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Abstract: This study was designed to characterize the microbiomes of the lung tissues of lung cancer 
patients. RNA-sequencing was performed on lung tumor samples from 49 patients with lung can-
cer. Metatranscriptomics data were analyzed using SAMSA2 and Kraken2 software. 16S rRNA se-
quencing was also performed. The heterogeneous cellular landscape and immune repertoires of the 
lung samples were examined using xCell and TRUST4, respectively. We found that nine bacteria 
were significantly enriched in the lung tissues of cancer patients, and associated with reduced over-
all survival (OS). We also found that subjects with mutations in the epidermal growth factor recep-
tor gene were less likely to experience the presence of Pseudomonas. aeruginosa. We found that the 
presence of CD8+ T-cells, CD4+ naive T-cells, dendritic cells, and CD4+ central memory T cells were 
associated with a good prognosis, while the presence of pro B-cells was associated with a poor 
prognosis. Furthermore, high clone numbers were associated with a high ImmuneScore for all im-
mune receptor repertoires. Clone numbers and diversity were significantly higher in unpresented 
subjects compared to presented subjects. Our results provide insight into the microbiota of human 
lung cancer, and how its composition is linked to the tumor immune microenvironment, immune 
receptor repertoires, and OS. 

Keywords: metatranscriptomic; lung cancer; microenvironments; T cell receptor repertoires; B cell 
receptor repertoires 
 

1. Introduction 
Lung cancer is the most common cancers worldwide, and its incidence is rapidly 

increasing in Taiwan. Globally, there are 1.8 million lung cancer diagnoses and 1.6 million 
deaths per year [1]. Chemical carcinogens, chronic inflammation, bacterial and viral in-
fections, periodontal diseases, and various other factors promote lung cancer develop-
ment. Several pathogenic microorganisms are associated with lung cancer including Hae-
mophilus influenzae, Acidovorax, Klebsiella, Moraxella catarrhalis, Mycobacterium tuberculosis 
and Granulicatella adiacens [2]. Despite recent advances in targeted receptor therapies and 
immunotherapies, the five-year survival rate of lung cancer remains low. Major reasons 
for the poor prognosis include late diagnosis and resistance to standard chemotherapy 
[3]. 

Over the last decade, a number of studies have investigated the microbiome of cancer 
patients, including patients with oral [4], lung [5], stomach, esophageal [6], pancreatic [7], 
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intestinal [8], and prostate [9] cancers. Straussman et al. performed 16S rRNA sequencing 
on 1526 samples collected from patients at nine medical centers with seven cancer types; 
they could distinguish between various cancer types based on the microbial DNA present 
in the samples [10]. In the same year, Knight et al. analyzed the microbial reads in whole-
genome and whole-transcriptome sequencing data from The Cancer Genome Atlas for 33 
cancer types, and found associations between different cancer types and specific microbi-
ota [11]. 

The first study of lung tissue microbiota was conducted in 2016 [12], and revealed 
that the genus Thermus is significantly more abundant in advanced-stage cancer patients 
(stage IIIB and IV). Furthermore, Acidovorax, Cyanobacteria, Streptococcus and Prevotella are 
enriched in lung cancer tissues [5,13,14]. Another recent study explored the relationship 
between the microbiome of resected lung tissue and lung cancer prognosis [15], and re-
vealed that greater diversity of normal tissue was associated with poorer recurrence-free 
and disease-free survival. Recently, the lung microbiota of bronchoalveolar lavage fluid 
and non-malignant, peritumoral and tumor tissue samples, from 18 non-small cell lung 
cancer (NSCLC) patients, [16] were examined; bronchoalveolar lavage fluid was found to 
harbor unique microbiota, but few differences were found among the other tissues. In the 
three types of lung tissue samples, Pseudomonas, Clostridium, Kocuria, Acinetobacter, and 
Sphingomonas were the five most abundant genera. All of the studies discussed above used 
16S rRNA sequencing to examine human lung tissue microbiota. However, meta-
transcriptomic analysis has not yet been performed. 

