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Abstract: In the mammalian genome, DNA methylation is an epigenetic mechanism involving the
transfer of a methyl group onto the C5 position of the cytosine to form 5-methylcytosine. DNA
methylation regulates gene expression by recruiting proteins involved in gene repression or by
inhibiting the binding of transcription factors (TFs) to DNA. As there are still many questions
concerning the role of methylation in creating personality, we concentrated on searching for such
associations. The research group was 100 sports male subjects (mean age = 22.88, SD = 6.35),
whereas the control group included 239 healthy male volunteers matched for age (mean age = 21.69,
SD = 3.39), both of European origin. The methods used in our research were as follows: DNA
isolation, methylation-specific PCR, sequencing chromatophores, all conducted according to the
manufacturer’s procedure. To evaluate personality traits, the NEO Five-Factor Personality Inventory
(NEO-FFI) and STAI Inventory were used. We observed the existence of a statistically significant
correlation for all the aspects of personality covered and CpG islands’ methylation. Nonetheless, we
think that the tested group and the number of tested promotor islands in the DAT1 gene are still too
small to make explicit conclusions, so it needs further profound analysis.

Keywords: BDNF; genes; athletes; personality; rs10767664; rs2030323

1. Introduction
1.1. DNA Methylation

In the mammalian genome, DNA methylation is an epigenetic mechanism involving
the transfer of a methyl group onto the C5 position of the cytosine to form 5-methylcytosine.
DNA methylation regulates gene expression by recruiting proteins involved in gene re-
pression or by inhibiting the binding of transcription factors (TFs) to DNA. One distinct
feature of transcription factors is that they have DNA-binding domains that give them
the ability to bind to specific sequences of DNA called enhancer or promoter sequences.
Some transcription factors bind to a DNA promoter sequence near the transcription start
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site and help form the transcription initiation complex. Other transcription factors bind
to regulatory sequences, such as enhancer sequences, and can either stimulate or repress
transcription of the related gene. These regulatory sequences can be thousands of base
pairs upstream or downstream from the gene being transcribed. Regulation of transcription
is the most common form of gene control [1]. DNA methylation in the mammalian genome
predominantly occurs on cytosine in the context of the 5′-CpG-3′ dinucleotides; this is the
only type of epigenetic modification to change the DNA molecule directly. Stretches of
GC-rich sequences in the genome called CpG islands (CGIs) that are associated with open
transcriptionally competent chromatin structures were discovered in gene promoters [2].
Promoters play an essential role in understanding the transcriptional mechanisms of genes.
CpG islands located within promoter regions appear to create a more conducive chromatin
state that favors transcription or allows gene expression silencing through intensive CpG
methylation [3]. The relevance of GC content and CpG dinucleotide concentration to the
regulation of gene activity points to its physiological significance. The DNA methylation
pattern established during the development and differentiation is preserved with high
fidelity during cell division by DNA methyltransferases (DNMTs). DNMTs are highly
expressed in developing tissues, but their activity declines during differentiation in all tis-
sues except the brain, wherein they are expressed throughout the lifetime of the brain [4,5].
Dynamic DNMT activity in the brain is essential for synaptic plasticity and memory forma-
tion [6,7]. The environment is a potent genetic modifier, influencing gene expression via
epigenetic mechanisms. Ubiquitous epigenetic mechanisms represent an essential element
of normal development and maturation. Aberrant epigenetic processes can cause maladap-
tive changes (gene dysregulations and dysfunctions) and consequently lead to disease. In
the brain, in contrast to somatic tissues, epigenetic processes remain active throughout the
lifespan: they are ultimately involved in maintaining brain functions, enabling adaptive
plasticity and the ability to accommodate varying environmental challenges [8]. The fi-
delity of epigenetic processes is critical for the human brain since its development creates
enormously complex biological patterning. Consequently, it is most susceptible to aberrant
activity of epigenetic modifiers: epigenetic dysregulation is implicated in the pathogenesis
of a variety of brain-related diseases, including mental retardation and complex psychiatric
disorders [9].

