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Abstract: Long-term shift work is widely believed to increase the risk of certain cancers, but con-

flicting findings between studies render this association unclear. Evidence of interplay between the 

circadian clock, cell cycle regulation, and DNA damage detection machinery suggests the possibility 

that circadian rhythm disruption consequent to shift work could alter the DNA double-strand break 

(DSB) repair pathway usage to favor mutagenic non-homologous end-joining (NHEJ) repair. To test 

this hypothesis, we compared relative usage of NHEJ and single-strand annealing (SSA) repair of a 

complementary ended chromosomal double-stranded break using the Repair Reporter 3 (Rr3) sys-

tem in Drosophila between flies reared on 12:12 and 8:8 (simulated shift work) light:dark schedules. 

Actimetric analysis showed that the 8:8 light:dark schedule effectively disrupted the rhythms in 

locomotor output. Inaccurate NHEJ repair was not a frequent outcome in this system overall, and 

no significant difference was seen in the usage of NHEJ or SSA repair between the control and sim-

ulated shift work schedules. We conclude that this circadian disruption regimen does not alter the 

usage of mutagenic NHEJ DSB repair in the Drosophila male pre-meiotic germline, in the context of 

the Rr3 system. 
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1. Introduction 

Engagement in shift work that involves light during subjective night has been iden-

tified as a probable carcinogen [1]. Long-term shift workers have been suggested to be at 

heightened risk for cancers of the breast [2] (reviewed in [3,4]), prostate [5], and colon [6]. 

However, a recent combined prospective study and meta-analysis failed to support an 

association between shift work and breast cancer [7], and another recent study failed to 

support a link between night-shift work and prostate cancer [8]. Thus, the question of 

whether night-shift work is indeed a risk factor for cancer in humans remains unclear. 

The most immediate effect of night-shift work is the disruption of the circadian 

rhythm by exposure to light during subjective night, inconsistent sleep schedules, and 

irregular mealtimes (reviewed in [9–11]). Potential direct mechanistic links have been 

identified between circadian rhythm disruption and tumor promotion, including in-

creased expression of oncogenes [12], altered levels of inflammation-associated proteins 

[13,14], and disruption of the cell cycle (reviewed in [15]). Conversely, the expression of 

circadian clock genes has been noted to be disrupted in tumor cells (reviewed in [16]). A 

prominent indirect mechanistic link between long-term shift work and tumor promotion 

is increased obesity [17–20] and metabolic syndrome [17,21,22]. At the molecular level, 

circadian rhythm disruption produces metabolic abnormalities in rats [23], and impairs 

insulin sensitivity in human subjects [24]. Behavioral risk factor profiles associated with 
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shift workers have been proposed to play a role in this [10], including increased smoking 

[25] and alcohol consumption [26] among shift workers. 

The possibility of a mechanistic link between circadian rhythm disruption and tumor 

initiation is less well examined. The key event in tumor initiation is thought to be the 

accumulation of mutations via unrepaired or misrepaired DNA damage (reviewed in 

[27]). Some evidence does suggest that circadian rhythm disruption may impair DNA 

damage repair. Night-shift workers show decreased levels of 8-hydroxydeoxyguanosine 

excretion in the urine, which could be explained by the reduced ability to remove this 

oxidative lesion from the genome [28]. Another study showed that PER1 (Period Circa-

dian Regulator 1), a key component of the core circadian clock, physically interacts with 

the ataxia telangiectasia-mutated (ATM) protein, which is crucial for detecting and initi-

ating the cellular response to DNA double-strand breaks (DSBs). The same study showed 

that ATM also interacts with CHEK2 (checkpoint kinase 2), which mediates the cell cycle 

response to DNA damage. Additionally, PER1 sensitizes cells to ionizing radiation-in-

duced apoptosis, suggesting a directly protective role of circadian clock proteins against 

carcinogenic transformation [29]. Underscoring the possibility of a role for the circadian 

clock in the cellular response to DNA DSBs, a different core clock protein, TIM (timeless 

circadian regulator), was shown to interact with the DNA damage-sensing proteins ATR 

(ATR serine/threonine kinase) and ATRIP (ATR-interacting protein), and with the cell cy-

cle regulator CHEK1(checkpoint kinase 1). Furthermore, the interactions between TIM, 

ATRIP, and CHEK1 were enhanced by hydroxyurea-induced DNA damage [30]. 