Advances in next generation sequencing technologies, including 16S rRNA sequenc-
ing and metagenomic technologies, have enabled the study of the microbial gene reper-
toire. RNA-sequencing (RNA-seq) has facilitated the detection of microorganisms in a di-
verse range of microbiomes. Moreover, metatranscriptomics has been applied to study 
various environments, including human hosts, plants, soils, and aquatic environments 
[17]. Researchers have applied metatranscriptomics to investigate the interactions be-
tween microbes and human host [18], and to explore associations of microbes with disease 
progression [19] and severity [20]. However, this technique has not yet been applied to 
human lung cancer tissues. 

In this study, we conducted a metatranscriptomics pilot study using cancer tissues 
collected from 49 patients with NSCLC. Eight samples were paired tumor and non-disease 
samples. Using RNA-seq, we explored the associations between the tumor metatranscrip-
tome, tumor immune microenvironment, and immune receptor repertoire. 

2. Materials and Methods  
2.1. Sample Population 

Tissue specimens were obtained from 49 Taiwanese patients with lung cancer who 
underwent surgical resection between May 2007 and April 2014 at China Medical Univer-
sity Hospital. Forty-nine lung tumors were examined, including forty adenocarcinomas 
and nine squamous cell carcinomas. Surgically resected specimens were grossly dissected 
and preserved immediately in liquid nitrogen following surgery. The present study was 
approved by the Institutional Review Board of the China Medical University Hospital 
(CMUH106-REC1-053). 

2.2. RNA-Seq 
Total RNA was extracted from the clinical tissue samples using a NucleoSpin® RNA 

Kit (Macherey-Nagel GmbH, Düren, Germany) according to the manufacturer’s instruc-
tions. The quality, quantity, and integrity of the extracted RNA were evaluated using a 
NanoDrop1000 spectrophotometer and an Agilent 2100 Bioanalyzer (Agilent Technolo-
gies, Santa Clara, CA, USA). Samples with RNA integrity >6.0 were used for RNA-seq. An 
mRNA-focused, barcoded library was generated using a TruSeq Stranded mRNA Library 
Preparation Kit (Illumina, San Diego, CA, USA). The libraries were sequenced using the 
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Illumina Nova Seq 6000 platform (Illumina), using 2 × 151 bp paired-end sequencing flow 
cells according to the manufacturer’s instructions. 

2.3. RNA-Seq Data Analysis 
The RNA-seq data were analyzed as described previously [21]. In brief, data quality 

control at the Q20 level was performed using Trimmomatic [22], read alignment to the 
GRCh38 human genome was conducted using HISAT2 [23], expression was quantified 
using GENCODE v22 (excluding including mitochondrial genes), and transcripts were 
normalized into transcripts per million (TPM) using StringTie [24]. 

2.4. Cell Enrichment Analysis 
xCell [25] was used to examine the enrichment of various immune cells in the tumors, 

and to calculate an immune score from the TPM expression matrix. 

2.5. Detection and Analysis of Immune Receptor Repertoires 
To characterize the immune receptor repertoires from the RNA-seq data, we used 

TRUST4 (v1.0.2) [26] software, which was applied to download the IMGT Repertoire ref-
erence [27], perform de novo assembly, and annotate and count consensus assemblies of T 
cell receptors (TCRs) and B cell receptor (BCRs). The clonal diversity of TCRs and BCRs 
was calculated using VDJtools (v1.2.1) [28]. 

2.6. Metatranscriptomic Analysis 
SAMSA2 [29] and Kraken2 [30] were used independently to analyze meta-

transcriptomic data. The first step in the SAMSA2 pipeline (v2.2.0) was to merge paired-
end reads using PEAR (v0.9.6) [31], and then to remove bacteria rRNA reads using 
SortMeRNA (v2.1) [32].Then, DIAMOND (v0.9.36) was used to annotate the transcrip-
tome using the National Center for Biotechnology Information (NCBI) [33] Reference Se-
quence (RefSeq) database [34]. Sequences with >96% similarity were selected for annota-
tion. Kraken2 (--kmer-len = 120, v2.1.1) [30] was also applied to analyze the meta-
transcriptomic data after removing rRNA reads. The NCBI RefSeq database was used to 
annotate transcripts against human, virus, archaea, bacterial and fungal genomes (data-
base version: July, 2020). 

