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Abstract: Genome-wide association studies (GWAS) have identified and reproduced thousands of
diseases associated loci, but many of them are not directly interpretable due to the strong linkage
disequilibrium among variants. Transcriptome-wide association studies (TWAS) incorporated ex-
pression quantitative trait loci (eQTL) cohorts as a reference panel to detect associations with the
phenotype at the gene level and have been gaining popularity in recent years. For nicotine addiction,
several important susceptible genetic variants were identified by GWAS, but TWAS that detected
genes associated with nicotine addiction and unveiled the underlying molecular mechanism were still
lacking. In this study, we used eQTL data from the Genotype-Tissue Expression (GTEx) consortium
as a reference panel to conduct tissue-specific TWAS on cigarettes per day (CPD) over thirteen brain
tissues in two large cohorts: UK Biobank (UKBB; number of participants (N) = 142,202) and the GWAS
& Sequencing Consortium of Alcohol and Nicotine use (GSCAN; N = 143,210), then meta-analyzing
the results across tissues while considering the heterogeneity across tissues. We identified three major
clusters of genes with different meta-patterns across tissues consistent in both cohorts, including
homogenous genes associated with CPD in all brain tissues; partially homogeneous genes associated
with CPD in cortex, cerebellum, and hippocampus tissues; and, lastly, the tissue-specific genes
associated with CPD in only a few specific brain tissues. Downstream enrichment analyses on each
gene cluster identified unique biological pathways associated with CPD and provided important
biological insights into the regulatory mechanism of nicotine dependence in the brain.

Keywords: genome-wide association study; transcriptome-wide association study; meta-analysis;
expression quantitative trait loci; nicotine addiction

1. Introduction

The past decade has witnessed an explosion in genome-wide association studies
(GWAS) research, which identified thousands of robust, reproducible genetic risk variants
associated with complex diseases and traits [1,2]. These findings have contributed to a better
understanding of disease biology and the relative roles of genes vs. environment in disease
risk [3,4]. However, the loci identified by GWAS are not directly interpretable due to the
strong linkage disequilibrium (LD) that obscures the causal variants, and GWAS data alone
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can hardly determine the causal genes and the underlying regulatory mechanism [5]. To fill
this gap, transcriptome-wide association studies (TWAS) are developed to utilize expression
quantitative trait loci (eQTL) cohorts (e.g., Genotype-Tissue Expression (GTEx) [6]), which
include both genotype and gene expression data as a reference panel to infer association
with a trait at the gene level [7]. In short, TWAS involve training a predictive model of
expression from the genotype in the reference panel, then using the trained model to
predict the expression in the GWAS data, which are used to find the genes associated
with the trait [7,8]. Various statistical methods and computational tools for implementing
TWAS have been developed to date [9,10]. Since gene expression and eQTL regulation are
tissue-dependent, TWAS are usually conducted in a tissue-specific manner. For example,
PrediXcan [8] is the first ever TWAS tool that leverages the single nucleotide polymorphism
(SNP)-gene associations identified in a single tissue to infer gene-trait associations. S-
PrediXcan [11] is an extension of PrediXcan that takes GWAS summary statistics as the
input. Considering the similarity in transcription regulation across tissues, MultiXcan [12]
and UTMOST [13] fit models to integrate the information of SNP-gene associations across
multiple tissues to infer the gene-trait associations.

To date, a lot of genetic research has revealed the important role of genetic factors
on nicotine dependence [14,15]. For example, GWAS have identified susceptible genetic
variants located in the nicotinic acetylcholine receptors (nAChRs) [16], metabolic enzyme
encoded gene CYP2A6 [17], and lung-specific genes TENM2 [18] associated with nico-
tine addiction. However, how these genetic compositions contribute to human nicotine
dependence behaviors and the underlying molecular regulatory mechanism in the brain
remained largely unknown. Palmer et al. [19] conducted a cross-species TWAS analysis
of tobacco consumption by integrating human GWAS data from UK Biobank (UKBB) and
messenger ribonucleic acid (mRNA) expression references from the brains of multiple
animal species and identified 10 homologous genes associated with the cigarettes per day
(CPD) in different animal models, to illustrate the genetic mechanisms of human tobacco
consumption. However, the heterogeneity among eQTL datasets and tissues-dependent
nature of transcription regulation have impeded the ability of TWAS to provide further
insights into the genetic basis of diseases [20].

