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Abstract: The development of hair follicles in yak shows significant seasonal cycles. In our previous
research, transcriptome data including mRNAs and lncRNAs in five stages during the yak hair
follicles (HFs) cycle were detected, but their regulation network and the hub genes in different
periods are yet to be explored. This study aimed to screen and identify the hub genes during yak HFs
cycle by constructing a mRNA-lncRNA co-expression network. A total of 5000 differently expressed
mRNA (DEMs) and 729 differently expressed long noncoding RNA (DELs) were used to construct
the co-expression network, based on weighted genes co-expression network analysis (WGCNA). Four
temporally specific modules were considered to be significantly associated with the HFs cycle of yak.
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the modules are enriched
into Wnt, EMC-receptor interaction, PI3K-Akt, focal adhesion pathways, and so on. The hub genes,
such as FER, ELMO1, PCOLCE, and HOXC13, were screened in different modules. Five hub genes
(WNT5A, HOXC13, DLX3, FOXN1, and OVOL1) and part of key lncRNAs were identified for specific
expression in skin tissue. Furthermore, immunofluorescence staining and Western blotting results
showed that the expression location and abundance of DLX3 and OVOL1 are changed following the
process of the HFs cycle, which further demonstrated that these two hub genes may play important
roles in HFs development.

Keywords: hair follicles cycle; lncRNA-mRNA; WGCNA; hub genes; yak

1. Introduction

The yak (Bos grunniens) is a key and symbolic species on the Tibetan Plateau. To resist
the arctic–alpine and hypoxic environments, in addition to being covered with coarse wool
in yak skin, a layer of undercoat (yak cashmere) grows on the bottom. Yak cashmere is a
valuable textile material with fine fibers, similar to cashmere, and it has the characteristics
of soft texture and warm performance, compared with coarse wool. This double-coated
structure may be the result of yak adapting to the alpine environment for a long time.
Coarse wool is derived from primary hair follicles (PHFs) and cashmere is derived from
secondary hair follicles (SHFs). In yak, the scapular region, back, and side are prolific with
cashmere, the abdomen is mainly coarse hair. The hair of yak is important for pastoralist’s
living materials and economic benefit in the Tibetan Plateau. Similar to cashmere goats, the
SHFs of yak also undergo a clear seasonal circulation. A growth cycle mainly consists of
growth (anagen), regression (catagen), and a rest stage (telogen) [1].

The hair follicles maintain its normal periodic activity is the result of response to
multiple signaling molecules and their complex interactions, these signals may differently
express in stages or specifically express in skin tissue. Over the past several decades, a
large of signals involving in HFs development have been revealed and studied extensively.
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Several important cytokines, such as IGF1, EGF, PDGF, hepatocyte growth factor, and VEGF,
have been shown to control the maintenance in anagen of HFs [2,3]. FGF5, BDNF, p53,
TGFβ1, and BMPR1a were identified to promote the induction of catagen [4–7]. In addition,
transcription factors, such as MSX2/FOXN1 [8], HOXC13 [9], LHX2 [10], GATA3 [11],
DLX3 [12], and LEF1 [13], were reported playing critical roles in hair follicle stem cell
(HFSCs) activation, differentiation, and self-renewal by modulating the key pathways
associated with hair follicle development. The pathways Wnt, BMP, Shh, Notch, and MAPK
have been indicated as being involved in the regulation of hair cycle [14–16]. Anagen onset,
for instance, is induced by an elevation in Wnts and the inhibition of BMP [17].

Long non-coding RNAs (lncRNAs) are defined as the transcripts of greater than 200 nt
in length and no protein encoding ability. In recent years, lncRNAs have been reported as
participating in various biological processes, including epigenetic regulation, cell cycle, cell
differentiation, and proliferation, and were identified as vital regulators playing roles in
the regulation of the chromatin structure or modulating the activity of proteins, mRNAs,
or miRNAs [18]. The significantly seasonal change of the HFs in yak is important for
its adaptability to alpine environment, which also makes yak an excellent model for the
study of HFs cycle. In our previous works, transcriptome data, including mRNA and
lncRNA, were measured in yak scapular skin at five time points (Jan., Mar., Jun., Aug.,
Oct.) during the HFs cycle, and the transcription characteristics and expression were,
respectively, analyzed [19,20]. These five time points represent the critical stages during
yak hair follicle cycling, among which, Jan. and Mar. are catagen and telogen, respectively,
Aug. and Oct. are anagen, and Jun. is the transitional period from telogen to anagen. The
regulatory genes and molecular interactions may have changed at different stages. Here,
the mRNA-lncRNA co-expression network were constructed to further analyze, excavate,
and explicit the molecular regulatory relationship and hub genes during yak hair cycle, on
the basis of our previously elaborated studies.