2.7. 16S rRNA Sequencing 
DNA was extracted from the clinical tissue samples using a DNeasy Blood and Tissue 

Mini kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions. Ex-
tracted DNA was quantified using Qubit (Life Technologies, Grand Island, NY, USA). The 
V4 region of the 16S rRNA gene was PCR-amplified using the 515F/806R primer pair [35], 
which contain Nextera adapter sequences (Illumina) at their 5′-ends, for library prepara-
tion (515F: 5′-GTGCCAGCMGCCGCGGTAA-3′ and 806R: 5′-GGAC-
TACHVGGGTWTCTAAT-3′). PCR was performed using a KAPA HiFi HotStart Ready-
Mix PCR Kit (Roche, Cape Town, South Africa). The PCR program consisted of 30 s at 98 
°C followed by 30 cycles of 10 s at 98 °C, 30 s at 60 °C, and 30 s at 72 °C, with a final 
amplification step of 5 min at 72 °C. PCR products were purified using the AMPure XP 
Beads (Beckman Coulter, Indianapolis, IN, USA) and quantified using an Agilent 2100 
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). A Second round of PCR using 
Illumina dual-index oligos was performed using the KAPA HiFi HotStart ReadyMix PCR 
Kit (Roche, Basel, Switzerland), as follows: 95 °C for 3 min, eight cycles of 95 °C for 30 s, 
55 °C for 30 s and 72 °C for 30 s, and a final amplification step at 72 °C for 5 min. Samples 
were pooled and purified using AMPure XP Beads (Beckman Coulter, Brea, CA, USA). 
Sequencing was performed on the Illumina Miseq instrument using the MiSeq reagent kit 
v3 (600 cycles). 
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2.8. Bioinformatic Analysis of 16S rRNA Sequencing Data 
Sequencing data were analyzed using Illumina local run manager software. In brief, 

the index reads were demultiplexed, FASTQ files were generated, and the reads were 
classified against the Greengenes 16S rRNA gene database (version gg_13_5) [36], which 
achieved up to species-level sensitivity. 

2.9. Statistical Analysis 
Differences between groups were compared using the Mann-Whitney test. The log-

rank test and Cox proportional hazards regression model was used to compare differences 
in overall survival (OS) between groups. Relationships between bacterial infection status 
and gene mutation status were determined using Chi-square test or Fisher’s exact test. All 
statistical analyses were calculated using SciPy (v1.2.1) package [37], lifelines (v0.22.3) 
package [38], GraphPad Prism 8.0.2, or SPSS 22.0. A p-value of less than 0.05 was consid-
ered statistically significant. 

3. Results 
3.1. Microorganisms Identified in Lung Cancer 

A bacterial infection was considered to be present if the bacterial species was detected 
by both the SAMSA2 and Kraken2 tools, the bacterium was detected by SAMSA2 and 16S 
rRNA sequencing, or the bacterium was detected by Kraken2 and 16S rRNA sequencing. 
Using these criteria, 435 taxonomic groups were detected (Table S1). We applied a log-
rank test of OS to evaluate the prognostic impact of each bacterial species, and found that 
63 taxonomic groups were associated with survival in lung cancer patients (Table S1). We 
subjected Brevundimonas diminuta (n = 3), Acinetobacter radioresistens (n = 5), Enterobacter 
cloacae (n = 3), Mycobacterium chelonae (n = 3), Mycobacterium franklinii (n = 5) and Staphylo-
coccus sp. (n = 3) to further analysis (Figure 1).  

 
Figure 1. Microorganism composition of the lungs revealed by metatranscriptomic sequencing. 

Moreover, we conducted survival analysis of patients with bacterial presences de-
tected by SAMSA2 and Kraken2 analyses of RNA-seq and 16S rRNA sequencing data. 
Fifty taxonomic groups were detected, of which seven were associated with survival in 
lung cancer patients (Table S2). We subjected Bacillus megaterium (n = 2), P. aeruginosa (n = 
4) and Rhodococcus erythropolis (n = 2) to further analysis (Figure 1). 

A virus, human papillomavirus (HPV) type 16, was identified in the metatranscrip-
tome using SAMSA2 and Kraken2 (Figure 1). However, HPV type 16 was not associated 
with the OS of lung cancer patients. 

