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Abstract: With the ongoing demographic shift towards increasingly elderly populations, it is esti-
mated that approximately 150 million people will live with Alzheimer’s disease (AD) by 2050. By
then, AD will be one of the most burdensome diseases of this and potentially next centuries. Although
its exact etiology remains elusive, both environmental and genetic factors play crucial roles in the
mechanisms underlying AD neuropathology. Genome-wide association studies (GWAS) identified
genetic variants associated with AD susceptibility in more than 40 different genomic loci. Most of
these disease-associated variants reside in non-coding regions of the genome. In recent years, it
has become clear that functionally active transcripts arise from these non-coding loci. One type of
non-coding transcript, referred to as long non-coding RNAs (lncRNAs), gained significant attention
due to their multiple roles in neurodevelopment, brain homeostasis, aging, and their dysregulation
or dysfunction in neurological diseases including in AD. Here, we will summarize the current knowl-
edge regarding genetic variations, expression profiles, as well as potential functions, diagnostic or
therapeutic roles of lncRNAs in AD. We postulate that lncRNAs may represent the missing link in
AD pathology and that unraveling their role may open avenues to better AD treatments.

Keywords: Alzheimer’s disease; long non-coding RNAs; gene expression

1. Alzheimer’s Disease and the Non-Coding Genome: What Is the Link?

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized
by a progressive cognitive and functional decline, and the leading cause of dementia world-
wide [1,2]. Currently, over 55 million people are expected to live with dementia and despite
increasing research efforts over the last years, no disease-modifying treatments are avail-
able [1,3]. The extracellular accumulation of amyloid-beta (Aβ) containing plaques and
the formation of intracellular neurofibrillary tangles (NFTs) composed of hyperphosphory-
lated and aggregated forms of Tau protein are well-known neuropathological hallmarks of
AD [4,5]. Additional features observed during disease progression include neuroinflam-
matory responses elicited by microglia and astrocytes as well as neuronal and synaptic
loss [4,5].

Most AD cases are classified as sporadic, late-onset AD (LOAD) when there is no (clear)
genetic cause and when symptoms usually manifest after the age of 65 years [6]. Conversely,
rare monogenic forms of early-onset AD are inherited from autosomal mutations in three
genes (APP, PSEN1, and PSEN2) involved in the amyloid-beta (Aβ) precursor protein (APP)
pathway culminating in the production and aggregation of toxic Aβ peptides. Nevertheless,
twin-based genetic studies of dementia have estimated that LOAD depends on heritability
in 60–80% of cases, suggesting that genetics play a crucial role in disease development [7].
The alleles of the APOE gene (encoding the apolipoprotein E, APOE), particularly the APOE
epsilon 4 (ε4) allele, explain a substantial fraction of this heritability. Still, LOAD etiology is
complex and oligogenic, and several genome-wide association studies (GWAS) identified
LOAD-associated risk variants in over 40 loci [8–18]. However, many of these genetic
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variants or single nucleotide polymorphisms (SNPs) are often inherited together by linkage
disequilibrium [19]. Additionally, several of these SNPs reside in non-coding regions
of the genome which in general still lack functional validation [19–21]. Together, these
features make it challenging to identify causal genes/variants, regulatory mechanisms, and
molecular pathways underlying pathology.

Increasing evidence indicate that a large proportion of the human genome is actively
transcribed into non-coding RNAs [22–27]. While these non-coding RNAs lack obvious
protein-coding potential, they appear to play crucial cellular functions; many of them have
been identified as novel regulators of gene expression at the epigenetic, transcriptional,
post-transcriptional, and translational levels [28]. Amongst these, long non-coding RNAs
(lncRNAs), a subclass of non-coding RNAs typically longer than 200 nucleotides, have
been shown to participate in brain development and function, and the dysregulation of
their expression implicated in many neurological disorders [29]. In particular, aberrant
expression of many lncRNAs has been linked to AD [30,31]. To date, it remains unclear if
and how lncRNAs influence AD development and progression.

LOAD-associated SNPs may localize to regulatory DNA elements including for ex-
ample enhancers and transcription factor binding sites (TFBS). These SNPs may alter gene
expression levels that in turn could prompt altered risk to LOAD. The functional effects
of SNPs in enhancer DNA or TFBS are not clearly understood and may at least partially
also rely on lncRNA-dependent mechanisms. In this review, we will focus on the recent
advances and challenges in understanding how genetic variants in lncRNA loci modulate
disease susceptibility; we will further discuss how the identification of the molecular path-
ways, cell type(s), and target genes affected by lncRNAs could pave the way to explore
these molecules as potential biomarkers for an accelerated AD diagnosis and subsequent
therapeutic intervention at early stages of the disease.