Physical exercises have a beneficial influence on both, brain and body, and particularly
on skeletal muscles. They increase the effectiveness of muscles metabolism, improve the
biological functions of mitochondria, adjust the transformation of muscle fiber types, and
increase muscle strength. Currently, conducted research shows that epigenetic regula-
tion is one of the important factors during these processes. The epigenetic environment
within skeletal muscles modified with physical exercises precisely adjusts the delicate
balance between gene expression and silencing under the control of contemporary constant
transcriptional or post-transcriptional mechanisms [10,11].

1.2. DAT1

The human dopamine transporter gene (DAT1 or SLC6A3) has been associated with
various brain-related diseases and behavioral traits and, as such, has been investigated
intensely in experimental- and clinical settings.

Dopamine (DA) neurotransmission underlies core brain functions, including locomo-
tion, behavior, cognition, and motivation; consequently, disruption in dopamine signaling
gives rise to various neuropsychiatric disorders and conditions [12]. A key player in the
regulation of DA signaling is the dopamine transporter (DAT); it modulates the dynamics
and the levels of DA in the synaptic cleft by recycling extracellular DA back into the
presynaptic terminal. Alterations in the DAT availability in the brain directly affect the
concentration of synaptic DA and the kinetics of its reuptake [13].

As our knowledge about methylation in particular promotor regions among athletes
is still in its infancy, in hereto research, we presented its influence and correlation in con-
nection with personality traits, simultaneously asking if the differences between individual
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personalities influence methylation of chosen promoter groups in the DAT1 gene. We are
aware that the causal relationship between personality traits and methylation processes
can go both ways; hence we want to analyze the issue more precisely. Nonetheless, it needs
more numerous groups.

2. Materials and Methods
2.1. Samples

The research group was 100 sports male subjects (mean age = 22.88, SD = 6.35),
whereas the control group included 239 healthy male volunteers matched for age (mean
age = 21.69, SD = 3.39). Both groups were composed of individuals of European origin
from the same region of Poland. The research was based on 100 Polish healthy (no prior
history of substance dependency or psychosis) male combat athletes (MMA, n = 23; judo,
n = 40; boxing, n = 5; karate, n = 15; kickboxing, n = 15; wrestling, n = 2). Several methods
were applied to prepare the samples, including targeting national teams and providing
information to national coaching personnel and athletes attending training camps. All
athletes and controls were European to reduce the possibility of genetic admixture and to
overcome any potential problems due to population stratification.

The study was conducted according to the guidelines of the Declaration of Helsinki,
and approved by KOMISJA BIOETYCZNA przy Okręgowej Izbie Lekarskiej w Szczecinie,
ul. Marii Skłodowskiej-Curie 11, 71-332 (protocol nr 13/KB/VI/2016, 08.12.2016).

2.2. Methylation Status Assessment

Methylation of 33 promotor islands of the DAT1 gene for the research and control
group was accomplished and published previously by Michałowska-Sawczyn and coau-
thors [14].

DNA isolation kit (A&A Biotechnology, Gdynia, Poland) was used for DNA extrac-
tion from peripheral blood leukocytes. Extracted DNA was stored at −20 ◦C. Bisulfite
modification of 250 ng DNA was accomplished with the usage of the EZ DNA Methyla-
tion Kit (Zymo Research, Orange, CA, USA), following the manufacturer’s instructions.
Methylation-specific PCR assay was carried out in a Mastercycler ep gradient S (Eppendorf,
Germany).