Weighted gene co-expression network analysis (WGCNA) is a widely used system
for biological analysis. Based on the correlation between changes in gene expression
signal values, it can be used to find highly correlated gene clusters (modules). Associating
modules with external sample features or clinical character, and select hub genes within key
modules, could be used as biomarkers or therapeutic targets in medicine [21]. Studies using
WGCNA methods revealed the gene modules, signaling pathways, and hub genes that are
associated with bovine fat deposition and mastitis development [22,23]. In goat, temporally
specific modules and hub lncRNAs associated with goat skeletal muscle development
were identified [24]. Compared with differential expression analysis, WGCNA can be used
to better analyze the changes of overall biological processes, and the application in the
study of dynamic changes of hair follicle development will be helpful in excavating more
biological information related to the hair cycle.

2. Materials and Methods
2.1. Sample Collection

Yak tissues were used in tissue-specific detection, including skin, small intestine, heart,
liver, spleen, lung, kidney, subcutaneous fat, muscle, the testis, which were collected after
slaughter and immediately frozen in liquid nitrogen for further processing. There were
three replicates in each HFs development stage and 15 RNA samples were used for RT-
qPCR to verify the expression abundance of hub genes at different developmental stages of
hair follicles in yak. The RNA samples were obtained from our laboratory from a previous
experiment [19]. Skin tissues used in immunofluorescence and WB were collected in Jan.,
Apr., and Sep., according to the previous method [19]. All yaks in this study were from
the Tianzhu white yak propagation bases of Wuwei City, Gansu Province of China. The
experimental procedures were approved by the Animal Care and Use Committees of the
Lanzhou Institute of Animal Science and Veterinary Medicine, the Chinese Academy of
Agricultural Sciences.
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2.2. Data Information and Data Selection

The data in this study used previous preliminary transcriptome sequencing results [19,20].
Additionally, the data also can be obtained from the public dataset PRJNA550233 in the
National Center for Biotechnology Information (NCBI) BioProject (https://www.ncbi.nlm.
nih.gov/bioproject/PRJNA550233, accessed on 20 October 2020). PRJNA550233 includes
15 yak skin samples from 5 developmental time points during the yak hair cycle (Jan., Mar.,
Jun., Aug., Oct.), with three repetitions in each time point. The PRJNA550233 dataset were
generated using the HiSeq 2500 Illumina sequencing platform. In the present study, the
FPKM data of mRNAs and lncRNAs at five time points in follicular development were
used for pairwise comparisons, and the genes with significant differences in at least one
comparison group can be used as differentially expressed mRNAs (DEMs) or differen-
tially expressed lncRNAs (DELs). TheDEMs and DELs were screened with the criteria
of p-value < 0.05 and |log2 (FPKMtime1/FPKMtime2)| ≥ 1. The comparison results of
the DEMs and DELs are listed in Table S1 and Table S2, respectively, which were used for
WGCNA analysis.

2.3. Co-expression Network Construction and KEGG Enrichment Analysis

The R package WGCNA V1.64.1 was used to construct lncRNA-mRNA co-expression
network based on the FPKM data of DEMs and DELs [21]. A signed weighted correlation
network was built by calculating gene expression similarity to create an adjacency matrix. In
this study, we selected a soft threshold power, β = 9, to establish the co-expression network,
so that the correlation between genes conformed to the scale-free network distribution.
One step network module was constructed by merging genes with highly similar co-
expression patterns into modules. The dynamic tree cut algorithm—with parameters set as:
minModeSize = 30, mergeCutHeight = 0.25—was employed to cut the hierarchal clustering
tree. Gene modules were distinguished as different colors, and were indicated by different
branches on the clustering tree. The eigengenes of each module was determined. To
identify temporal specific modules, the correlations of these modules with the different
developmental stages in the yak hair cycle were investigated using WGCNA package. The
module eigengenes closely related to specific time points were screened as temporally
specific modules. Protein-coding genes of each key module were submitted to DAVID for
KEGG pathway enrichment analysis. Bos mutus was used as a background list in DAVID.
The default parameters of the number of genes greater than 2 and p value < 0.1 were used
as thresholds to output the KEGG pathway enrichment results of different modules. Top 20
KEGG pathways of different modules were visualized using ggplot2 R package.