A connection between the circadian clock and the cellular response to DSBs is espe-

cially salient because DSBs are a particularly genotoxic lesion. Since both strands are com-

promised, the potential for mutation is high. Genetic disorders that impair the ability to 

detect or repair DSBs are typically cancer prone syndromes (reviewed in [31]). DSBs can 

be repaired by a number of different pathways with varying degrees of fidelity (reviewed 

in [32]). The outcome of homologous recombination repair (HRR) depends on choice of 

template. HRR templated from an intact sister chromatid during late S or G2 can restore 

the original sequence, whereas HRR from the homolog in a heterozygous individual will 

result in the loss of heterozygosity (gene conversion). DSBs flanked by repeated sequences 

may be repaired by annealing of the complementary sequences with loss of the interven-

ing region, in a process called single-strand annealing (SSA) (reviewed in [33]). Non-ho-

mologous end-joining (NHEJ) DSB repair rejoins the ends directly, without consulting 

homologous sequence external to the break. In the case of a simple break with chemically 

undamaged DNA ends, the outcome of NHEJ may be a reconstitution of the original se-

quence. However, sequence changes at the repair site are common (reviewed in [34]). 

Repair pathway choice depends on a number of factors, including capacity to detect 

the break and cell cycle phase [35]. Evidence that the circadian clock machinery interacts 

with key proteins in both of these processes suggests the possibility that circadian rhythm 

disruption could influence DSB repair pathway choice, potentially leading to an increase 

in mutagenic repair. This would constitute a mechanistic link between circadian rhythm 

disruption and tumor initiation. 

To test the hypothesis that circadian rhythm disruption can alter DNA DSB repair 

pathway choice, we used the Repair Reporter 3 (Rr3) system [36] to examine the relative 

use of SSA and NHEJ repair of a complementary ended chromosomal DSB in fruit flies 

kept on a conventional 12:12 light:dark (L:D) schedule, and flies kept on an 8:8 L:D sched-

ule. The Rr3 system allows rapid visual identification of the DSB repair mechanism usage 

via expression of the fluorescent DsRed protein. The Rr3 construct contains a DsRed gene 

that is interrupted by a 147 bp repeat flanking a cut site for the I-SceI endonuclease. Repair 

of the endonuclease-induced break by SSA activates DsRed expression, and repair by 

NHEJ does not. Therefore, the repair mechanism can be identified by a simple visual 

screen. Flies containing both Rr3 and an I-SceI expression construct are generated by ap-

propriate crosses. Breakage and repair events take place in the male pre-meiotic germline, 

and are recovered by appropriate crosses to be scored in the next generation. 
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We found that the 8:8 L:D schedule effectively abrogated normal activity rhythms. 

No difference was seen in the relative use of SSA and NHEJ between flies kept on the 12:12 

and 8:8 schedules. We conclude that in the Rr3 system, the choice of NHEJ versus SSA 

repair is not affected by this method of circadian rhythm disruption. 

2. Materials and Methods 

Fly stocks and husbandry. w1118 flies were the kind gift of F. Rob Jackson (Tufts Univer-

sity). Rr3 and P{UIE} flies [36] were the kind gift of Osamu Suyari (University of Oxford). 

Flies were fed Bloomington formula cornmeal-agar medium (Genessee Scientific, San Di-

ego, CA) prepared according to the manufacturer’s instructions with propionic acid. Flies 

were maintained on 12:12 or 8:8 light:dark (L:D) schedules at 25 °C in programmable in-

cubators (Percival Scientific, Perry, IA) and handled under light carbon dioxide or ether 

anesthesia. Full genotypes of all flies are provided in Table 1. 

Activity monitoring. Time courses of locomotor activity were recorded using the Dro-

sophila Activity Monitor (DAM) system (Trikinetics, Waltham MA) [37]. DAM5M moni-

tors were used in all experiments. Recently eclosed male flies were individually loaded 

into food-containing activity tubes under light anesthesia and allowed to recover for at 

least 24 h before recording data for analysis. Activity was recorded as total beam crossings 

per five-minute bin, using Trikinetics DAM System 3 software. Data files were validated 

using DAM File Scan software and exported as CSV files. Data were analyzed with the 

ShinyR-DAM v3.1 software package [38], using the publicly available web interface at 

https://karolcichewicz.shinyapps.io/shinyr-dam/ (accessed on January 8, 2022). Circadian 

period length was analyzed by the Chi-square periodogram [39] implementation of 

ShinyR-DAM. Significance threshold indicated by the diagonal line in periodograms 

should be interpreted with caution, as fewer than 10 days of data were analyzed in each 

case. 