Primer oligonucleotides were obtained from Genomed.pl (Warsaw, Poland). Primer
sequences were designed using MethPrimer (http://www.urogene.orgbin/methprimer/
.cgi, accessed on 11 January 2020). The status of the DAT1 promoter (ENSG00000142319)
was assessed by PCR using primers specific to a fragment of the gene, i.e., DATF: 5′-
GGTTTTTGTTTTTTTTATTGTTGAG-3′; DATR: 5′-AAATCCCCTAAACCTAATCCC-3′.
The PCR conditions in order to amplify the 447-bp fragment covering 33 CpG sites in
DAT1 gene promoter were as follows: initial denaturation (94 ◦C/5 min), followed by
35 cycles (94 ◦C/61 ◦C/72 ◦C, 25 s each step) with final elongation at 72 ◦C for 5 min.
The concentration of magnesium chloride ions was 2.5 mM. After amplification assay, the
PCR products were subjected to sequencing as previously described [14]. Briefly, samples
were verified by sequencing using the Bigdye v3.1 kit (Applied Biosystems, Darmstadt,
Germany) and separation by ethanol extraction using the ABI Prism 3130XL (Applied
Biosystems, Darmstadt, Germany) in a 36 cm capillary in a POP7 polymer, using the reverse
primer in accordance with the manufacturer’s protocol.

Sequencing chromatograms were analyzed using 4peaks software (Mek and Tosj,
Amsterdam, The Netherlands). Methylation of cytosine was considered positive, when the
G/A + G ratio reached at least 20% of a total signal.

2.3. Assessment of the Ability to Bind Transcription Factors

For the analysis of transcription binding sites for the DAT1 promoter region, we
used PROMO software (http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.
cgi?dirDB = TF_8.3, accessed on 12 July 2021). In PROMO, for the identification of potential
binding sites in sequences, weight matrices are constructed from known binding sites

http://www.urogene.orgbin/methprimer/.cgi
http://www.urogene.orgbin/methprimer/.cgi
http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB
http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB
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extracted from version 8.3 of the TRANSFAC database (http://genexplain.com/transfac/
#section0, (11.01.2020), accessed on 12 July 2021). The ability of transcription factors to bind
individual regions was assessed with different similarity rates, i.e., 100%, 95%, or 85%. As
promotor sites showed to be PAX5 transcription factor binding sites (positions 3, 22, and
33), and their hypomethylation showed to be important for personality traits, we searched
for CpG status in relation with DAT1.

2.4. Psychometric Tests

Sports subjects and control subjects, both male, were examined by the NEO Five-
Factor Personality Inventory (NEO-FFI) scales. The NEO Five-Factor Personality Inventory
(NEO Five-Factor Inventory, NEO-FFI) includes 6 dimensions for each of the five traits–
Extraversion (Positive Emotion, Warmth, Gregariousness, Activity, Excitement Seeking,
Assertiveness), Agreeableness (Tender-mindedness, Trust, Altruism, Straightforwardness,
Compliance, Modesty), Openness to experience (Fantasy, Feelings, Aesthetics, Actions,
Values, Ideas), Conscientiousness (Deliberation, Competence, Dutifulness, Order, Achieve-
ment striving, Self-discipline), Neuroticism (Anxiety, Vulnerability to stress, Hostility,
Self-consciousness, Impulsiveness, Depression) [15].

The results of NEO-FFI and STAI inventories were given as sten scores. The conversion
of the raw score into the sten scale was performed according to Polish norms for adults;
it was assumed that: sten 1–2—very low scores, 3–4—low scores, 5–6—average scores,
7–8—high scores, 9–10—very high scores.

2.5. Statistical Analysis

The relationship between DAT1 promotor methylation status, sports sand control sub-
jects, and NEO Five-Factor Inventory (NEO-FFI) was analyzed by a multivariate analysis
of Factor effects ANOVA (NEO-FFI×methylation status × sports sand control subjects ×
(methylation status × sports sand control subjects)). Not all assumptions required for the
ANOVA analysis have been met. The assumption about the normal distribution was not
fulfilled for all dependent variables, but the variance was the same (Levene’s test p > 0.05).
Because the number of subjects in groups was also large, it was therefore decided to use
multivariate analysis 2× 3 factorial ANOVA. The NEO Five-Factor Inventory (Neuroticism,
Extraversion, Openness, Agreeability Conscientiousness) was measured and compared
using the U Mann-Whitney test. Methylation status data was analyzed using a chi-square
test with a p < 0.05 being considered statistically significant. The whole process of calcula-
tion was performed with the usage of STATISTICA 13 (Tibco Software Inc, Palo Alto, CA,
USA) for Windows (Microsoft Corporation, Redmond, WA, USA).