2.4. Analysis of Temporally Specific Co-expression Network

The co-expression networks closely related to distinct stages were, respectively, an-
alyzed and visualized by Cytoscape (version 3.5.1). Cytohubba was applied to calculate
the topological parameters of the nodes and screen the key nodes identified as hub genes.
Meanwhile, protein–protein interaction (PPI) network analyses were used to analyze the
interaction of interested eigengenes into the STRING database (https://string-db.org, ac-
cessed on 6 June 2021). The medium confidence of the PPI network was set as the interaction
score > 0.4 and visualized by Cytoscape.

2.5. RNA Extraction, Real-Time Quantitative PCR, and PCR Detection

Total RNA of the tissues was isolated using the Trizol reagent (Invitrogen, Wilming-
ton, NC, USA). The RNA concentration and quality were evaluated using a NanoDrop
spectrophotometer (Thermo Scientific, Wilmington, DE, USA). The first-strand cDNA was
synthesized using the PrimeScriptTM RT reagent kit (Takara, Dalian, China) according to
the manufacturer’s instructions. The RT-qPCR was performed using TB GreenTM Premix
Ex Taq II (Takara, Dalian, China), and the following reaction conditions were used: 95 ◦C
for 3 min, followed by 40 cycles of 95 ◦C for 10 s, and 60 ◦C for 30 s. The relative expres-
sion of genes was normalized using GAPDH and analyzed with the 2−∆∆Ct method. PCR

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA550233
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https://string-db.org
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amplification was performed using the 2 × EasyTaq PCR SuperMix (TransGen Biotech,
Beijing, China). The PCR procedure was as follows: 95 ◦C for 3 min, followed by 35 cycles
of 95 ◦C for 30 s, 60 ◦C for 30 s, and 72 ◦C for 20 s, and a final extension step was 72 ◦C for
5 min. β-actin and GAPDH were amplificated as two internal references. PCR amplification
products were detected by 1.5% agarose gel. The primers used for RT-qPCR and PCR are
listed in Table S3 and designed with oligo 6.

2.6. Histology and Immunofluorescence

Skin samples in different stages were sliced into 7 µm sections with a freezing micro-
tome (Leica, Wetzlar, Germany), then, the sections were stained with primary antibodies
overnight at 4 ◦C for immunofluorescent staining. The primary antibodies and dilutions
used were anti-DLX3 (PA5-101065; ThermoFisher, USA, 1:100) and anti-OVOL1 (PA5-41480;
ThermoFisher, USA, 1:100). Subsequently, secondary antibodies—Alexa Fluor® 488 goat
anti-rabbit (ab15007; abcam, 1:500)—were used to incubate against the specifical primary
antibody. DAPI (Solarbio, Beijing, China) was used for nuclei staining. The slides were
examined using fluorescence microscope (Leica, Germany).

2.7. Western Blotting

Total protein of yak skin tissues was extracted with RIPA Lysis Buffer containing
protease inhibitor and protein phosphatase (Beyotime, Shanghai, China), and protein
concentrations were determined by BCA Protein Assay Kit (Beyotime, Shanghai, China).
The protein expression levels of DLX3 and OVOL1 in different developmental stages were
quantified using a capillary-based “WES” Simple Western System (ProteinSimple, San Jose,
CA, USA), according to the manufacturer’s instructions. The primary antibody information
was as follows: anti-OVOL1 (PA5-41480; ThermoFisher; 1:50), anti-DLX3 (PA5-101065;
ThermoFisher; 1:50), and GAPDH (10494-1-AP, Proteintech; 1:1000). The relative protein
expression was calculated and analyzed based on the gel-like images produced by the
Compass for SW software (Version 4.0, Protein Simple, SanJose, CA, USA).

