Edited ErPCs Treated
with Rapamycin

We conclusively demonstrated the de novo production of HbA and the increased
production of HbF in gene-edited, HbF-induced, ErPCs using HPLC. Representative
HPLC analysis performed on CRISPR-Cas9 edited, rapamycin-induced ErPCs from three
β039/β039-thalassemia patients are reported in Figure 3A–C.
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Figure 3. Effects of β039 CRISPR-Cas9 treatment on HbA and HbF hemoglobins, evaluated with
HPLC. (A–C) Chromatograms related to the HPLC analysis conducted of the protein lysates of the
ErPCs cultures derived from three β039-thalassemic patients. For each of them, the expression pattern
of hemoglobins in ErPCs untreated (−), treated with β039 CRISPR-Cas9 system alone (GE) and with
the editing system in combination with rapamycin (GE + RAPA) were analyzed. The average of
all patients analyzed for the relative increase in fetal hemoglobin HbF and adult hemoglobin HbA,
expressed as a percentage, are shown in panels (D,E), respectively. The level of statistical significance
is reported as p-value (p), significant when p< 0.05.

The HPLC data, as clearly shown in the representative chromatograms, indicate a de
novo production of adult hemoglobin (HbA) in all GE-samples analyzed, in agreement with
the data indicating efficient gene editing (Figures 1 and 2A,B). An increased production
of HbF was in addition observed when the GE plus rapamycin cultures were compared
with the GE-only samples. Figure 3D,E show the summary of the treatments performed in
which the GE, rapamycin and GE plus rapamycin samples were compared with control
untreated cells. The results obtained confirm that GE treatment does not interfere with HbF
induction (Figure 3D). In addition, despite the fact that with the presence of the reactivation
of γ-globin genes the β-globin gene expression might be analogically reduced, the data
obtained demonstrate that the rapamycin induction of γ-globin genes does not interfere
with the de novo HbA production using the GE approach (Figure 3E).

The conclusions of the HPLC studies were further confirmed by the Western blotting
analyses shown in Figure 4, which aimed at evaluating the β-globin and γ-globin proteins
produced under the different experimental conditions depicted in Figure 3. The amounts
of CRISPR-Cas9-corrected β-globin protein (16 kDa) and γ-globin protein (15 kDa) were
normalized with the quantity of housekeeping GAPDH (37 kDa) protein. The data obtained
show that rapamycin, as expected, does not induce an increase in the β-globin protein in
control cells; in addition, rapamycin treatment does not affect the accumulation of β-globin
in CRISPR-Cas9 corrected ErPCs (Figure 4A).
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Figure 4. Western blotting analysis of β-globin protein and γ-globin protein. The relative content of
β-globin (16 kDa) and γ-globin (15 kDa) proteins was determined by Western blotting analysis, after
comparison with the housekeeping GAPDH (37 kDa) protein. (A) The effect on β-globin production
of the β039 CRISPR-Cas9 system is shown as representative data and graphically reported in the
form of gel bands (panel (A), left). These results are reported in the right part of panel (A) as values
of the densitometric analysis with respect to the reference protein GAPDH. (B) Representative data
graphically show the impact of the β039 CRISPR-Cas9 system on γ-globin expression. For the same
samples, the data obtained from densitometric analysis of the Western blotting bands normalized
on the housekeeping protein GAPDH (panel (B), left) are reported, and statistical significance is
indicated as p-value (p). (−): untreated cells; GE (cells treated with the CRISPR-Cas9 system), RAPA
(rapamycin 200 nM) and GE + RAPA (cells treated with the CRISPR-Cas9 system and then cultured
in the presence of rapamycin). The original uncut versions of the gels are shown in Figure S6.

On the other hand, the gene editing treatment has no effect on γ-globin accumulation,
and, importantly, gene editing has no effect on rapamycin-mediated increase in γ-globin
(Figure 4B). These data are consistent with the conclusion that the co-induction of β-globin
and γ-globin proteins occurs in CRISPR-Cas9-edited, rapamycin-treated ErPCs.