Meta-analysis is a set of powerful statistical tools, which combines multiple related
studies for various biological purposes and has gained popularity in both GWAS and omics
research in recent years [21,22]. Traditional meta-analysis methods, such as Fisher’s and
Stouffer’s, combine p-values from multiple studies without further exploring the association
patterns across studies [23,24]. New meta-analysis methods have been proposed to account
for the heterogeneity across studies and categorize biomarkers (e.g., genes) by their cross-
study patterns while combining the studies [25–27]. In this study, we performed tissue-
specific TWAS of nicotine addiction (measured by CPD) for 13 brain tissues based on the
GWAS data from UKBB [28] and GWAS & Sequencing Consortium of Alcohol and Nicotine
use (GSCAN) [29], using eQTL cohorts from GTEx (version 8) [6] as the reference panel.
We then conducted meta-analysis of the TWAS results while considering the heterogeneity
across tissues and clustered the nicotine-addiction-associated genes by their cross-tissue
patterns. Such a procedure was shown to be more powerful than a multi-tissue TWAS
tool (e.g., S-MultiXcan) and detected novel clusters of genes with different meta-patterns
across brain tissues. Downstream enrichment analysis on the different clusters of genes
identified important nicotine-addiction-related pathways in different brain tissues and
provided more insights into the molecular regulatory mechanisms underlying nicotine
dependence inside the brain.

2. Materials and Methods
2.1. Study Cohorts

In this study, we performed TWAS analysis on two large cohorts that include both
genotype and nicotine addiction phenotype data:
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(1) UK Biobank (UKBB): a large prospective study that recruited ~500,000 participants
aged between 40–69 years in 2006–2010 in 22 assessment centers throughout the UK
and collected abundant phenotypic and genomic data [28]. For this study, we included
number of participants (N) = 142,202 individuals with white ethnicity backgrounds
(British, Irish, and any other white background) that had both genotype- and nicotine-
dependence-related smoking phenotypic data available.

(2) GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN): a meta-
analysis of up to 35 GWAS cohorts of European ancestry including around 1.2 mil-
lion individuals (depending on traits) [29]. Smoking-related phenotypes in the
GSCAN were self-reported responses gathered by multiple teleconferences [29]. We
used the GSCAN data excluding UKBB and 23andMe (“Minus23andMeUKBB” with
N = 143,210) as a validation cohort [https://conservancy.umn.edu/handle/11299/
201564, accessed on 16 November 2021]. For GSCAN, only meta-analyzed GWAS
summary data were available.

2.2. Nicotine Dependence Related Smoking Phenotype

Cigarettes per day (CPD) is one of the well-known traits related to nicotine addiction
and is widely used in many published studies [30,31]. We used CPD as the phenotype
of interest in our study. For the UKBB cohort, CPD was defined as the average number
of cigarettes smoked per day by participants who were either current or past smokers,
using phenotype codes 2887 (number of cigarettes previously smoked daily), 3456 (number
of cigarettes currently smoked daily) and 6183 (number of cigarettes previously smoked
daily (current cigar/pipe smokers)). The CPD values of participants who smoked less than
one cigarette per day were recoded to 0; and CPD values of those who smoked more than
60 cigarettes per day were recoded to 60. CPD was denoted as CigDay in GSCAN cohort.
The detailed data processing procedure of the CigDay can be found in Liu et al. [29].

2.3. Reference Panel

The reference panel of the eQTL cohort used to perform TWAS analysis was obtained
from the Genotype-Tissue Expression (GTEx) project (version 8) [6]. It included both
the genotype data of 838 donors of mainly European ancestry and the gene expression
data of these donors in 13 brain tissues, including amygdala, anterior cingulate cortex
(BA24), caudate (basal ganglia), cerebellum, cerebellar hemisphere, cortex, frontal cortex
(BA9), hippocampus, hypothalamus, nucleus accumbens (basal ganglia), putamen (basal
ganglia), spinal cord (cervical c-1), and substantia nigra. The single-tissue predicted weights
and single-/across-tissue LD reference files from GTEx used in S-PrediXcan [11] and S-
MultiXcan [12] were provided by PredictDB (https://hakyimlab.org/post/2020/01/07
/predictdb-transcriptome-prediction-model-repository/, accessed on 16 November 2021)
for use in our study.