3.2. Cell Types Associated with Survival in NSCLC 
Figure 2 shows the cellular heterogeneity of each sample based on the RNA-seq data. 

We see that xCell estimates of immune and stromal cell types can be used to cluster two 
different lung cancer subtypes. Of the 64 cell types identified, 34 were immune cells. We 
found that five immune cell types were significantly associated with patient survival: 
CD8+ T-cells, CD4+ naive T-cells, dendritic cells (DC) and CD4+ central memory T-cell 
(CD4+ Tcm) were associated with high OS (Figure 3A), while pro B-cells enrichment was 
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predictive of adverse survival outcomes (Figure 3B). Table S3 showed the hazard ratios of 
the impacts of tumor immune cells on lung cancer. The CD8+ T-cells, CD4+ naive T-cells, 
DC and CD4+ Tcm maintained the significance after adjustment for stage, grade, gender 
and histologic cell type (p = 0.004, 0.046, 0.04 and 0.035, respectively) (Table S3). After ad-
justment, the pro B-cells showed borderline significance (p = 0.058).  

 
Figure 2. Heatmap showing the 64 cell types found across all samples. Columns are sample id and 
annotated tissue type with adenocarcinoma (ADC, green) and squamous cell carcinoma (SqCC, or-
ange), survival status with dead (yellow) and alive (blue), survival/follow-up time in month with 
bar plot. Rows are cell/summary score categories from xCell. Values in heatmap plot are xCell score 
of each category and samples, and the color map is from white (0) to red (1). Hierarchical clustering 
was performed with pearson correlation for sample distance calculation and linkage method is “av-
erage” on web tool (https://software.broadinstitute.org/morpheus/, accessed on 16 August 2021). 
The three clusters were generated from manually determined distance cut-off. 
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Figure 3. Kaplan-Meier plot showing overall survival (OS) according to immune cell types. (A) The 
group with high levels of CD8+ T-cells, CD4+ naive T-cells, DC and CD4+ Tcm exhibited signifi-
cantly higher OS according to the log-rank test. (B) The group with high levels of pro B-cells showed 
significantly reduced OS. 

3.3. Compositional Changes in Tumor Immune Cell Populations 
We identified 13 immune cell subtypes, and ImmuneScore and Microenviron-

mentScore differed significantly between presented and unpresented subjects (Table S4). 
In the multivariate analysis which incorporated independence prognostic factors of 13 
immune cell subtypes, ImmuneScore and MicroenvironmentScore, we found that there is 
a significant association between presented subjects and poor survival (p = 0.001) (Figure 
4). 

 
Figure 4. Multivariate survival analysis according to presence or non-presence bacteria in patients 
with lung cancer. 

B. diminuta presence was associated with CD4+ T-cells and regulatory T-cells (Tregs) 
enrichment (Table S5). A. radioresistens presence was associated with relatively low level 
of activated DC (aDC), CD4+ effector memory T-cells (CD4+ Tem), CD8+ central memory 
T-cells (CD8+ Tcm), macrophages, macrophages M2, memory B-cells and plasma cells, as 
well as a low ImmuneScore and MicroenvironmentScore (Table S5). E. cloacae presence 
was linked to relatively high levels of macrophages M1 and Tregs, and relatively low lev-
els of CD4+ naive T-cells (Table S5). Presence with M. chelonae and M. franklinii was asso-
ciated with relatively high levels of CD4+ T-cells (Table S5). Staphylococcus sp. presence 
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correlated with relatively high levels of basophils, eosinophils, naive B-cells, natural killer 
(NK) cells, and pro B-cells (Table S5). 

B. megaterium presence was associated with relatively high levels of type 2 T-helper 
(Th2) cells and relatively low levels of aDC, natural killer T (NKT) cells and plasma cells 
(Table S5). R. erythropolis presence was linked to relatively high levels of CD4+ T-cells (Ta-
ble S5). P. aeruginosa and HPV type 16 presences were not significantly associated with 
the enrichment of any specific tumor immune cells. 