2. GWAS and the Identification of Genomic Risk Loci for Alzheimer’s Disease

Over the last years, several GWAS were carried out with the aim to identify the genetic
determinants underlying the complex and heterogeneous etiology of LOAD [8–18]. One
limitation from GWAS is that often they do not discover causal genes or polymorphisms;
instead, they identify regions or haplotypes associated with specific (disease) traits [19].
Furthermore, many variants identified in non-coding regions may confer disease risk
by interfering with regulatory elements of the genome, affecting chromatin interactions,
and ultimately leading to changes in gene expression levels rather than affecting coding
sequences. Hence, genetic mapping and functional characterization approaches remain
crucial to identify disease-causative cell types, genes, and variants, and assess their impact
on the progression of AD pathogenesis; approaches that are particularly challenging with
non-coding variants [19,32].

Recent Advances in Alzheimer’s Disease GWAS

In 2007, the first two LOAD GWAS confirmed the APOE ε4 allele as a major risk
factor for AD [33,34]. Since then, several other GWAS and meta-analyses contributed to
the exponential increase in the identification of novel AD-associated loci. Just within the
last three years, four new AD GWAS were published [9,11,14,18]. In 2018, Marioni et al.
reported 27 susceptibility loci [11]. This was followed by a 2019 study with increased
sample size, which identified 29 disease-associated loci [14]. In the same year, a GWAS
based on clinically diagnosed AD resulted in the identification of 24 risk loci [9]. The
latest study by Wightman and colleagues included over a million European individuals as
controls; and more than 90,000 samples from either clinically diagnosed cases or people
with family history of AD [18]. The authors identified 38 AD-risk loci, including five
new loci—AGRN, TNIP1, AVCR2, NTN5, LILRB2—which had not been associated to any
neurodegenerative disorder yet, and two—TMEM106B and GRN—which were linked to
frontotemporal dementia before [35–38]. Most of the reported variants were also identified
in previous GWAS studies [8,9,11,14].
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Remarkably, this and other genetic studies point towards a central role for the im-
mune system/inflammatory pathways in LOAD [39]. Functional genomic studies found
an association of several coding variants in genes that play a role in microglia and pe-
ripheral myeloid cells with AD (e.g., TREM2 [40–42], MS4A4A/MS4A6E [43], ABI3 [42,44],
PLCG2 [42,45], ABCA7 [46,47], CD33 [48,49], PILRA [50], and SPI1 [51,52]). However, many
of these and other identified genes are involved in multiple AD-associated pathways, such
as the amyloid cascade [53–57], Tau pathology [58], lipid metabolism and transport [59],
neuronal development and synaptic function [60,61], autophagy [62] or endocytosis [56,63].
Thus, investigating the specific cell type(s), cellular states(s)/pathway(s), and spatiotem-
poral circumstances in which many of these variants affect disease susceptibility will be
crucial to understand the biological mechanisms behind AD pathology.

3. A Genetic Link between lncRNAs and Alzheimer’s Disease?

So far, most genetic studies in LOAD focused on the identification of mutations,
variants or polymorphisms located near or within protein-coding genes, and how these con-
tribute to the underlying AD pathogenesis [64]. However, top GWAS variants mostly reside
in non-coding regulatory regions of the genome outside of protein-coding gene sequences,
including promoters, enhancers, and non-coding RNAs [19,20,65,66]. This is not surprising
considering that large-scale annotation projects such as GENCODE found over 20,000
non-coding genes in the human genome, of which almost 18,000 consist of lncRNA genes
(https://www.gencodegenes.org/human/stats.html accessed on 22 November 2021) [67].