2.8. Statistical Analysis

All the experiments were repeated three times. The statistical analyses were performed
by GraphPad Prism 8.0 software and the data were presented as the mean ± SEM. One-
way ANOVA and the Dunnett’s test were used for multiple comparisons. p < 0.05 was
considered to be statistically significant.

3. Results
3.1. Construction of mRNA-lncRNA Co-expression Network

Total 5000 differently expressed mRNAs (DEMs) (Table S1) and 728 differently ex-
pressed lncRNAs (DELs) (Table S2) were identified and used to construct the mRNA-
lncRNA co-expression network by WGCNA software package in R. Nine co-expression
modules were established (Figure 1a), excluding the genes in grey module that cannot
be assigned to co-expression module. Number of the genes in different modules varied
widely, from 45 genes in the magenta module to 1599 in turquoise module (Table S4). An
eigengene adjacency heatmap was generated to explore the correlations between the mod-
ules and the dendrogram branches with positively correlated eigengenes were grouped
together (Figure 1b). Then, the heatmap was established for the correlation analysis be-
tween the stages of HFs development and module eigengenes to identify the temporally
specific modules. As shown in Figure 1c, each stage was related to a module that has a
high correlation with it. The yellow module has a high correlation with Jan. (cor = 0.85,
p = 4 × 10−5); the turquoise module is closely associated with Mar. (cor = 0.74, p = 0.002);
the red module is closely associated with Jun. (cor = 0.79, p = 5 × 10−4); the blue module
is significantly associated with Oct. (cor = 0.69, p = 0.004). Therefore, the four modules
were screened as temporally specific modules for the further functional analysis. Due to
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the black module closely associated with Aug., containing a smaller number of genes that
failed in the functional enrichment analysis, Aug. was excluded.
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Figure 1. Construction of mRNA-lncRNA co-expression modules of yak HFs cycle based on DEMs
and DELs. (a) Clustering dendrograms of co-expression network modules, each module was assigned
a color. (b) The adjacency heatmap of eigengene. Below is the module clustering heatmap, above
is the module clustering tree—high adjacency was shown in red, low adjacency was shown in blue.
(c) Correlation analysis of modules and different periods of hair cycle. The upper number in the color
block represents the correlation, below is the P value. Red indicates a positive correlation and blue
indicates a negative correlation.

3.2. Function Enrichment Analysis

To understand the biological functions of the temporally specific co-expression mod-
ules, KEGG enrichment analysis was performed by submitting the mRNAs in key modules
to DAVID database (Tables S5–S8). KEGG enrichment results showed that the pathways,
such as Basal cell carcinoma, Melanogenesis, Tight junction, and Wnt signaling pathway,
were enriched in the blue module that related to Oct. (anagen), these pathways were re-
ported to highly express anagen or involve induction of anagen hair follicle differentiation.
The TNF signaling pathway, platelet activation, ECM–receptor interaction and PI3K-Akt
signaling pathway, the pathways that involved in promoting hair follicle neogenesis, and
those inducing folliculogenesis, were enriched in turquoise and red modules, the two
modules are closely associated with Mar. and Jun., respectively. Mar. is in the telogen, and
Jun. is in the transition of telogen to anagen during HFs cycle. In the yellow module, the
cAMP signaling pathway, the MAPK signaling pathway, and the Ras signaling pathway
were enriched, which were reported as involving in the induction of early catagen transi-
tion or hair loss. Furthermore, focal adhesion was enriched in several modules, including
red, turquoise, and blue, implying that the pathway may play an essential role in hair
follicles development (Figure 2a). Meanwhile, the scatterplot of gene significance (GS)
for each period vs. module membership (MM) of their associated modules were plotted
(Figure 2b). The results showed that all the GS and MM exhibit very significant correlation,
suggesting that hub genes in the key modules also tend to be highly correlated with their
closely related stages, which also demonstrated the reliable biological significance of these
co-expression modules.



Genes 2022, 13, 32 6 of 14Genes 2022, 13, x FOR PEER REVIEW 6 of 14 
 

 

 

Figure 2. KEGG enrichment analysis of the key modules. (a) KEGG analysis of four temporally spe-

cifical modules including blue, red, turquoise, and yellow modules. The top 20 terms in different 

modules were visualized—if the enrichment result in a module were less than 20, all the terms 

would be showed. (b) The scatterplot of module membership (MM) vs. gene significance (GS) of the 

four modules in their associated periods, respectively. 