We further analyzed whether the positive effect of presence of bacterial on the sur-
vival is related to their positive effect on levels of tumor immune cells or it is an independ-
ent effect. The B. diminuta, M. chelonae and M. franklinii maintained the significance after 
adjustment for tumor immune cells (p = 0.031, 0.006 and 0.031, respectively) (Table S6). 
After adjustment, the A. radioresistens, E. cloacae, Staphylococcus sp., B. megaterium and R. 
erythropolis showed no significance of the relationship. 

3.4. TCR and BCR Repertoires in NSCLC 
We systematically analyzed TCR and BCR repertoires in RNA-seq data from 48 lung 

cancer tissues. One case has not passed the TRUST4 criteria. Detailed information about 
the TCR (α, β, γ and δ) and BCR (IgL, IgK and IgH) repertoires is included in Table S7. 
Multivariate analysis, which included tumor stage, grade, histologic cell type and gender 
as independent prognostic factors, revealed that the clone numbers of TCRα, significantly 
correlated with OS (p = 0.044) (Table 1). For all TCR and BCR repertoires, the ImmuneScore 
was significantly higher in groups with higher clone numbers (Figure 5A–G). 

Table 1. Multivariate analysis (Cox regression) of independent prognostic factors in patients with 
lung cancer. 

Variables  Hazard Ratio 95% CI p-Value 
TCRα clone number ≦Median 1 0.101–0.972 0.044 

 >Median 0.314   
Stage I 1  0.023 

 II 0.844 0.242–2.946 0.791 
 III 2.471 0.612–9.969 0.204 
 IV 59.625 4.009–886.782 0.003 

Grade 1 1  0.523 
 2 0.512 0.044–5.930 0.592 
 3 0.334 0.022–5.070 0.429 
 4 3.269 0.056–191.120 0.568 

Gender M 1 0.578–6.2 0.289 
 F 1.907   

Histologic cell type ADC 1 8.743–513.175 0.000 
 SqCC 66.984   
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Figure 5. Correlation between clone number of immune receptor repertoires and the Immunoscore, 
calculated with xCell. (A) TCRα, (B) TCRβ, (C) TCRγ, (D)TCRδ, (E) BCR IgL, (F) BCR IgK, (G) BCR 
IgH. *** p < 0.001, **** p < 0.0001. 

3.5. Compositional Differences between TCR and BCR Repertoires 
Next, we analyzed the relationships of bacterial presence with the number of unique 

immune receptor clones and clonal diversity in 48 subjects. We found that patients with 
bacterial presences had fewer unique TCR and BCR clones compared to unpresented sub-
jects (Figure 6A). In addition, the clonal diversity of T and B cells was significantly higher 
in unpresented subjects (Figure 6B). However, we did not find any significant associations 
between HPV type 16 presence and immune receptor repertoires. 

 
Figure 6. Comparison of the immune receptor repertoires between presented and unpresented sub-
jects. (A) Number of unique clone and (B) clonal diversity. * p < 0.05, ** p < 0.01. 

3.6. Associations between the Metatranscriptome and Genetic Alterations 
The most prevalent mutations in lung tumors are found in the epidermal growth 

factor receptor (EGFR), KRAS, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit α and TP53 genes. Therefore, we investigated the association between the lung 
metatranscriptome and host genetic mutations. We found a higher rate of mutation in the 
EGFR gene among patients not presented with P. aeruginosa, exhibiting borderline statis-
tical significance (p = 0.050) (Table S8). However, we found no other associations between 
bacterial species and gene mutations. 
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4. Discussion 
This is the first study to employ RNA-seq to investigate the metatranscriptome of 

human lung cancer. B. diminuta, A. radioresistens, E. cloacae, M. chelonae, M. franklinii, Staph-
ylococcus sp., B. megaterium, P. aeruginosa, and R. erythropolis were enriched in lung cancer 
tissues and significantly associated with prognosis. Most of the bacterial species identified 
in this study (except for M. franklinii and B. megaterium) were consistent with those de-
tected in a recent study, in which 16S rRNA sequencing was applied to identify species 
present in lung tissues [10]. Using xCell, we estimated the relative proportions of immune 
cells, and investigated their relationships with the metatranscriptome. We also investi-
gated immune receptor repertoires, and their associations with species identified in the 
metatranscriptome. Moreover, we found that EGFR mutations may protect against P. ae-
ruginosa presences. 