Given the broad range of gene regulatory mechanisms exerted by lncRNAs and
increasing evidence demonstrating their involvement in a wide spectrum of brain disorders,
it is likely that SNPs located within lncRNA-containing loci might interfere with their
biological function and, thus, contribute to AD pathology (Table 1). The AD-associated
SNPs rs190982 and rs11771145 are located within two lncRNA genes associated with
MEF2C (MEFC2-AS1) and EPHA1 (EPHA1-AS1) loci, respectively [8]. Recently, the SNP
rs3935067 was also identified at the EPHA1-AS1 locus [18]. The rs2632516 variant was also
identified in several AD GWAS and annotated to both a microRNA (MIR142) and a lncRNA
(TSPOAP1-AS1) gene [9,14,17,18]. Another study by Chen and colleagues identified a SNP
(rs7990916) located at a brain-specific lncRNA which shows a distinct distribution between
cognitively normal elderly, mild cognitive impairment (MCI), and AD subjects [68]. While
these SNPs have been associated to LOAD and may confer changes in the expression levels
of the lncRNAs they reside in, it is unclear to date how they contribute to AD pathology or
AD disease progression.

Based on large-scale GWAS data involved in three ethnicities, microarray data and
RNA-seq data analysis, Han et al. identified five lncRNA genes with a potential role in
AD [69]. The authors further predicted the function of these lncRNAs using multiple
approaches, including genome mapping, expression quantitative trait loci, differential
co-expression and gene set enrichment analyses [69]. Four out of the five identified lncR-
NAs can modify AD susceptibility by regulating genes and pathways involved in the
immune system and Aβ-associated mechanisms [69]. In particular, two of these lncRNAs
(NONHSAT018519.2 and NONHSAT016928.22), localize within the BDNF and ADAM12
loci, respectively, and are differentially expressed in a region-dependent manner between
AD patients and healthy controls within the European ancestry group [69]. Decreased
expression of both BNDF and ADAM12 in AD brain samples has been reported, and these
genes code for proteins which have been implicated in AD pathology [70–73].

The occurrence and frequency of specific genetic variants might be reflected on the pop-
ulation ancestry making it essential to replicate GWAS data in different ethnicities [74,75].
A recent study investigated 18 SNPs associated with LOAD in European-based studies in
150 AD patients and 114 controls from the South Brazilian population [76]. Despite the
limitation in sample size, four SNPs were found to overlap between both populations [76].
Additionally, eight out of 54 variants found in linkage disequilibrium with the associated
SNPs were located withing lncRNA genes; and six were found potentially involved in
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AD [76]. Of particular interest was the SNP allele rs769449*A, which was found in linkage
disequilibrium with the APOE ε4 isoform rs429358*C allele and associated with LOAD
susceptibility in the study’s cohort. Another SNP, rs769449, localizes to two overlapping
lncRNA genes (NONHSAT179793.1 and NONHSAT066732.2). This latter SNP likely affects
the secondary structure of NONHSAT066732.2, leading to changes in the interaction of this
lncRNA with two miRNAs potentially involved in inflammatory responses [76].

Future efforts to identify AD-associated variants located within non-coding regions,
and particularly lncRNA genes, may be fundamentally necessary to understand how
specific SNPs modulate the expression and function(s) of these regulatory non-coding
transcripts and their associated protein-coding genes. This will open the possibility to
functionally validate their biological functions, explore their expression dynamics and
assess the impact of their dysregulation in AD-related genes and (ultimately) monitor
clinical progression.

Table 1. AD-risk variants identified within lncRNA genomic loci in AD GWAS.

LncRNA ID Other IDs Variant ID SNP Position
(GRCh38.p13)

Associated
Gene(s) Reference(s)

MEF2C-AS1 - rs190982 chr5:88927603 MEF2C [8]

EPHA1-AS1 - rs11771145
rs3935067

chr7:143413669
chr7:143104331 EPHA1 [8]

[18]

TSPOAP1-AS1 BZRAP1-AS1 rs2632516 chr17:58331728 MIR142, SUPT4H1 [9,14,17,18,77]

NONHSAT160355.1 - rs7232
rs12453

chr11:60173126
chr11:60178272 MS4A6A 1, TCN1 [69]

NONHSAT152299.1 - - - C4A, C4B, TCF4, GRIP1 [69]

NONHSAT016928.2 Lnc-DHX32-1:1 - - ADAM12 [69]

NONHSAT016928.2 BDNF-AS:20 - - BDNF [69]

NONHSAT021264.2 lnc-FAM180B-2:1 rs71457224
rs10769282

chr11:47602821
chr11:60178272 MTCH2 1 [76]

NONHSAT179794.1 AC011481.3 rs10414043
rs7256200

chr19:44912456
chr19:44912678

APOC1 1

APOE [76]