2.4. TWAS Analysis

In this study, we first conducted tissue-specific TWAS (TS-TWAS) of CPD for each
of the 13 brain tissues by combining GWAS data with the eQTL reference panel and
then performed meta-analysis to combine the TS-TWAS results and categorize the CPD
associated genes by their meta-patterns across the tissues (Figure 1). Below, we describe
the two steps of our analysis in detail.

2.4.1. Tissue-Specific TWAS

In the first step, we conducted TS-TWAS for each of the 13 brain tissues using S-
PrediXcan [11]. For UKBB, we first performed GWAS on CPD of 142,202 participants (Mean
Age = 57.57 (7.83); 48.12% are Female) using PLINK (version 1.9, www.cog-genomics.org/
plink/1.9/, accessed on 16 November 2021) [32] under an additive genetic model. We
performed quality control and removed variants with a minor allele frequency below 0.01,
Hardy-Weinberg equilibrium p-value below 0.001, and missing genotype rate at 5%, and ex-

https://conservancy.umn.edu/handle/11299/201564
https://conservancy.umn.edu/handle/11299/201564
https://hakyimlab.org/post/2020/01/07/predictdb-transcriptome-prediction-model-repository/
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cluded individuals with more than 2% missing genotypes. The UKBB cohort had relatively
low prevalence of self-reported health conditions (e.g., brain injury, neuropsychiatric com-
plications) and light-to-moderate consumptions of alcohol and cannabis (Tables S1 and S2);
thus, we did not further consider additional exclusion criteria. The analysis was adjusted
by the following variables: sex, age, body mass index (BMI), genotyping chip type, and
top ten principal components of population admixture generated from PLINK (version 2.0,
www.cog-genomics.org/plink/2.0/, accessed on 16 November 2021) [32]. For GSCAN,
a GWAS summary on CPD was directly obtained from the University of Minnesota li-
brary [29]. We integrated GWAS summary statistics of both cohorts with the pre-trained
prediction models over 13 brain tissues to obtain TS-TWAS results using S-PrediXcan [11],
an extension of PrediXcan [8] that used only summary level GWAS statistics to estimate a
Z-score of association between gene expression and trait. The tissue-specific Z-score for the
g-th gene in s-th tissue can be estimated as follows:

zgs ≈∑l∈Modelgs
wlgs

σ̂l
σ̂gs

β̂l

se
(

β̂l
)

where Modelgs is the pre-trained prediction model from the GTEx reference panel, con-
sisting of SNPs used to predict the gene expression for gth gene in sth tissue, wlgs is the
predicted weight of l-th SNP on the g-th gene in s-th tissue in the pre-trained prediction
model, directly obtained from PredictDB. β̂l is the GWAS estimate for l-th SNP; se

(
β̂l
)

is
GWAS standard error of β̂l ; σ̂l is the variance of l-th SNP; and σ̂gs is the variance of the
predicted expression for g-th gene in s-th tissue. The SNP variance term ( σ̂l

σ̂gs
) calculated

from 1000 Genomes data was also obtained from PredictDB. We computed the p-value for
the g-th gene in s-th tissue as pgs = 2(1−Φ

(
zgs

)
), where Φ(.) is the cumulative density

function of standard normal distribution.
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Figure 1. Study scheme. We integrated genome-wide association studies (GWAS) summary statistics
with the quantitative trait loci (eQTL) reference panel from Genotype-Tissue Expression (GTEx)
to conduct tissue-specific transcriptome-wide association studies (TS-TWAS) analysis for each of
the 13 brain tissues using S-PrediXcan. We then performed meta-analysis of the TS-TWAS results
across tissues using adaptively weighted Fisher’s (AW-Fisher’s) method and clustered the genes by
their meta-patterns across tissues. We additionally performed downstream analysis (e.g., pathway
enrichment analysis) to each category of genes with a unique meta-pattern.