3.5. Amplicon-Based and WGS Sequencing Results

Bar-coded amplicons were sequenced on a NovaSeq 6000 platform 150 phycoerythrin
(PE) mode. The obtained number of fragments was ∼400,000 for the 18 (9 in duplicate)
samples sequenced. The calculation of the frequency of the edited base and the indels
at the sites of interest showed an editing rate between 7.1% and 8.8% for the edited base
(chr11:5,226,774), with a deletion rate between 9.4% and 7.4%. A very low occurrence of
insertions (lower than 0.1%) was detectable (Figures 5, S4 and S6). All samples showed
an editing rate above the control samples, generated as expected background values,
indicating that the gene editing was efficient in all samples analyzed. The data show that,
as expected and in agreement with the results published by Cosenza et al. [24] and with the
data presented in Figure 5, Figures S5 and S7 of the present paper, a consistent proportion
of corrected sequences is present in all of the edited samples.
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Figure 5. Representative indel frequency and positioning around the β039 CRISPR-Cas9 editing
target site, obtained with amplicon sequencing of β039 ErPCs treated with the CRISPR-Cas9 system.
Panel (A) shows the indel frequency values for the amplicon replicates analyzed. In particular, the
ten positions upstream and downstream from position chr11: 5226.774 (β039 target site indicated in
red) were analyzed. The data obtained are reported in panel (B) in which the percentage of deletion
(blue line) and insertion (orange line) is graphically reported as a function of each nucleotide position
investigated. Similar results were obtained with WGS sequencing (Figure S7).

Interestingly, and fully in agreement with Figure 3A–C and Figure 4A, no corrected
sequences are present in rapamycin-treated cells, and no further increase in corrected
sequences is present in samples isolated from GE-ErPCs treated with rapamycin. Concern-
ing indel effects, no insertions were found. On the contrary, deletions were detected in a
proportion similar to the insertion of corrected sequences. Similar results were obtained
in a WGS study (Figure S7, representative data), in which we calculated the frequency of
the edited base and of the indels on the sites of interest. In particular, on the target site, no
insertions were found, whereas there was a low number of deletions, in agreement with
data obtained with the previously described amplicon sequencing approach.

4. Discussion

Gene editing with CRISPR-Cas9 technology is one of the most promising strategies
to be exploited for the precise correction of hereditary mutations in a variety of mono-
genetic diseases. For instance, CRISPR-Cas9 has been employed in cystic fibrosis [64,65],
sickle-cell disease [66,67], Huntington’s chorea [68], Duchenne muscular dystrophy [69,70],
hemophilia [71,72], and chronic granulomatous disease [73].

Concerning thalassemia, CRISPR-Cas9 gene editing can be proposed for the efficient
correction of the β039-globin gene mutation (one of the most frequent in the Mediterranean
area) recently reported by Cosenza et al. [24]. This approach was demonstrated to be able
to force gene-edited cells to de novo produce HbA, with possible clinical advantages in case
the protocol is used in clinical trials focusing on homozygous β039-thalassemia patients.

On the other hand, robust evidence demonstrates that fetal hemoglobin (HbF) can
be highly beneficial to β-thalassemia patients, leading to a milder phenotype and lower
requirement of blood transfusions [27,31]. In this respect, several clinical trials with β-
thalassemia and/or sickle-cell anemia patients are ongoing using HbF inducers, such as
NCT01245179 (based on the HDAC inhibitor Panobinostat) [74], NCT00790127 (based on
2,2-dimethylbutyrate, HQK-1001) [50] and NCT03877809 (based on the mTOR inhibitor
rapamycin) [58].

The aim of our study was to verify whether the de novo production of HbA using
CRISPR-Cas9-based gene editing can be combined with HbF induction protocols. This
idea is not new, as it was validated by Zuccato et al. using a combination of gene therapy
using lentiviral vectors and HbF induction [75,76]. This strategy was deemed useful in
consideration of the fact that while an increase in β-globin gene expression in β-thalassemia
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cells can be achieved with gene therapy, the de novo production of clinically relevant levels
of adult Hb may be difficult to obtain. On the other hand, the fact that the increased
production of HbF is beneficial in β-thalassemia, the combination of gene therapy and HbF
induction appears to be a pertinent strategy for achieving clinically relevant results.