NONHSAT066732.2 Lnc-ZNF296-6:1 rs429358 chr19:44908684 APOE 1, AC011481.3 [76]

NONHSAT179793.1 - rs429358 chr19:44908684 APOE 1, AC011481.3,
lnc-ZNF296-6:1 [76]

NONHSAT187478.1 HSALNT0039381 rs4663105 chr2:127133851 LOC105373605 1 [76]

NONHSAT182593.1 - rs744373 chr2:127137039 - [76]rs730482 chr2:127136908 LOC105373605 1

TCONS_00021856 LINC01080 rs7990916 chr13:80065389 - [68]

1 Gene identified based on SNP information from: https://www.ncbi.nlm.nih.gov/snp/ accessed on
22 November 2021; - unknown/information not available.

4. Long Non-Coding RNAs: A Diagnostic Tool for Alzheimer’s Disease?

Classical AD diagnostics rely on the clinical manifestations of the disease supported
by brain imaging approaches and blood/cerebrospinal fluid (CSF) biomarker strategies [78]
These include the measurement of Aβ1-42/Aβ1-40 ratio, Tau and phosphorylated Tau
peptides in the CSF; amyloid and Tau position emission tomography (PET) as direct
imaging biomarkers for Aβ and Tau pathology, respectively; and volumetric magnetic
resonance imaging (MRI) of the brain as a surrogate of neurodegeneration [79].

It is, however, well accepted that the neuropathological mechanisms underlying
this disease start decades before clinical symptoms are manifested [80]. Thus, there is
still the need to establish a biological definition of AD based on biomarkers that reflect
such biological alterations at early stages of the disease. LncRNAs may represent an
additional and attractive novel class of biomarkers for several reasons. First, they exhibit
highly regulated spatiotemporal expression patterns, particularly in the brain and spinal
cord [24,29,81]. Second, many lncRNA are differentially expressed in the brain during
progression of various neurodegenerative disorders [29,30]. Last but not least, several
lncRNAs can be detected not only in tissues and cells, but also in different body fluids such
as CSF and blood [82]. Therefore, exploring the expression dynamics of circulating lncRNAs,

https://www.ncbi.nlm.nih.gov/snp/
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and evaluating their combination with the already established AD clinical biomarkers,
could help to improve early AD diagnosis, to evaluate disease progression, and to monitor
treatment efficacy.

4.1. Expression Profile of Specific lncRNAs in AD Brain

Several lncRNAs are aberrantly expressed in AD brains compared to healthy controls,
suggesting a strong association between altered lncRNA expression and AD pathology
(Table 2) [30,31]. Although a direct contribution to AD pathology of many of these lncRNAs
remains unknown, multiple studies have shown their implication in AD-related pathways
including Aβ and Tau production and/or clearance, autophagy, neuronal proliferation,
and apoptosis [31].

Expression of MAPT-AS1, a lncRNA associated with the MAPT gene, was recently
found to inversely correlate with Tau pathology, decreasing with higher Braak stages [83].
Additionally, it has been suggested that MAPT-AS1 plays a regulatory role on Tau trans-
lation by competing with the MAPT mRNA internal ribosome entry site for ribosomal
binding [83].

Faghihi et al. characterized BACE1-AS as a natural antisense transcript (NAT) associ-
ated with the BACE1 gene [84], which encodes the β-secretase BACE1, an enzyme involved
in the amyloidogenic pathway and synthesis of Aβ peptides. BACE1 is highly abundant in
the brain, and both its expression levels and enzymatic activity are increased in AD brains.
BACE1-AS plays a critical role in upregulating the levels of Aβ1-42 peptides by increasing
BACE1 mRNA and protein levels in SH-SY5Y, HEK293T, and HEK-SW human cell lines
and in mice [84]. Additionally, expression levels of this NAT are increased in the brains
of AD patients and in amyloid precursor protein (APP) transgenic mice indicating that
BACE1-AS levels can serve both as a candidate diagnostic marker and therapeutic target
for AD [84].