3. Results

The methylation status of the CpG PAX5 4 DAT1 promotor sites (3, 13, 22, 33) in sports
and control subjects is shown in Table 1.

The means and standard deviations for all NEO Five-Factor Inventory and interaction
for sports subjects and control subjects are presented in Table 2.

When comparing the controls and the study group subjects, for the second one, we
observed significantly higher scores (Table 2) on the NEO Five-Factor Inventory scale of
Conscientiousness (M 7.23 vs. M 5.83, p < 0.0001).

http://genexplain.com/transfac/#section0
http://genexplain.com/transfac/#section0
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Table 1. Methylation status of PAX5 4 DAT1 CpG sites (3, 13,22,33) in sports subjects and control group. A group of 100
sports and 239 control individuals were studied to compare methylation status in indicated CpG sites. Chi-square test χ2(p),
Chi-square; OR, odds ratio; CI, Confidence Interval; (−95%, +95%) [14].

CpG Site Studied Group Methylation
Status (%) χ2(p) OR 95% CI

(−95%, +95%)

3 *
sports subjects N (100) 78%

20.471 (0.00001) 4.838 (2.326; 10.065)control N (239) 94%

13 *
sports subjects N (100) 28%

37.290 (0.00001) 0.126 (0.059; 0.265)control N (239) 5%

22
sports subjects N (100) 95%

0.001 (0.974) 0.982 (0.337; 2.865)control N (239) 95%

33
sports subjects N (100) 66%

9.291 (0.0023) 2.247 (1.326; 3.810)control N (239) 81%

* Significant between-group differences.

Table 2. NEO Five-Factor Inventory results (sten scale) and between healthy control and sports subjects.

STAI/NEO Five Factor Inventory/ Sports Subjects
(N = 100)

Control
(N = 236) Z p Value

Neuroticism/scale 4.76 ± 2.28 4.66 ± 1.99 0.145 0.884
Extraversion/scale 6.27 ± 1.89 6.41 ± 1.97 −0.692 0.488

Openness/scale 4.44 ± 1.63 4.83 ± 1.70 −1.531 0.126
Agreeability/scale 5.23 ± 2.13 5.65 ± 2.07 −1.428 0.153

Conscientiousness/scale 7.23 ± 1.86 5.83 ± 2.13 5.498 0.0000 *

p-statistical significance U Mana’s test, N—number of subjects, M ± SD—Mean ± Standard Deviation. *—Significant between-group
differences.

3.1. PAX 5 CpG Position: Sites 3

The results of 2 × 3 factorial ANOVA of the NEO Five-Factor Personality Inventory
(NEO-FFI) sten scales and DAT1 promotor methylation status of the CpG PAX5 sites 3
and controls and the study group subjects are summarized in Table 3. When comparing
groups, we found a significant result in the interactions (sports subjects vs. controls) for the
NEO FFI Openness scale and DAT1 promotor methylation status of the CpG PAX5 sites
3 (Figure 1, F2,332 = 4.52, p = 0.034), accounting for 1.3% of the variance, respectively. The
results of the post hoc test are included in Table 4.
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Table 3. Differences in methylation DAT1 PAX5 CpG sites 3, 13, 22, 33 and NEO Five-Factor Inventory between healthy control subjects and sports subjects.

STAI/NEO
Five-Factor
Inventory/

ANOVA

Sports
(N = 100)
M ± SD

Control
(N = 236)
M ± SD

Methylation
Status No
(N = 17)
M ± SD

Methylation
Status Yes
(N = 319)
M ± SD

Full Model
F

p Value
R2

Factor F (p Value) ï2 Power
(alfa = 0.05)

PAX 5 CpG Position: sites 3

Openness/scale 4.44 ± 1.63 4.83 ± 1.70 5.02 ± 1.60 4.70 ± 1.69
F3,332 = 3.913
p = 0.0091 *
R2 = 0.034

intercept F1,332 = 929.65 (p < 0.0001) 0.737 1.000
sports/control F1,332 = 0.0001 (p = 0.990) 0.00001 0.050