Bacillus sp. produce anti-cancer and anti-proliferative biomolecules [39]. B. mega-
terium forms large spores, which distinguish it from other Bacillus sp. Moreover, B. mega-
terium strain SAmt17 produces extracellular polymeric substances that suppress the ex-
pression of hepatocyte carcinoma G2 cells, and strain ATCC 13368 produces four cytotoxic 
compounds suppressing human melanoma cells. Infections caused by B. megaterium are 
rare; only five cases (eye, skin, brain, pleuritis with pleural effusion [40], and soft tissue 
infections [41]) have been described in the literature so far. In the present study, we de-
tected B. megaterium in two lung tumor tissue samples. Eight normal tissue samples were 
not detected. Our results suggest that B. megaterium presence may play a role in lung can-
cer carcinogenesis. The tumor microenvironments of B. megaterium–positive patients 
tended to have high levels Th2 cells and low levels of aDC, NKT and plasma cells. 

The clinically isolated human pathogen M. franklinii is a mycobacterial species and 
member of the M. chelonae-M. abscessus complex. Clinical laboratories typically diagnose 
M. franklinii infections by partially sequencing rpoB, hsp65, sodA and internal transcribed 
spacer DNA targets, or by complete 16S rRNA gene sequencing analysis in conjunction 
with assessment of cefoxitin and minocycline susceptibility [42]. Most M. franklinii isolates 
have been collected from the respiratory specimens of patients with underlying pulmo-
nary diseases. In the present study, we detected M. franklinii in five lung cancer tissue 
samples. Eight normal tissue samples were not detected, which may play a role in lung 
carcinogenesis. Furthermore, high levels of CD4+ T-cells in the tumor microenvironment 
were associated with M. franklinii presences. 

The immune responses of cancer patients influence prognosis and survival. In this 
study, the presence of certain bacteria of lung cancer tissues correlated with poor progno-
ses and short survival times. Furthermore, the immune responses of presented patients 
were disrupted, reflected in higher proportions of immune-suppressing cells and de-
creased TCR and BCR diversity, which may have increased the likelihood of bacterial 
presence. Our results suggest that presences in cancer tissues likely occurred due to the 
weak immune systems of the patients, which increased their susceptibility to bacterial 
presence. 

A limitation of this study was the small number of cases, which resulted in a lack of 
significance for some parameters, and could have led to biased and unclear conclusions. 
Furthermore, the depth of the RNA-seq metatranscriptomics data was low, which may 
have resulted in false-negative results. There were also some limitations to the analysis 
tools applied in this study. However, to overcome these, we performed multiple analyses 
using different tools to ensure the reliability of the results. 

5. Conclusions 
In this study, we employed RNA-seq to investigate the metatranscriptome of lung 

cancer patients. Nine bacteria were significantly associated with reduced OS. The pres-
ence of two bacterial species, B. megaterium and M. franklinii, may play an important role 
in lung tumor carcinogenesis. We also found a correlation between metatranscriptomic 
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changes in expression profiles and tumor immune cell enrichment, as well as immune 
receptor repertoires. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/genes12091458/s1. Table S1: Log-rank test of bacterial of lung microbiome revealed by 
both the SAMSA2 and Kraken2 tools, the bacterium was detected by SAMSA2 and 16S rRNA se-
quencing, or the bacterium was detected by Kraken2 and 16S rRNA sequencing; Table S2: Log-rank 
test of bacterial of lung microbiome revealed by SAMSA2 and Kraken2 analyses of RNA-seq and 
16S rRNA sequencing; Table S3: Hazard ratio of tumor immune cells for the lung cancer; Table S4: 
Compositional differences in tumor immune cells between patients with one of nine bacteria pres-
ence and non-bacteria presence groups; Table S5: Compositional differences in tumor immune cells 
between patients with bacteria presence and non-bacteria presence groups; Table S6: Hazard ratio 
of presence of bacterial species for the lung cancer; Table S7: Statistical characteristics of the immune 
receptor repertoires data in 48 lung cancer patients; Table S8: Correlation of EGFR, PIK3CA, KRAS, 
and TP53 mutations with microbial presence. 
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