Similarly, the lncRNAs BC200, 17A, NDM29, and 51A can increase Aβ production,
and their expression levels were increased in brain tissue from patients with AD [85].
BC200 facilitates Aβ production by modulating BACE1 expression levels [86]. In SH-SY5Y
cells overexpressing Aβ1-42, knockdown of BC200 led to a significant reduction in BACE1
levels, increased cell viability, and reduced cell apoptosis by directly targeting BACE1 [87].
Importantly, the increase in BC200 levels in the neocortex of AD patients is associated with
the severity of the disease [86]. The lncRNA 17A enhances the secretion of Aβ in neurob-
lastoma cells in response to inflammatory stimuli by regulating the alternative splicing of
the GABA B2 receptor and subsequently abolishing its intracellular signaling [88]. APP
synthesis is boosted upon upregulation of the lncRNA NDM29 in vitro leading to increased
secretion of Aβ [89]. Finally, the lncRNA 51A drives a splicing shift in the canonical variant
A of SORL1 [90], a known risk gene for LOAD [91]. In AD brains, SORL1 expression is
reduced [92] shifting APP processing towards the β-secretase pathway and promoting Aβ
peptide formation [93,94]. Therefore, 51A could play a role in Aβ generation by inhibiting
SOLR1 expression in patients with AD [90]. EBF3-AS is another lncRNA whose expression
levels is increased in different brain regions of LOAD patients and in the hippocampus of
APP/PS1 transgenic mice [95,96]. According to Gu et. al, EBF3-AS positively regulates the
expression of EBF3, a DNA-binding transcription factor, and promotes neuronal apoptosis
in a human neuroblastoma cell line [96]. Another study has revealed the presence of an
antisense transcript, LRP1-AS, at the LRP1 locus. Importantly, LRP1 is a receptor that
has been implicated in multiple AD-associated pathways [53], such as both clearance and
production of Aβ peptides [97], internalization of APOE [98] and Tau uptake [99]. While
the role of LRP1-AS in AD progression is not entirely clear, Yamanaka et al. have identified
this lncRNA as a negative regulator of LRP1 gene expression [100]. In line with this, LRP1
mRNA expression is reduced in samples from the superior frontal gyrus of AD patients,
while LRP1-AS levels are increased in this brain region during pathology [100].
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Table 2. Examples of deregulated lncRNAs in brain tissue samples from patients with AD.

LncRNA ID Trend Evaluated Tissue/Samples Proposed Function Reference(s)

MAPT-AS1 ↓ in AD

Hippocampus, Parietal cortex,
Temporal cortex

(http://aging.brain-map.org/
accessed 22 November 2021);

Bulk brain tissue (https:
//doi.org/10.7303/syn3388564
accessed on 22 November 2021)

Inhibits Tau translation by competing
for ribosomal RNA pairing

with the MAPT mRNA internal
ribosome entry site (IRES)

[83,101,102]

BACE1-AS ↑ in AD

Parietal cortex;
Cerebellum;

Superior frontal gyrus;
Entorhinal cortex;

Hippocampus

Under stress conditions, upregulates
BACE1 mRNA and subsequently

BACE1 protein expression, leading to
the accumulation of Aβ peptides

[84]

BC200 ↑ in AD Superior frontal gyrus;
Hippocampus

Might facilitate Aβ production by
upregulating BACE1 expression levels [86]

NDM29 ↑ in AD Frontal and temporal cortex Increases APP synthesis, leading to
increased secretion of Aβ peptides [89]

51A ↑ in AD Frontal and temporal cortex

Drives a splicing shift of SORL1 from
the synthesis of the variant A to an
alternatively spliced protein form,

which leads to an impaired processing
of APP and increased Aβ formation

[90]

EBF3-AS ↑ in AD

Cerebellum;
Superior frontal gyrus;

Entorhinal cortex;
Hippocampus

Promotes neuron apoptosis in AD, and
is involved in regulating the expression

of the DNA-binding transcription
factor EBF3

[95,96]

LRP1-AS ↑ in AD Superior frontal gyrus

Negatively regulates Lrp1 expression by
binding to Hmgb2 protein and inhibit

its activity to enhance
Srebp1a-dependent transcription of Lrp1

[100]

4.2. General Expression Profiles of lncRNAs in the AD Brain

Additional studies have focused on understanding the overall dynamics of lncRNA
expression patterns during AD pathology. Zhou and colleagues used re-annotation of
microarray datasets to specifically identify AD-associated lncRNAs from post mortem tissue
samples [103]. The analysis indicated that dozens of lncRNAs are aberrantly expressed
in AD patients compared to age-matched controls [103]. Interestingly, two significantly
dysregulated lncRNAs identified in this study are involved in protein ubiquitination
and lipid homeostasis, suggesting a role for altered lncRNAs in AD-relevant signaling
pathways [103]. Moreover, lncRNA expression signatures could be used to discriminate
between AD and control tissue samples with comparable sensitivity and specificity to
those from protein-coding genes [103]. However, the number of lncRNAs necessary for
optimal sample prediction was much lower than that of protein-coding genes, indicating
that lncRNAs might be just as relevant as prognostic tools [103].