CpG sites 3 F2,332 = 1.71 (p = 0.192) 0.005 0.256
addicts/control x CpG sites 3 F2,332 = 4.52 (p = 0.034) * 0.013 0.563

PAX 5 CpG Position: sites 13

Neuroticism/scale 4.76 ± 2.28 4.66 ± 1.99 4.69 ± 2.04 4.79 ± 2.34
F3,332 = 2.687
p = 0.0465 *
R2 = 0.024

intercept F1,332 = 526.07 (p < 0.0001) * 0.613 1.000
sports/control F1,332 = 5.17 (p = 0.024) * 0.015 0.621
CpG sites 13 F2,332 = 0.48 (p = 0.488) 0.001 0.107

addicts/control x CpG sites 13 F2,332 = 7.89 (p = 0.005) * 0.023 0.800

PAX 5 CpG Position: sites 22

Neuroticism/scale 4.76 ± 2.28 4.66 ± 1.99 4.41 ± 1.80 4.71 ± 2.08
F5,332 = 2.674
p = 0.0473 *
R2 = 0.024

intercept F1,332 = 233.11 (p < 0.0001) * 0.412 1.000
sports/control F1,332 = 5.38 (p = 0.0210) * 0.016 0.638
CpG sites 22 F2,332 = 2.78 (p = 0.0962) 0.008 0.383

addicts/control x CpG sites 22 F2,332 = 7.55 (p = 0.006) * 0.022 0.782

Extraversion/scale 6.27 ± 1.89 6.41 ± 1.97 6.65 ± 2.42 6.35 ± 1.92
F5,332 = 5.001
p = 0.0021 *
R2 = 0.0432

intercept F1,332 = 685.04 (p < 0.0001) * 0.673 1.000
sports/control F1,389 = 9.89 (p = 0.0018) * 0.029 0.880
CpG sites 22 F2,389 = 4.52 (p = 0.0342) * 0.013 0.563

addicts/control x CpG sites 22 F2,389 = 14.27 (p = 0.0001) * 0.041 0.965

Openness/scale 4.44 ± 1.63 4.83 ± 1.70 5.76 ± 1.86 4.68 ± 1.66
F5,332 = 9.003
p = 0.00001 *
R2 = 0.075

intercept F1,332 = 602.61 (p < 0.0001) * 0.644 1.000
sports/control F1,332 = 6.65 (p = 0.0103) * 0.020 0.729
CpG sites 22 F2,332 = 16.39 (p = 0.0001) * 0.047 0.981

addicts/control x CpG sites 22 F2,332 = 15.24 (p = 0.0001) * 0.044 0.973

Agreeability/scale 5.23 ± 2.13 5.65 ± 2.07 6.88 ± 1.99 5.44 ± 2.07
F5,332 = 5.500
p = 0.0011 *
R2 = 0.047

intercept F1,332 = 512.12 (p < 0.0001) * 0.607 1.000
sports/control F1,332 = 2.07 (p = 0.1509) * 0.006 0.300
CpG sites 22 F2,332 = 12.68 (p = 0.0004) * 0.037 0.944

addicts/control x CpG sites 22 F2,332 = 5.78 (p = 0.0167) * 0.017 0.669

M—mean, SD—standard deviation. *—Statistically significant between-group differences.



Genes 2021, 12, 1425 7 of 15

Table 4. Post hoc analysis of interactions between sports subjects/control and DAT1 PAX5 CpG sites 3, 13, 22, 33 and NEO
FFI scale.