2.4.2. Meta-Analysis of TS-TWAS over 13 Brain Tissues and Downstream Analysis

Adaptively weighted (AW)-Fisher’s method [25] is a meta-analysis method extending
the conventional Fisher’s method that combines p-values from multiple studies while
taking the study to study heterogeneity into account. In this paper, we treated different
brain tissues as studies and applied AW-Fisher’s method to meta-analyze the TS-TWAS

www.cog-genomics.org/plink/2.0/
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results from all S = 13 brain tissues. The null hypothesis in meta-analysis is commonly
considered as

H0 : θg1 = . . . = θgS = 0,

where θgs is the gene effect of g-th gene in the s-th tissue. For an alternative hypothesis, we
aimed to detect genes associated with CPD in at least one tissue, i.e., Ha : θgs 6= 0 for some
1 ≤ s ≤ S. For AW-Fisher’s method,

Ug
(
ωg

)
= −

S

∑
s=1

ωgs log
(

pgs
)
,

where pgs is the p-value of the g-th gene in the s-th tissue from TS-TWAS, ωgs is the
0–1 binary weight assigned to the s-th tissue, and ωg =

(
ωg1, . . . , ωgS

)
. For a specific

ωg, the p-value of the observed weighted statistic pU
(
ug

(
ωg

))
under the null hypothesis

can be obtained via permutation. The AW-Fisher’s statistic was defined as the minimal
p-value among all possible weights. For inference, there is no closed-form distribution for
AW-Fisher’s statistics under the null, so permutation tests and importance sampling are
used to obtain the p-values pAW

g and control the false discovery rate (FDR). More details
can be found in the original AW-Fisher paper [25].

After meta-analysis, we focused on genes passing an FDR threshold of 0.05 in both
cohorts (i.e., take the intersection) and performed downstream analysis. We categorized
the genes by their meta-patterns across brain tissues using hierarchical clustering with
Ward linkage on −log10

(
pgs

)
. For each category of genes, we further performed pathway

enrichment analysis using three popular pathways datasets: Gene Ontology (GO) [33],
Kyoto Encyclopedia of Genes and Genomes (KEGG) [34], and Reactome [35]. Top enriched
pathways (e.g., Fisher’s exact test p-value < 0.05) helped us understand the unique functions
for each category of genes associated with nicotine addiction but with different cross-tissue
patterns. We also applied the S-MultiXcan method [12] for multi-tissue TWAS analysis
across 13 brain tissues as a comparison.

3. Results

We first performed TS-TWAS and then meta-analyzed the TS-TWAS results over
13 brain tissues by AW-Fisher’s method. The meta-analysis of TS-TWAS identified 48 genes
significantly associated with CPD at FDR < 0.05 common in both UKBB and GSCAN
cohorts (Table 1). Comparing to S-MultiXcan and TS-TWAS, meta-analysis was overall
more powerful in identifying more nicotine-addiction-associated genes (Table 1; Figure 2
highlighted in red, Figure S1), especially among genes with heterogeneous association
patterns across tissues (Figure S1, Supplementary file 1). These included multiple nicotine-
addiction-associated genes reported in previous studies [17,18,31]. We focused on the
48 genes at FDR < 0.05 for biomarker categorization and downstream analysis.

Gene categorization by meta-patterns identified three clusters of genes common to
both cohorts (Figure 3): (i) homogeneous genes, which were associated with CPD in all
13 brain tissues; (ii) partially homogeneous genes, which were associated with CPD in a
majority of tissues but not significant in the rest; and (iii) tissue-specific or heterogeneous
genes, which had very unique association patterns in different tissues, reflecting a high
degree of heterogeneity across tissues. The two cohorts had a large proportion of genes
matched in each cluster (38 out of 48 genes in total; Table 1). The first cluster included
20 genes homogeneously associated with CPD in all brain tissues, including well-known
smoking-related genes CHRNA5, NCKIPSD, and SIRT6. The second cluster consisted of
8 genes including PSMA4 and RPRD2, which are highly expressed and associated with
CPD in forebrain regions such as frontal cortex BA9, anterior cingulate BA24, and hindbrain
regions including the cerebellum and cerebellar hemisphere. The third cluster included
10 heterogeneous genes only associated with CPD in very few specific brain tissues.
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Figure 2. Manhattan plots of meta-analysis of TS-TWAS results across all 13 brain tissues for both
UKBB (A) and GSCAN (B). Y-axis is the −log10(pAW