In another report, Zhou and colleagues performed a comparative analysis in four
distinct brain regions—-entorhinal cortex, hippocampus, post-central gyrus, and superior
frontal gyrus. This study demonstrated that the expression profiles of many lncRNAs
are altered both in a region- and age-specific manner in the AD brain [104]. In addition,
the authors used machine learning tools to identify a panel of nine lncRNAs that can
discriminate between AD and healthy control cases with a diagnostic sensitivity and
specificity of 86.3% and 89.5%, respectively, in two independent cohorts [104]. Wu et al.
further confirmed the region-specific changes in the expression patterns exhibited by

http://aging.brain-map.org/
https://doi.org/10.7303/syn3388564
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lncRNAs by comparing gene expression data in six distinct brain regions from AD and
control patients [105].

A transcriptomic analysis of human cortical samples including 12,892 known lncR-
NAs and 19,053 protein-coding genes found differentially expressed transcripts from both
types of genes in AD cases compared to control individuals [106]. Co-expression network
analysis revealed that three lncRNAs—-RP3-522J7, MIR3180-2, and MIR3180-3—are fre-
quently co-expressed with relevant AD risk protein-coding genes [106]. For instance, all
three lncRNAs are co-expressed with S100B, a protein-coding gene which is linked to
AD pathology [107].Additionally, in line with previous reports, many of these transcripts
are specifically enriched in the brain compared to other body tissues and expressed in a
region-dependent manner emphasizing their potential as diagnostic markers for AD [106].
Magistri et al. performed RNA sequencing analysis from LOAD hippocampus samples and
identified 31 NATs and 89 long intergenic non-coding RNAs (lincRNAs) as differentially
expressed in AD compared to controls [95]. Differential expression of four lncRNAs was
further validated by RT-qPCR in different brain regions. Interestingly, the expression of
one of the lncRNAs, named AD-linc1, is upregulated in LOAD samples, and its expression
is induced in a human neuronal in vitro model upon exposure to Aβ42 [95]. Another tran-
scriptomic profiling study using samples from LOAD cases further reports the aberrant
expression of several lncRNAs in the hippocampus of advanced Braak stage patients [108].

Although aging is the main risk factor for developing AD, disease onset is also influ-
enced by gender. For instance, women represent about two thirds of all people diagnosed
with AD [109]. Thus, a recent study using microarray datasets and bioinformatics anal-
ysis specifically explored how lncRNA expression profiles associate with both age and
gender in AD [110]. The authors observed changes in the expression patterns of 16 age-
associated and 13-gender associated lncRNAs in the frontal cortex of AD patients compared
to healthy controls [110]. Of these, three gender-associated lncRNAs—-RNF144A-AS1, LY86-
AS1, and LINC00639—-negatively correlate with AD Braak stage; and two age-associated
lncRNAs—-LINC00672 and SNHG19—-positively and negatively correlate with Braak
stage, respectively [110]. While the underlying mechanisms of most of these lncRNAs
are unknown, pathways involved in neurodegenerative disorders, lysosome, synaptic
vesicle cycle, axon guidance, and endocytosis pathways are enriched within age- and
gender-associated lncRNAs [110].

In summary, the identification of brain region-, age-, and gender-associated lncRNAs
and their differential expression patterns in the human AD brain provide potential targets
for further investigating their biological functions. Subsequently, it opens the exciting
possibility of developing age- and gender-specific diagnosis, prevention, and precision
therapeutic options for patients with AD.

4.3. Circulating LncRNAs Expression in AD

Most studies investigating the potential to use lncRNAs as diagnostic and prognostic
markers focused on different types of cancer and cardiovascular diseases. However, multi-
ple lncRNAs show significantly altered expression patterns in body fluids from AD patients
(Table 3) [82]. Thus, exploring free circulating lncRNA transcripts in CSF, extracellular
vesicles/exosomes, blood, or plasma can be an interesting non-invasive approach to detect
biomarkers for AD and other neurodegenerative disorders.
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Table 3. Examples of deregulated lncRNAs in peripheral tissue samples from patients with AD.