DAT1 PAX5 CpG Sites 3 Openness Scale

{1}
M = 5.27

{2}
M = 4.20

{3}
M = 4.62

{4}
M = 4.87

Sport; methylation status no {1} 0.0082 * 0.2596 0.2796
Sport; methylation status yes {2} 0.4111 0.0026*

Control; methylation status no {3} 0.5922
Control; methylation status yes {4}

DAT1 PAX5 CpG sites 13 Neuroticism scale

{1}
M = 4.53

{2}
M = 5.36

{3}
M = 4.74

{4}
M = 3.36

Sport; methylation status no {1} 0.07151 0.4520 0.0817
Sport; methylation status yes {2} 0.1344 0.0069 *

Control; methylation status no {3} 0.0314 *
Control; methylation status yes {4}

DAT1 PAX5 CpG sites 22 Neuroticism scale

{1}
M = 2.40

{2}
M = 4.88

{3}
M = 5.25

{4}
M = 4.64

Sport; methylation status no {1} 0.0090 * 0.0098 * 0.0166 *
Sport; methylation status yes {2} 0.5625 0.3393

Control; methylation status no {3} 0.3206
Control; methylation status yes {4}

DAT1 PAX5 CpG sites 22 Extraversion scale

{1}
M = 9.20

{2}
M = 6.12

{3}
M = 5.58

{4}
M = 6.45

Sport; methylation status no {1} 0.0005 * 0.0004 * 0.0016 *
Sport; methylation status yes {2} 0.3642 0.1590

Control; methylation status no {3} 0.1288
Control; methylation status yes {4}

DAT1 PAX5 CpG sites 22 Openness scale

{1}
M = 7.80

{2}
M = 4.26

{3}
M = 4.92

{4}
M = 4.85

Sport; methylation status no {1} 0.0000 * 0.0010 * 0.0001 *
Sport; methylation status yes {2} 0.1911 0.0033 *

Control; methylation status no {3} 0.8946
Control; methylation status yes {4}

DAT1 PAX5CpG sites 22 Agreeability scale

{1}
M = 8.40

{2}
M = 5.06

{3}
M = 6.25

{4}
M = 5.60

Sport; methylation status no {1} 0.0004 0.0494 * 0.0027 *
Sport; methylation status yes {2} 0.0594 0.0322 *

Control; methylation status no {3} 0.2869
Control; methylation status yes {4}

*—significant statistical differences, M—mean.
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Figure 1. Interaction between sports subjects/control and DAT1 PAX5 CpG sites 3 and NEO FFI Openness scale. Methylation
status: yes—1, no—0. M—mean, M ± SE—mean ± standard error, M ± 1.96*SE—mean ± s1.96*standard error.

3.2. PAX 5 CpG Position: Sites 13

The results of 2 × 3 factorial ANOVA of the NEO Five-Factor Personality Inventory
(NEO-FFI) sten scales and DAT1 promotor methylation status of the CpG PAX5 sites 13,
controls, and the study group subjects are summarized in Table 3. We found interactions
a significant result when comparing groups (sports subjects vs. controls) for NEO FFI
Neuroticism and DAT1 promotor methylation status of the CpG PAX5 sites 13 (Figure 2,
F2,332 = 7.89, p = 0.005), accounting for 2.3% of the variance, respectively. The results of the
post hoc test are included in Table 4.
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3.3. PAX 5 CpG Position: Sites 22

The results of 2 × 3 factorial ANOVA of the NEO Five-Factor Personality Inventory
(NEO-FFI) sten scales and DAT1 promotor methylation status of the CpG PAX5 sites 13,
controls, and the study group subjects are summarized in Table 3.

3.4. Neuroticism Scale

We found interactions a significant result when comparing groups (sports subjects
vs. controls) for NEO FFI Neuroticism, and DAT1 promotor methylation status of the
CpG PAX5 sites 22 (Figure 3, F2,332 = 7.55, p = 0.006), accounting for 2.2% of the variance,
respectively. The results of the post hoc test are included in Table 4.
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Figure 4. Interaction between sports subjects/control and DAT1 PAX5 CpG sites 22 and NEO FFI Extraversion scale. 
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3.5. Extraversion Scale

We found a significant result when comparing for NEO-FFI Extraversion scale for
DAT1 promotor methylation status of the CpG PAX5 sites 22 (F2,332 = 4.52, p = 0.0342),
accounting for 1.3% of the variance, respectively. We found interactions a significant
result when comparing groups (sports subjects vs. controls) for NEO FFI Extraversion
and DAT1 promotor methylation status of the CpG PAX5 sites 22 (Figure 4, F2,332 = 14.27,
p = 0.0001), accounting for 4.1% of the variance, respectively. The results of the post hoc
test are included in Table 4.
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Figure 4. Interaction between sports subjects/control and DAT1 PAX5 CpG sites 22 and NEO FFI Extraversion scale. 
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3.6. Openness Scale