RT-qPCR. P{UIE} flies (2–3 per sample) were collected under light ether anesthesia, 

immediately ground in Trizol LS reagent (Thermo Fisher Scientific, Waltham, MA, USA) 

and stored at −80°. RNA was extracted with chloroform and further purified with the RNA 

Clean and Concentrator–5 kit (Zymo Research, Irvine, CA, USA) with on-column DNase 

I digestion carried out according to the manufacturer’s instructions. 100 ng of RNA was 

used for reverse transcription with the iScript Advanced cDNA kit (BioRad, Hercules, CA, 

USA). qPCR was carried out according to standard methods in a BioRad CFX96 Touch 

1000 thermocycler using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad), ac-

cording to the manufacturer’s instructions with 0.5 µL of cDNA per reaction. Primers used 

to amplify the period gene were Per-F (5′–CAGCTGCAGCAACAGCCAGTCG–3′) and 

Per-R (5′–GGCCTGCGTCGAGGGCTTGC–3′). The ribosomal gene RpL32 was used as a 

constant expression control, with the primers RpL32-F (5′–GCCCAAGATCGTGAA-

GAAGC–3′) and RpL32-R (5′–CGACGCACTCTGTTGTCG–3′). Relative expression was 

calculated using the double delta Cq method [40], using the average Cq of t = 0 samples 

as the untreated reference. 

The Rr3 construct. The Rr3 DSB repair reporter construct [36] consists of a DsRed gene 

that has been rendered nonfunctional by insertion of the 13 bp recognition site for the I-

SceI endonuclease, flanked by a 147 bp repeat. The Rr3 construct additionally contains a 

functional copy of the white gene, which allows the presence of the Rr3 construct to be 

identified in the white mutant background via examination of eye color. When the Rr3 

construct is cut by I-SceI, the resulting complementary ended DSB can be repaired by SSA, 

NHEJ, or HRR. SSA repair using the 147 bp repeat restores DsRed gene expression. Accu-

rate NHEJ restores the original sequence, which can be cut again. Inaccurate NHEJ that 

alters the sequence of the I-SceI site prevents further DSB induction without restoring 

DsRed expression. HRR from an intact sister chromatid reconstitutes the original se-

quence, which can be cut again, and HRR from the homolog results in gene conversion 

and complete loss of the Rr3 site. All experiments used an Rr3 construct integrated into 

chromosome 2 at 48C. Full details of the construction of Rr3 are given in [36]. 
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Induction of double-strand breaks and quantitation of repair events. When male flies har-

boring an Rr3 construct are crossed to female flies expressing the I-SceI endonuclease un-

der a constitutive ubiquitin promoter (Figure 1, P0 cross), F1 progeny undergo repeated 

cycles of DSB induction and repair in all cells. The timing of DSB induction depends on 

whether endonuclease is provided by maternal effect only, or by both maternal effect and 

zygotic expression of I-SceI. The chromosome containing the I-SceI expression construct 

contains a dominant mutant allele of the gene Stubble (Sb; Table 1), allowing flies harbor-

ing the I-SceI expression construct to be identified via examination of bristle length. In F1 

progeny that inherit both the Rr3 and an I-SceI gene, DSB induction and repair cycles begin 

at the commencement of embryonic development, due to maternal effect nuclease, and 

continue until a repair event mutates or deletes the I-SceI site (Figure 1, F1 generation, 

genotype 4). In F1 progeny that inherit only the Rr3, DSB induction is due solely to mater-

nal effect endonuclease in the egg, and continues until an inaccurate repair event takes 

place or maternal effect protein is exhausted (Figure 1, F1 generation, genotype 5). Relative 

usage of different DSB repair mechanisms in the F1 generation male pre-meiotic germline 

is quantitated by recovering individual repair events via appropriate crosses, and scoring 

F2 individuals for DsRed expression. 