3.3. Screening of The Hub Genes in Temporally Specific Modules  

To further analyze the potential regulatory relationship and screening the hub genes 

in the co-expression modules, the co-expression mRNA- lncRNA networks of the yellow, 

turquoise, red, and blues modules were analyzed, respectively. Genes of the top 100 de-

gree of connectively in the different module networks were calculated and visualized us-

ing Cytohubba tab in Cytoscape. In the co-expression networks, the larger the node is, the 

higher connectivity in the network can be regarded as a potential hub regulator (Figure 

3). The results showed that FER, UGGT1, BDP1, and MED13 were identified to be the hub 

genes in the yellow module (Figure 3a). ELMO1, CPEB1, and PID1 were located the hub 

position in the turquoise network (Figure 3b). KDELR3 and PCOLCE were the hub genes 

in the red module (Figure 3c). In the co-expression network of the blue module, multiple 

transcription factors, including HOXC13, FOXN1, MSX2, CUX1, DLX3, and OVOL1, and 

keratins, such as KRT35, KRT32, and KRT82, which were the crucial regulators or structure 

proteins for the HFs development, were revealed, and had a higher connectivity in the 

networks (Figure 3d). All the lncRNAs were at the relative lower degree in the networks. 

In general, this section screened and visualized the hub genes in different period of HFs 

development in yak. 

  

Figure 2. KEGG enrichment analysis of the key modules. (a) KEGG analysis of four temporally
specifical modules including blue, red, turquoise, and yellow modules. The top 20 terms in different
modules were visualized—if the enrichment result in a module were less than 20, all the terms would
be showed. (b) The scatterplot of module membership (MM) vs. gene significance (GS) of the four
modules in their associated periods, respectively.

3.3. Screening of The Hub Genes in Temporally Specific Modules

To further analyze the potential regulatory relationship and screening the hub genes
in the co-expression modules, the co-expression mRNA- lncRNA networks of the yellow,
turquoise, red, and blues modules were analyzed, respectively. Genes of the top 100 degree
of connectively in the different module networks were calculated and visualized using
Cytohubba tab in Cytoscape. In the co-expression networks, the larger the node is, the
higher connectivity in the network can be regarded as a potential hub regulator (Figure 3).
The results showed that FER, UGGT1, BDP1, and MED13 were identified to be the hub
genes in the yellow module (Figure 3a). ELMO1, CPEB1, and PID1 were located the hub
position in the turquoise network (Figure 3b). KDELR3 and PCOLCE were the hub genes
in the red module (Figure 3c). In the co-expression network of the blue module, multiple
transcription factors, including HOXC13, FOXN1, MSX2, CUX1, DLX3, and OVOL1, and
keratins, such as KRT35, KRT32, and KRT82, which were the crucial regulators or structure
proteins for the HFs development, were revealed, and had a higher connectivity in the
networks (Figure 3d). All the lncRNAs were at the relative lower degree in the networks.
In general, this section screened and visualized the hub genes in different period of HFs
development in yak.
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Figure 3. The co-expression network of the genes in top 100 connectivity in the key four modules. The
networks are represented with their corresponding module colors, including the yellow, turquoise,
red, and blue module networks (a–d). Genes in the red module network are less than 100 that were all
exhibited. Circle represents mRNAs, diamond represents lncRNAs, the V shape in the blue network
represents the keratins. The size of nodes represents the connectivity of genes in the co-expression
network—the larger the nodes, the higher the connectivity and the more critical it is in the network
and could be used as hub genes.