LncRNA ID Trend Evaluated Tissue/Samples Role in AD? Reference(s)

BACE1-AS ↑ in AD Plasma; Plasma
derived exosomes Yes (see Table 2) [111–113]

BC200 No change in AD Plasma Yes (see Table 2) [111,113]

51A No change in AD;
↑ in AD;

Plasma
Plasma derived exosomes Yes (see Table 2) [111]

[114]

MALAT1 ↓ in AD Plasma; CSF

Reported to prevent neuron
apoptosis, promote neurite

outgrowth, and reduce
inflammation in two AD

mouse models

[115,116]

RP11-462G22.1, PCA3 ↑ in AD (and PD) CSF derived exosomes Unknown [117]

CH507-513H4.4,
CH507-513H4.6,
CH507-513H4.3

↑ in AD PBMCs Unknown [118]

LncRNA-ATB ↑ in AD CSF; Serum

Suppression of this lncRNA
might have a protective effect

against Aβ-induced
neurotoxicity via regulation

of miR-200

[119]

PART1 ↓ in AD Serum Unknown [120]

UBE3A-ATS ↑ in AD Serum Unknown [120]

Levels of the lncRNAs BACE1-AS are increased in plasma samples from 88 AD patients
compared to 72 controls from a Han Chinese cohort [111]. Of note, Feng and colleagues
also evaluated the expression levels of 17A, 51A, and BC200 in plasma samples and found
no differences between AD and controls [111]. In addition, the authors found no correlation
between the expression levels of these lncRNAs with either a clinical cognitive test called
the mini-mental state examination (MMSE) or age, indicating that the diagnostic value
of BACE1-AS was independent of these parameters [111]. Another study using a smaller
cohort reported that BACE1-AS levels in plasma are able to discriminate between control,
pre-AD, and full-AD individuals, indicating a predictive value for this lncRNA in AD [112].
Contrarily to the previous report, a positive correlation was found between BACE1-AS
plasma levels and age, while low MMSE scores were associated with higher levels of BACE1-
AS [112]. Similar data were recently reported by Wang et al. [113]. The authors evaluated
the expression of several lncRNAs in plasma-derived exosomes together with image data
from the entorhinal cortex and hippocampus of AD patients [113]. Plasma exosomal levels
of BACE1-AS, but not 51A nor BC200, were increased in AD individuals [113]. These data
contrast with a study showing upregulated levels of the lncRNA 51A in plasma from AD
individuals [114]. Furthermore, integrating BACE1-AS plasma levels with MRI data from
right entorhinal cortex volume and thickness increased specificity (96.15%) and sensitivity
(90.91%) as a combinatorial AD biomarker compared to BACE1-AS levels alone [113].
However, no associations were found between BACE1-AS expression levels and age or
MMSE scores in this study [113].

Both CSF and plasma levels of the lncRNA MALAT1 are downregulated in AD pa-
tients compared to control and Parkinson’s disease (PD) individuals [116]. In line with
this, microRNA-125b, whose expression is regulated by MALAT1, is upregulated in AD
samples [116]. MicroRNA-125b overexpression enhances Aβ production by increasing APP
and BACE1 expression in mouse neuroblastoma Neuro2a APPSwe/∆9 cells [121]. Another
study described a role for this microRNA (miRNA) on Tau phosphorylation and neuronal
apoptosis [122]. Interestingly, both MALAT1 and microRNA-125b levels in the CSF but not
in plasma can predict the decline in MMSE score at years one, two and three in patients
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with AD [116]. Though most studies demonstrated a role for MALAT1 in various cancer
types [123], MALAT1 overexpression was recently reported to prevent neuron apoptosis,
promote neurite outgrowth, and reduce inflammation in two AD mouse models [115]. Thus,
MALAT1 could not only represent a valuable biomarker but also a potential therapeutic
target to help prevent neuronal loss in AD.

The lncRNAs RP11-462G22.1 and PCA3 were previously linked to PD [124], and
their expression levels are upregulated in CSF-derived exosomes from both AD and PD
patients [117]. While these lncRNAs cannot discriminate AD from PD patients, these data
further emphasize a general dysregulation of lncRNAs in neurodegeneration.