For F1 germlines that have been exposed to both maternal effect and zygotically ex-

pressed endonuclease (Figure 1, genotype 4), germline repair events are recovered and 

counted via crossing to virgin w1118 females. Germline SSA events are quantitated as the 

percentage of progeny that express DsRed out of those that did not inherit an I-SceI gene 

(Figure 1, genotype 6). DsRed-expressing F2 flies that inherited both Rr3 and an I-SceI gene 

(Figure 1, genotype 7) are not considered when calculating SSA, because they may express 

DsRed due either to germline SSA or somatic SSA during the development of a fly that 

inherited an intact Rr3 construct. Germline NHEJ is quantitated as the percentage of non 

DsRed-expressing F2 progeny out of those that inherited both an Rr3 and an I-SceI gene 

(Figure 1, genotype 7). Flies that inherited both will express DsRed, either from a germline 

SSA event or somatic SSA of an inherited intact construct, unless a germline inaccurate 

NHEJ event has prevented further DSB induction. 

For F1 germlines that have been exposed to maternal effect endonuclease only (Figure 

1, genotype 5), the logic underlying scoring repair events is the same, but SSA and NHEJ 

are scored using separate crosses to avoid exposing F1 events that resulted in accurate 

repair to an additional round of endonuclease-induced cutting during F2 embryonic de-

velopment when scoring SSA repair. SSA events are recovered and identified in the F2 

generation via crosses to w1118 females, as described above (Figure 1, genotype 6). NHEJ 

events are recovered in the F2 generation via crossing to I-SceI-expressing females, and 

scored as described above (Figure 1, genotype 8). 

F2 offspring were scored for DsRed expression using a Nikon SMZ 1500 fluorescence 

microscope with a DsRed filter. Vials that produced fewer than 20 F2 progeny were ex-

cluded from analysis. Data were graphed and statistical analyses carried out in Excel and 

Prism software. 
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Figure 1. Multi-generational cross scheme used to assess the effect of non-24 h L:D schedule on 

relative use of SSA and NHEJ repair in the male pre-meiotic germline. Asterisk indicates an Rr3 

construct that has been exposed to I-SceI endonuclease. Full genotypes of numbered flies are indi-

cated in Table 1 below. 

Table 1. Full genotypes of flies described in Figure 1. P{UIE} is an abbreviation for P{Ubiq::I-SceI}. 

Details of the construction of the Rr3 and P{UIE} constructs are given in [36]. 

 Genotype 

1 w; TM3 Sb P{UIE}72C/TM6 Ubx 

2 w/Y; al wgSp−1 P{Rr3}48C L sp/CyO 

3 w1118 

4 w/Y; al wgSp−1 P{Rr3}48C L sp/+; TM3 Sb P{UIE}72C/+ 

5 w/Y; al wgSp−1 P{Rr3}48C L sp/+ 

6 w1118/Y; al wgSp−1 P{Rr3}48C L sp/+ 

7 w1118/Y; al wgSp−1 P{Rr3}48C L sp/+; TM3 Sb P{UIE}72C/+ 

8 w/Y; al wgSp−1P{Rr3}48C L sp/+; TM3 Sb P{UIE}72C/+ 

3. Results 

3.1. A Non-24 H Light:Dark Schedule Disrupts Activity Rhythms 

Under 12:12 L:D conditions, flies typically show 24-h rhythmicity in locomotor activ-

ity, with bimodal daily peaks at lights on and lights off (reviewed in [41]). To ensure that 

the simulated shift work schedule (8:8 L:D) disrupted the daily rhythms, we used the 

Trikinetics Drosophila Activity Monitor (DAM) system to compare locomotor rhythms of 

flies under 12:12 and 8:8 L:D (Figure 2). Under 12:12 L:D conditions, w1118 flies showed the 

expected bimodal activity peaks (Figure 2a). Chi-square periodogram analysis [39] of ac-

tivity data from the 12:12 L:D days showed a major peak at 24 h, consistent with expected 

rhythmicity under 12:12 L:D conditions. (Figure 2b). When the lighting schedule was 

shifted to 8:8 L:D, the bimodal peak pattern was degraded (Figure 2a) and the periodo-

gram showed no clear single peak (Figure 2c), consistent with a substantial reduction in 

rhythmicity under 8:8 L:D conditions. Similar results were obtained with p{UIE} flies (Fig-

ure S1). 
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Figure 2. Actimetric analysis of male w1118 flies (n = 32) under 12:12 L:D and 8:8 L:D conditions. Error 

bars in all panels indicate standard error. (A) Flies show the expected rhythmic bimodal activity 

pattern under 12:12 L:D, which is degraded when the lighting schedule is shifted to 8:8 L:D. White 

and black bars above panel indicate periods of light and darkness. Vertical bars in panel indicate 24 

h elapsed time. Activity was averaged in five-minute bins. (B) Chi-square periodogram for 12:12 

L:D shows a clear major probability peak at 24 h, consistent with a 24 h period in activity rhythms. 