3.4. PPI Analysis and Expression Characteristics Detection of The Hub Genes in the Blue Module

Blue module was closely related to Oct. (Figure 1c), a period of full anagen during yak
HFs cycle. In the blue module network, it was found that multiple hub genes were reported
as being involved in HFs development. To further investigate the relationship between
these hub regulators, PPI analysis was performed of the blue network. A subnetwork
consisting of a series of transcription factors, such as HOXC13, MSX2, LEF1, DLX3, and
FOXN1, and keratins including KRT32, KRT35, and KRT82, that were involved in HFs
development, were presented in the PPI network (Figure 4a), which further indicates that
these key genes may interact synergistically, promoting the hair growth. Then, the tissue
specificity of part of the hub genes in the blue network and the PPI subnetwork were
detected by PCR method. PCR result showed that, in addition to keratins, the expressions
of WNT5A, HOXC13, DLX3, FOXN1, and OVOL1 were also relatively specific in their
expressions in skin (Figure 4b); these five genes also have been reported to be crucial
regulators in HFs development. Then, the Pearson correlation coefficient between mRNAs
and DELs were analyzed (Table S9), the DELs with a Pearson correlation coefficient (r) > 0.9
or −0.9 and p value < 0.05 with the five key regulators were visualized. There were 27 DELs
that were found closely associated with the five regulators, among which, four DELs were
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negatively correlated, and others were positively correlated (Figure 4c). The expression
of lncRNAs were reported to be spatially and temporally specific [25]. Six lncRNAs were
randomly selected for tissue specific detection, and the result showed that part of the
lncRNAs relatively specific expressed in skin (Figure 4b). Moreover, the expression changes
of WNT5A, HOXC13, DLX3, FOXN1, and OVOL1 in different stages of HFs cycle were
detected using RT-qPCR, which could also represent the expression trend of the genes in the
blue module. The result showed that the five genes were highly expressed in anagen (Aug.
and Oct.) (Figure 4d), consisting with the general expression trend of the blue module,
analyzed by WGCNA. These results further identified and characterized the hub genes in
blue, and analyzed the lncRNAs which interacted with key mRNAs.
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Figure 4. Analysis of PPI and expression characteristics of the hub genes in the blue module. (a) A
subnetwork of PPI analysis result for the top 100 genes in the blue module. (b) PCR detected the
tissue specific of a part of hub genes in the blue module network. The lanes from left to right represent
the negative control, skin, small intestine, heart, liver, spleen, lungs, kidney, fat, muscle, testis, and
2000 Marker. (c) The interaction network of five mRNAs that specifically expressed in skin with its
associated lncRNAs, which was analyzed by the Pearson correlation coefficient (Pearson correlation
≥0.90 or ≤0.90) and visualized by Cytoscape. The circles in blue represent lncRNAs and the triangles
in yellow represent the mRNAs. The lines in blue and the arrows indicate negative effect, and others
represent positive regulation. (d) RT-qPCR results for WNT5A, HOXC13, DLX3, FOXN1, and OVOL1
during the HFs cycle of yak.

3.5. Spatial–Temporal Expression Analysis of DLX3 and OVOL1 during Yak HFs Cycle

In order to further identify the hub genes that may play crucial roles in HFs develop-
ment, DLX3 and OVOL1 were selected to analyze the spatiotemporal expression in protein
level during the HFs cycle. DLX3 and OVOL1 were found located a core position in the blue
co-expression network and their roles in HFs development of yak have been poorly studied.
Immunofluorescent staining results showed that the expression abundance and location of
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DLX3 and OVOL1 in protein level changed during yak hair cycle. DLX3 expression was
detected in the outer root sheath throughout the hair follicle cycle. Besides, by anagen stage
DLX3 was specifically expressed in matrix and hair shaft, and was presented in epidermis
chain of catagen. In telogen, DLX3 is highly expressed in the telogen bulge (Figure 5a).
The result suggested that DLX3 may play a role in the whole process of the HFs cycle, a
phenomenon which could also be reflected in Figure 5c. OVOL1 expression was detected in
the hair matrix in anagen, and is mainly presented in the inner root sheath of the lower part
of hair follicle in early anagen, full anagen, and later anagen. In catagen and telogen, the
expression of OVOL1 is weaker, implicating that OVOL1 mainly regulates the growth of
hair follicles in anagen (Figure 5b), and this expression distribution could also be observed
in Figure 5c. Then, WB was used to determine the expression of DLX3 and OVOL1 in Jan.
(catagen), Apr. (telogen), and Sep. (anagen), the result was basically consistent with the
result of immunofluorescent. Both DLX3 and OVOL1 are highly expressed in Sep. (anagen).
Compared with OVOL1, DLX3 has a higher expression abundance in each stage, and the
expression of OVOL1 is lowest in Jan. (catagen) (Figure 5d).
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Figure 5. Detection of spatiotemporal expression of DLX3 and OVOL1 during yak HFs cycle by
immunofluorescence. (a,b) The expressions of DLX3 (a) and OVOL1 (b) were detected using anti-Dlx3
and anti-Ovol1 antibody (green), respectively, in hair follicle at telogen, early anagen, full anagen,
later anagen, and catagen. Staining in each period was represented by a single hair follicle—blue
indicates DAPI staining. (c) Panoramic display of a microscope field in 10× of DLX3 (upper) and
OVOL1 (lower) immunofluorescence staining. (d) Western blot analyses for DLX3 and OVOL1
protein levels in Jan. (catagen), Apr. (telogen), and Sep. (anagen), during yak HFs cycle, and the
quantitative analysis of gray value were shown in histograms. Data are presented as mean ± SEM
for 3 biological replicates; * p < 0.05; ** p < 0.01.
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4. Discussion