Differential expression of lncRNAs between AD patients and healthy controls were
also investigated in blood samples. For instance, a microarray analysis from peripheral
blood mononuclear cells (PBMCs) found 14 upregulated and 20 downregulated lncRNAs
in AD samples [125]. Another study compared the expression profile of lncRNAs in PBMCs
from AD individuals with two other neurodegenerative disorders, PD and amyotrophic
lateral sclerosis, and controls [118]. In AD patients, a total of 23 genes, including 19 protein-
coding genes and three lncRNAs—-CH507-513H4.4, CH507-513H4.6 and CH507-513H4.3—-
emerged as differentially expressed [118]. While the roles of these transcripts are currently
not known, their levels were exclusively altered in AD-derived PBMCs, suggesting a
disease-specific expression pattern [118].

The lncRNA activated by TGF-β, named lncRNA-ATB, is also overexpressed in the
CSF and serum of patients with AD [119]. This lncRNA was previously associated to
multiple pathologies, including multiple types of cancer [126–128], keloids [129], and
osteoarthritis [130]. Wang and colleagues explored the role of lncRNA-ATB in a cellular
model and found that suppressing the levels of this lncRNA might have a protective effect
against Aβ-induced neurotoxicity via regulation of miR-200 expression [119]. The miR-200
family has also been implicated in the pathogenesis of AD and explored as a potential
biomarker for the disease [131].

Both mRNA and lncRNA transcripts can contain different miRNAs binding sites
indicating that these transcripts can regulate each other by competing with shared miRNA-
binding sites; these transcripts are so-called competing endogenous RNAs (ceRNAs) [132].
Very recently, Huaying et al. explored a potential deregulation in ceRNA networks in
AD by analyzing mRNA, miRNA, and lncRNA gene expression patterns; Nine lncRNAs
are associated with AD, PD, and other neurodegenerative disorders [120]. Furthermore,
five of the identified lncRNAs—-SNHG14/UBE3A-ATS, PART1, NNT-AS1, AC093010.3
and ARMCX5-GPRASP2—-were evaluated as a potential combinatorial AD biomarker in
two distinct AD cohorts [120]. RT-qPCR data revealed a downregulation of the lncRNA
PART1, and an upregulation of SNHG14/UBE3A-ATS in serum samples from AD patients
compared to healthy controls [120]. While the role of these lncRNAs in AD pathology is
unknown, SNHG14/UBE3A-ATS has been proposed as a therapeutic target for Angelman
syndrome due to its role in silencing the expression of UBE3A [133].

Taken together, these studies indicate that exploring the biological functions of lncR-
NAs is crucial to understand their dynamic expression profiles in a pathophysiological
context and evaluate their suitability as biomarkers for AD.

5. Conclusions and Future Perspectives

Recent advances in AD GWAS revealed several disease-associated variants mapping
to non-coding regions of the genome, including within genomic loci harboring lncRNA
genes. Despite the generally low abundance of lncRNAs, expression levels of several of
them are dysregulated in the course of AD. However, many studies show contrasting data,
and often there is no clear overlap between the differentially expressed lncRNAs between
controls and AD. These discrepancies likely reflect both methodological and biological
variations. In addition, there are still several limitations to the use of lncRNAs in clinical
practice for AD and other brain disorders. For instance, detection of some lncRNAs in
circulation can be difficult due to their lower levels of expression; in addition, there is still a



Genes 2022, 13, 39 10 of 16

lack of consensus on which genes are stable and appropriate to be used as reference genes
for circulating lncRNAs; finally, many circulating lncRNAs can be found dysregulated
in multiple disorders, therefore, lacking diagnostic specificity. We strongly recommend
establishing a cross-sectoral working group where basic and translational researchers
jointly develop standard operating procedures for the identification and quantification of
lncRNAs as potential biomarker for neurological (and other) diseases. We also advocate
for the thorough functional characterization of lncRNAs already linked to AD and other
neurodegenerative diseases. Comprehensive analyses of lncRNAs dysregulated in AD will
undoubtedly provide new insights into disease pathogenesis. We are convinced that new
detailed insights in AD-associated lncRNAs may uncover previously unappreciated links
between genes and pathways involved in the disease. Ultimately, these lncRNAs may pave
the way for the development of novel and innovative biomarker strategies or therapeutic
avenues for AD and other neurodegenerative diseases.
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