(C) Chi-square periodogram for 8:8 L:D shows no clear peak, consistent with reduced rhythmicity. 

The diagonal line in panels (B,C) indicating statistical significance cutoff should be interpreted with 

caution, as fewer than 10 days of data were analyzed. Activity data file is available as Table S2. 

To assess the function of the circadian clock on the molecular level under 12:12 and 

8:8 L:D conditions, we carried out an RT-qPCR expression time course of the period gene, 

a key component of the negative feedback limb of the Drosophila circadian clock [42]. Re-

sults are shown in Figure S2. Under 12:12 conditions, period expression in P{UIE} flies 

showed the expected daily oscillations, albiet with a 4 h phase shift from the expected 

expression peak and nadir. In contrast, period expression in flies kept under 8:8 conditions 

did not show clear rhythmicity, and exhibited substantial inter-sample variability, sug-

gesting that the 8:8 L:D schedule does disrupt the circadian clock at the molecular level. 

3.2. 8:8 L:D Does Not Alter Relative Usage of NHEJ and SSA when Endonuclease Is Supplied by 

Maternal Effect Only 

We wished to examine the effect of long-term circadian rhythm disruption on DNA 

double-strand break repair. However, in the Rr3 system with endonuclease expression 

controlled by a constitutive promoter, a substantial proportion of repair events occur early 

in the life cycle, before the effects of sustained circadian rhythm disruption can accumu-

late. To circumvent this technical limitation, we examined repair events mediated by ma-

ternal effect endonuclease in embryos produced by female flies that had been raised under 

either 12:12 or 8:8 conditions. We reasoned that before the onset of zygotic transcription, 

the repair capacity of the embryo would reflect that of the female parent. 

DsRed-expressing and -non-expressing flies were readily distinguished (Figure 3). 

Results for percent NHEJ and SSA repair after maternal effect DSB induction are shown 

in Figure 4. NHEJ repair was relatively uncommon under both conditions, with a small 

number of germlines under both conditions showing “jackpot effects”, due to an NHEJ 

event early in embryogenesis. No significant difference in NHEJ repair was seen. Use of 

SSA repair showed a modest decrease under 8:8 conditions, but the difference did not 

reach statistical significance. 
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Figure 3. Example of DsRed-expressing (right) and -non-expressing (left) flies. The photograph was 

cropped to remove the microscope objective edges visible at the border of the image. 

 

Figure 4. Relative usage of NHEJ and SSA DSB repair pathways with maternal effect endonuclease 

only in flies maintained under 12:12 versus 8:8 L:D. Each symbol represents the offspring of one 

independent male germline. Red bars and whiskers represent median and interquartile range. Me-

dians were compared via Mann–Whitney test. (A) Relative use of inaccurate NHEJ showed no dif-

ference between flies maintained under 12:12 L:D (n = 39) and 8:8 L:D (n = 35) (p > 0.75). (B) Relative 

use of SSA showed no difference between flies maintained under 12:12 L:D (n = 21) and flies main-

tained under 8:8 L:D (n = 20) (p > 0.58). Data used to construct this figure are available in Table S4. 

3.3. 8:8 L:D Does Not Alter Relative Usage of NHEJ and SSA When Endonuclease Is Supplied 

by Maternal Effect and Zygotic Expression 

The Drosophila circadian clock begins to function during embryogenesis and can re-

spond to light inputs during development [43]. Therefore, we reasoned that non-24 h 

light:dark cycles during development could, in principle, have an effect on DSB repair 

during this time. To examine this, we quantitated the relative use of SSA and NHEJ in flies 

exposed to a combination of maternal effect and zygotically expressed endonuclease. The 

results are shown in Figure 5. A modest decrease in use of SSA repair was seen in 8:8 

relative to 12:12 L:D flies, but this difference did not reach statistical significance. 
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Figure 5. Relative usage of NHEJ and SSA DSB repair pathways with maternal effect and zygotic 

endonuclease in flies maintained under 12:12 versus 8:8 L:D. Each symbol represents the offspring 

of one independent male germline. Red bars and whiskers represent median and interquartile 

range. Medians were compared via Mann–Whitney test. (A) Relative use of inaccurate NHEJ 

showed no difference between flies maintained under 12:12 L:D (n = 54) and 8:8 L:D (n = 46) (p > 

0.91). (B) Relative use of SSA showed no difference between flies maintained under 12:12 L:D (n = 

54) and flies maintained under 8:8 L:D (n = 46) (p > 0.13). Data used to construct this figure are 

available in Table S4. 