Combined treatment using gene editing and HbF induction approaches together have
not been described so far. Our results conclusively demonstrate that gene editing and
HbF induction might be used in combination in order to achieve the de novo produc-
tion of HbA together with the increased production of induced HbF. In these combined
treatments, mild conditions of gene editing can be used, thereby limiting off-targeting
and genotoxic effects. These issues are important considering that GE in thalassemia and
rapamycin treatment of β-thalassemia patients are both in clinical trials (see NCT03728322,
NCT03655678, NCT05444894, NCT03877809 and NCT04247750). In this respect, it should
be underlined that the approach here described based on combined treatments might be
considered within the therapeutic field of personalized treatments in precision medicine.
In this context, the CRISPR-Cas9-based correction of the β039-thalassemia mutation can be
applied to any patient with at least one β-globin allele carrying the β039 mutation, such
as β039/β039 homozygotes and compound heterozygotes for the β039-globin gene. On
the other hand, HbF induction can also be considered a personalized approach, as several
gene polymorphisms (such as the XmnI) have been reported to be associated with high
HbF induction levels [77–79].

In conclusion, the protocol here described is expected to be of interest to all clinicians
working on hematological diseases, such as β-thalassemia, in particular for those working
on β0-thalassemias. It should be underlined that also researchers working with sickle-cell
disease (SCD) patients might be interested since, apart from the gene editing of the SCD
locus, HbF is expected to be useful for SCD [49].

A limitation of this study is that no attempt has been made to fully characterize the
biochemical/molecular targets of rapamycin. This should be done in future experimental
efforts, as it will help in understanding some therapeutically relevant findings of our study.
For instance, the absence of reciprocal regulation of the expression of γ- and β-globin genes
is still remarkable, although the lack of inhibitory effects on β-globin gene expression in
rapamycin-treated erythroid cells has already been reported [43,45,58]. In this respect,
while a reciprocal decrease in β-globin was expected in HbF-producing cells [35], from the
HPLC (Figure 3) and Western blotting (Figure 4) analysis, we do not see any reduction of
HbA in RAPA- and GE-treated cells when comparison was conducted with GE-only treated
cells. Analysis of the transcription machinery might be proposed for better understanding
this finding. In addition, post-transcriptional effects cannot be excluded, considering the
well-known effects of mTOR inhibitors on protein synthesis [80].

A second major limitation of our study is that we have not addressed in depth the
effects of the treatment of gene-edited ErPCs populations with rapamycin apart from the
changes in hemoglobin pattern found in the experiments reported in Figures 3 and 4. This
is an important point for identifying the required end-points of a possible future clinical
trial based on the present study. In this respect, one of the issues to be considered is the
effects of rapamycin treatment on the excess of free α-globin chains. In fact, rapamycin
exhibits a very interesting effect, i.e., the decrease in this excess in vitro and in vivo [58],
with the consequent reduction of the unbalanced α-globin/ β-like globin chain ratios [1].
This is a clinically relevant end point, since low α-globin protein expression is beneficial in
β-thalassemia patients [81,82]. Interestingly, Lachauve at al. have demonstrated that the
effect of rapamycin on the excess of free α-globin chains is caused by the ULK-1-dependent
activation of autophagy [54]. It will be of interest to determine whether autophagy and
decrease in the excess of free α-globin chains is activated in gene-edited rapamycin-treated
ErPCs. To this end, ULK-1 mRNA and the autophagy-related p62, LC3-I/II proteins should
be quantified in gene-edited rapamycin-treated ErPCs. Preliminary data obtained by HPLC
analyses support the hypothesis that rapamycin treatment further reduces the free α-globin
peak in gene-edited ErPCs (Figure S8).
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