g ) from AW-Fisher. Results from S-MultiXcan
are used for comparison. The blue line indicates an FDR cutoff of 0.05. Genes detected by meta-
analysis but not by S-MultiXcan were highlighted in red and genes passing the Bonferroni cutoff (i.e.,
p < 0.05/#genes) were labeled.
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Figure 3. The heatmap included the 38 genes (Cluster 1: 20; Cluster 2: 8; Cluster 3: 10) with the same
clustering patterns and passing meta-analysis FDR < 0.05 threshold in both cohorts and was colored
by −log10(pgs) of TS-TWAS in each brain tissue (on columns) from both cohorts (Panel (A) for UKBB
and Panel (B) for GSCAN). In the rows, the genes were clustered into three categories common to
two cohorts: cluster 1 was homogeneous genes, cluster 2 was partially homogeneous genes, and
cluster 3 was tissue-specific or heterogeneous genes.
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Table 1. Summary of the number of cigarettes per day (CPD)-associated genes detected by meta-
analysis and S-MultiXcan as well as in each category of unique meta-pattern in both UK Biobank
(UKBB) and GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN) cohorts and
their intersection.

Cohort UKBB GSCAN Intersection

S-MultiXcan (FDR < 0.05) 60 13 8
Meta-analysis by AW-Fisher’s method (FDR < 0.05) 245 217 48

Meta-pattern categorization (48 genes
in intersection at FDR < 0.05)

Cluster 1 (homogeneous genes) 24 22 20
Cluster 2 (partially homogeneous genes) 12 12 8

Cluster 3 (tissue-specific or heterogeneous genes) 12 14 10

We then performed pathway analysis to each cluster of identified genes. Cluster 1 of
homogeneous genes (e.g., CHRNA5) was mainly enriched in pathways related to presy-
naptic and postsynaptic nicotinic acetylcholine receptors (Figure 4, see the full pathway
analysis results in Supplementary file 2), that play versatile roles in neuronal apoptosis [36]
and neurotransmission (e.g., Ca2+ signaling [37] and dopamine [38]). Cluster 2 of partially
homogeneous genes (e.g., PSMA4) was enriched in pathways related to proteasomal activ-
ity (e.g., KEGG Proteasome), intercellular bivalent cations Mg2+ (e.g., GO:MF magnesium
ion binding), and chromosome segregation (e.g., GO:BP chromosome segregation) that
can be highly impacted by cigarette smoking to inhibit proteasomal activity, cause mental
disorders disease, and induce segregation anomalies separately reported in previous stud-
ies [39–41]. Cluster 3 of heterogeneous genes (e.g., CHRNA3) was enriched in pathways
GO:MF acetylcholine-activated cation-selective channel activity and GO:CC acetylcholine-
gated channel complex. Genes with different meta-patterns across tissues were functionally
specific that are worth further investigation in future studies.
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4. Discussion

In this study, we used an eQTL reference panel from GTEx to conduct meta-analysis
of TS-TWAS on nicotine addiction over 13 brain tissues in two large cohorts, UKBB and
GSCAN. The meta-analysis was shown to be more powerful than the multi-tissue TWAS
method implemented in S-MultiXcan [12], by detecting more nicotine addiction associated
genes while accounting for the heterogeneity across multiple brain tissues. In addition
to detecting more associated genes, gene categorization by meta-patterns identified three
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novel clusters of genes common to both cohorts, including 20 genes homogeneously
associated in all brain tissues, 8 genes partially homogeneously associated mainly in the
cortex and cerebrum, and 10 genes with tissue-specific association. Several well-known
nicotine-addiction-associated genes, including CHRNA5, PSMA4, and CHRNA3, were
identified and their cross-brain-tissue-association patterns were revealed. To the best of
our knowledge, our study was the first comprehensive meta-analysis of TWAS on nicotine
addiction across 13 major brain tissues, investigated and validated in two large-scale
epidemiological cohorts (UKBB and GSCAN).