4. Discussion 

Human studies have produced conflicting results regarding whether long-term shift 

work should be considered a carcinogen. Resolution of this uncertainty will require elu-

cidation of any mechanistic links between long-term shift work and initiation or promo-

tion of tumorigenesis. Although potential links between circadian rhythm disruption and 

tumor promotion have been investigated in some detail, little previous work has directly 

examined the possibility of a link between circadian rhythm disruption and tumor initia-

tion via increased usage of mutagenic DNA double-strand break repair. 

Previously published studies support the notion that susceptibility to DNA damage 

is time-of-day-dependent, and this dependence requires a functional circadian clock. For 

example, Plikus et al. [44] showed in mice that the genotoxic effect of ionizing radiation 

on hair matrix cells varies with time of day, and that this effect is abolished in mice homo-

zygous for a loss of function mutation in a core circadian clock gene. This effect was fur-

ther linked to an interplay between the circadian clock and the G2/M checkpoint. Con-

versely, it has been shown that loss of function mutations in circadian clock components 

can enhance hyperproliferative phenotypes, pointing to a dysregulation of cell cycle con-

trol (reviewed in [45]). Since DSB repair pathway choice depends heavily on the cell cycle 

phase [32], it therefore stands to reason that cell cycle phase disruption consequent to cir-

cadian rhythm disruption could impact DNA double-strand break repair pathway choice. 

However, to our knowledge, no previous studies have directly asked whether loss or dis-

ruption of circadian rhythms can affect DSB repair pathway choice. 

To investigate the possibility that circadian rhythm disruption could affect DNA 

double-strand break repair pathway choice, we compared relative usage of SSA and NHEJ 

in repairing a complementary ended DNA double-strand break between flies maintained 

on a conventional 12:12 light:dark schedule and a schedule designed to simulate rotating 

8-hour shifts. Surprisingly, we observed no difference in usage of NHEJ repair between 

these conditions. 

Further investigation will be required to determine whether the results from this 

study can be generalized to other break and cell types. DSB repair pathway choice is 

strongly dependent on the sequence surrounding and structure of the break [32]. The lo-

cation of the break in euchromatin versus heterochromatin also plays a role in repair 
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pathway choice (reviewed in [46]) The Rr3 construct is designed to promote SSA repair, 

but not all breaks will have the necessary flanking repeats to carry out SSA. Additionally, 

it is possible that circadian rhythm disruption could increase NHEJ at the expense of a 

different pathway, such as HRR. Further studies with the Rr3 construct will investigate 

the effect of circadian rhythm disruption on HRR from the homologous chromosome. Ul-

timately, to definitively answer the question of whether circadian rhythm disruption im-

pacts DSB repair pathway choice, it will be necessary to examine a variety of breaks in 

different sequence and chromatin contexts. 

One additional consideration for interpreting results in the Rr3 system is a possible 

effect of the mutant alleles used as visible genetic markers. In particular, the P{UIE} flies 

are homozygous for a mutant allele of the ebony gene, which has been shown to be in-

volved in circadian locomotor output [47]. We do not consider it likely that this will have 

an effect on DNA repair, as ebony mutant flies have been shown to have normal circadian 

clock function [47]. However, this consideration underscores the need for investigation of 

the interaction of the circadian clock with DNA damage repair in multiple different ex-

perimental systems. 

It is also possible that the cells comprising the embryonic or mature male pre-meiotic 

germline are not vulnerable to the deleterious effects of circadian rhythm disruption. We 

do note that core circadian clock genes are expressed in the Drosophila testis, and muta-

tions in core clock genes impair male fertility [48]. Similarly, the core clock gene Period is 

expressed in the female Drosophila ovary [49], although it has been argued to serve a func-

tion in developmental, rather than circadian, timekeeping [50]. Alternatively, even if the 

8:8 L:D schedule does not disrupt core circadian clock protein function in the germline 

directly, circadian rhythm disruption could potentiate organism-level redox imbalance 

(reviewed in [51]), which could dysregulate signaling pathways mediated by ATM (re-

viewed in [52]). Thus, although this study does not support a role for circadian clock func-

tion in influencing DSB repair pathway choice, it also does not rule out the possibility of 

such a link. Further research will be necessary to extend these findings to other damage 

types, DSB repair pathways, and break structures. 
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