The hair cycle of mammals includes anagen, catagen, and telogen. The periodic
transformation of the hair cycle is regulated by multiple signaling molecules and complex
interactions between the epidermis and dermis. In animal husbandry, the normal hair
cycle is of great significance to the economic benefit of fiber-producing animals, such
as cashmere goat, sheep, and angora rabbit. The seasonal cycling of secondary HFs
allows yak to have a thicker coat in cold winters and molt in warmer seasons, which are
crucial for yak’s resistance to the alpine and harsh environments. In the present study,
the differently expressed mRNAs and lncRNAs of yak skin at different stages during HFs
cycling (Tables S1 and S2) was used to construct the mRNA-lncRNA co-expression network
by WGCNA. There were four temporally specific modules that were found closely related
to different HFs development stages, respectively (Figure 1c). These modules could be
applied to screen and identify the hub genes and important signaling pathways of different
periods of HFs cycle. KEGG analysis result showed that the signaling pathways enriched in
the modules are consistent with the biological process of that module closely related period
(Figure 2a). Wnt, basal cell carcinoma, melanogenesis, and tight junction were enriched
in the blue module. Wnt has been considered as a key signaling pathway that drives HFs
anagen induction and is required for hair follicle growth and regeneration [26,27]. Basal
cell carcinoma, melanogenesis, and tight junction were reported to be highly expressed in
anagen or as involving the induction of anagen hair follicle differentiation [28–30]. ECM–
receptor interaction and PI3K-Akt signaling pathways were enriched in both the red and
the turquoise modules. EMC plays an important role in the hair follicle stem cell niche-
regulating, bulge cell behavior and hair follicle regeneration [31,32]. PI3K-Akt signaling
is essential for de novo hair follicle regeneration [33]. Mar. is the telogen of yak HFs
cycle; Jun. is the transitional period from telogen to anagen. During the stage of telogen
to early anagen, the hair follicle stem cells transform from a quiescent to activated state,
and this is a crucial stage of hair follicle neogenesis. Besides, platelet activation and TNF
signaling pathways that involved in inducing folliculogenesis and promoting of hair follicle
neogenesis were also enriched in turquoise and red modules [34,35]. In the yellow module,
the cAMP signaling pathway [36], the MAPK signaling pathway [37], and the Ras signaling
pathway [38] were reported to be involved in induction of early catagen transition or hair
loss, the functions coincide with the biological process of HFs in Jan. (catagen). Thus,
KEGG enrichment analysis revealed the biological functions of the temporally specific
modules, as well indicated the validity of our module construction.