The first cluster of genes was enriched in pathways related to presynaptic and postsy-
naptic nicotinic acetylcholine receptors, as marked by the gene CHRNA5. Previous GWAS
have identified multiple reproducible variants in CHRNA5 [29,31], which were attributed to
functions in both the enhancement and aversion of nicotine intake [42]. We further showed
in our study that CHRNA5 was highly expressed in all brain tissues, and its association
with CPD was consistent throughout the brain. The second cluster was marked by the
proteasome gene PSMA4. Its association with CPD was prominent in the frontal lobe (e.g.,
frontal cortex BA9 and anterior cingulate BA24), cerebellum/cerebellar hemisphere, and
hippocampus tissues. The enriched biological pathways were driven by PSMA4, playing
a central role in decreasing neuronal proteasome activity [43]. Another nicotinic acetyl-
choline receptor gene, CHRNA3, was observed in the third cluster with tissue-specific
association with CPD only in putamen basal ganglia and nucleus accubens basal ganglia.
The elevated dopamine activity in the basal ganglia region of cigarette smokers has been
identified for the enriched pathways driven by CHRNA3 in the previous studies [44,45].
These findings showed the strength of our comprehensive meta-analysis of TWAS on CPD
that identified novel clusters of genes with unique meta-patterns across tissues, inferring
different biological function.

TWAS are getting popular over recent years as a promising complement to GWAS by
incorporating the functional annotation information and analyzing association with the
trait at the gene level. Despite the foreseen success, most TWAS methods to date are tissue
specific and ignore the similarity in transcription regulation across tissues, usually having a
limited effective sample size and, thus, being underpowered [13]. Our study performed the
meta-analysis of TS-TWAS across 13 brain tissues on nicotine addiction and categorized the
identified genes by their meta-patterns across tissues. Such a meta-analytical framework
can be applied to study other addictions (such as alcohol [46] and cannabis use [47]) and
disorders strongly associated with altered brain structure as well as explore potential
distinct gene clusters in specific brain regions. In addition, it is widely applicable to analyze
other traits through the targeting of other tissues and eQTL reference panels (e.g., blood [48]
and lung [49]). One of the main challenges of the TWAS approach is that it is difficult to
prioritize causal genes due to co-regulation [7]. A Mendelian randomization framework
incorporated into the TWAS for identification of putative causal inference needs to be
conducted to carve out this issue [10,50,51]. Further studies, such as the application of
fine-mapping methods (e.g., FOCUS [52]), will be needed to confirm our meta-TWAS
results and to distinguish the causal genes for nicotine addiction, which can improve our
understanding of the genetic basis of brain-related disorders.

Lastly, our results are based on analyzing two big cohorts, UKBB and GSCAN, so are
more generalizable to the general population. Though the UKBB cohort consists of mainly
healthier participants, health volunteer selection bias will not largely affect the credibility
of results, as has been noted in several previous studies [53–55]. Future studies can be
conducted to correct this health volunteer effect, such as propensity scores modification [56]
and weighted analysis [57], to further improve the generalizability of the study results.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes13010037/s1, Figure S1: Manhattan plots of the tissue-specific
(TS-TWAS) results from the UKBB cohort. Y-axis is the −log10(pgs) from S-PrediXcan. An FDR
cutoff of 0.05 was shown as a blue line. Genes passing this FDR cutoff were labeled in black color.
Table S1: the prevalence (%) of self-reported health conditions among 142,202 UKBB participants
with available genotypic and CPD data. Table S2: the frequency of alcohol and cannabis consumption
among 142,202 UKBB participants with available genotypic and CPD data. Supplementary file 1: a
comparison of brain tissue-specific genes between the associations with nicotine dependence (e.g.,
CPD) from both the UKBB cohort and GSCAN cohort. Supplementary file 2: full output of pathway
enrichment analysis for each our detected meta-pattern category.
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