In this study, hub genes of the key modules were screened. Genes located at the core
of the network could be focused on as key regulatory genes. Fer is a hub gene located at
the core of the yellow module network (Figure 3a), which was reported to be involved in
the growth and metabolism of various epithelial tumors and was deemed to an important
positive regulator of melanoma metastasis. A lack of Fer kinase in melanocytes emerged an
in impaired activity of Wnt/β-catenin signaling pathway [39]. In the turquoise module
(Figure 3b), the hub gene ELMO1 was reported playing an unexpected role in the clearance
of apoptotic cells and in the maintenance of homeostasis [40]; CPEB1 inhibits epiderm–
mesenchymal transformation and regulates cell cycles [41]. These functions of the hub genes
may contribute to the maintenance and dynamics in telogen. PCOLCE and KDELR3 are the
prominent hub genes in red module associated with Jun. (Figure 3c). PCOLCE was reported
to be an important factor in the transition from telogen to anagen [42], and the expression
of KDELR3 is associated with the development of melanocytes and the progression of
melanoma [43]. Furthermore, several hub genes found in the blue module (Figure 3d),
including MSX2, FOXN1 [8], HOXC13 [44], DLX3 [12], OVOL1 [45], LEF1 [46], TCHH,
and PADI3 [47,48], are well known to be crucial regulators of hair follicle development
and are located in the core of the network. In addition, more keratins, such as KRT82,
KRT35, KRT35, KRT28, and KRT71, were showed in the blue module. The blue module was
related to anagen (Oct.); anagen is the longest stage of the hair follicle development cycle,
accounting for more than half of the whole growth cycle. The anagen in yak hair cycle
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is from about Jun. to Dec. Moreover, researchers are also likely to focus on growing hair
follicle due to the intact morphology, which may lead to more genes involved in regulation
of hair follicle development to be found in the blue module. The intuitive display of
hub genes in different stages of the hair cycle would provide reference information for
further mining of regulators related to the hair cycle and reveal the mechanism of hair
follicle development.

Multiple regulators and keratins in the blue co-expression network (Figure 3d) were
also found to constitute a PPI network (Figure 4a), which further indicates that these genes
may interact with each other in hair follicle development. Among these key genes, in
addition to several keratins, the regulators WNT5A, HOXC13, DLX3, FOXN1, and OVOL1
were also found to be specifically expressed in skin tissue (Figure 4b). The regulators
WNT5A, HOXC13, and FOXN1 have been widely reported to play important roles in hair
follicle development [8,9,49].

DLX3 and OVOL1 were two hub genes in the blue module and were specifically
expressed in skin. DLX3 is a transcription factor that regulates epidermal, neural, and
osteogenic cellular differentiation [12]. OVOL1 is a putative transcription factor and is
mainly involved in hair formation and spermatogenesis [50]. In the present research,
DLX3 was shown to be expressed in the outer root sheath, throughout the hair follicle
cycle, and expressed in matrix and hair shaft in anagen, and in the epidermis chain in
catagen (Figure 5a). Detection of the expression position of DLX3 in our study is consistent
with previously reported data [12]. Our results intuitively and globally demonstrated
the expression of DLX3 in yak hair follicle. Changes of DLX3 in expression abundance
and location during the HFs cycle further evidenced that DLX3 is a crucial regulator in
hair morphogenesis, differentiation, and cycling programs. OVOL1 was detected, mainly
presenting in the inner root sheath of the lower part of the hair follicle in the early anagen,
mid-anagen, and later anagen, and was expressed in the hair follicle matrix in mid-anagen
(Figure 5b); the result is consistent with the confirmed expression of OVOL1 in the inner root
sheath of human hair follicle [45,51]. The OVOL1–OVOL2 axis was reported to be crucial
for the normal development of hair follicles in murine. OVOL1-deficient mice indicate
ruffled hair coat and hair abnormalities [50]. However, the role of OVOL1 in the hair follicle
cycle is rarely reported. Our study of OVOL1 expression changes during yak hair follicle
cycle will provide clues to reveal the specific function of OVOL1 in HFs development.

5. Conclusions

In summary, a lncRNA-mRNA co-expression network was constructed to identify the
key pathways and the hub genes closely related to the development of yak HFs cycle. A
series of well-known biological processes or pathways associated with HFs development
were enriched by analyzing the temporally specific co-expression gene modules. The crucial
genes in different stages of yak HFs cycle were screened by co-expression network analysis,
combined with different molecular experimental methods. Our findings systematically
elucidated the biological processes and important regulators during the development of
yak HFs cycle, which would contribute to better understanding of molecular mechanism in
the development of hair follicle and provide a useful reference information for molecular
breeding in yak hair traits.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes13010032/s1, Table S1: Differentially expressed mRNAs used for co-expression analysis,
Table S2: Differentially expressed lncRNAs used for co-expression analysis, Table S3: Primers used
in quantitative PCR analysis and PCR, Table S4: WGCNA module membership for each gene and
lncRNA, Tables S5–S8: Results of gene enrichment analysis for each module, including yellow,
turquoise, red, and blue modules, respectively, Table S9: Pearson correlation analysis between
mRNAs and DELs.
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