We found a significant result when comparing for NEO-FFI Openness scale for DAT1
promotor methylation status of the CpG PAX5 sites 22 (F2,332 = 16.39, p = 0.0001), accounting
for 4.7% of the variance, respectively. We found interactions a significant result when
comparing groups (sports subjects vs. controls) for NEO FFI Openness and DAT1 promotor
methylation status of the CpG PAX5 sites 22 (Figure 5, F2,332 = 15.24, p = 0.0001), accounting
for 4.4% of the variance, respectively. The results of the post hoc test are included in Table 4.
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3.7. Agreeability Scale

We found a significant result when comparing for NEO-FFI Agreeability scale for
DAT1 promotor methylation status of the CpG PAX5 sites 22 (F2,332 = 12.68, p = 0.0004),
accounting for 3.7% of the variance, respectively. We found interactions a significant result
when comparing groups (sports subjects vs. controls) for NEO FFI Agreeability and DAT1
promotor methylation status of the CpG PAX5 sites 22 (Figure 6, F2,332 = 5.78, p = 0.0167),
accounting for 1.7% of the variance, respectively. The results of the post hoc test are
included in Table 4.
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3.8. PAX 5 CpG Position: Sites 33

We did not find significant results for the 2 × 3 factorial ANOVA of the NEO Five-
Factor Personality Inventory (NEO-FFI) sten scales, the DAT1 methylation status of the
CpG PAX5 sites 33 and controls and the study group subjects.

4. Discussion
DAT1 and Methylation

Experimental and clinical evidence indicates that sequence variations upstream of the
transcription start site (TSS) affect DAT1 transcriptional regulation [16]. The DAT1 core
promoter lacks “TATA” and “CAT” boxes (these DNA sequences provide docking sites
for basal transcriptional complex) [17]. Transcriptional initiation of neuronal genes often
is facilitated via binding of core transcriptional machinery to the CCAAT element [18].
Shumay et al. [19] detected several CCAAT consensuses upstream and downstream of
the DAT1 TSS, suggesting that the DAT1 might be one of these. Human genes that have
CCAAT-promoters display several common characteristics; in general, they are less precise
in terms of TSS than the genes with TATA-promoters, and they mostly overlap with CpG
islands. Transcription initiation from the CCAAT box involves NF-Y, an element with
histone-like features, and a particular subset of transcription factors [20].

The complex structure of human gene promoters with a range of alternative tran-
scription start sites (TSSs) [21] supports differential temporal- and spatial- patterns of gene
expression and provides an additional level of gene regulation by modulating transla-
tional efficiency [22]. About one-fifth of human genes have alternative promoters; this
phenomenon is most frequent in brain-related genes [23].
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The interaction of the cis-regulatory elements of a gene with transcription factors (TF)
largely determined transcription events; therefore, an assessment of the putative TF binding
sites in the regulatory region of the gene under analysis yields important information on
this gene’s regulation. In the nervous system, TFs define the basic framework; their
availability varies across the brain regions and cell types, thus contributing to phenotypic
diversity [24]. As we mentioned, the nature of the DAT1 promoter (CCAAT promoter)
implies its sensitivity to selective TFs, because NF-Y synergistically interacts with a subset
of TFs [20]. Shumay et al. [19] inspection of the DAT1 5′-flanking sequence (−2 kb, JASPAR
database) revealed that it contains binding sites for Sp1, GATA−1, CREB, and c-Myc
cis-acting regulatory elements –all those TFs interact with NF-Y [20].

The human DAT1 gene is remarkably GC dense and has multiple CpG islands: in
contrast to most vertebrate genes that have only a promoter-overlapping CpG Island. On
average, inactive promoters of the human genes cytosine and guanine account for 57% of
the nucleotides [25], but GCs represent 79% of the DAT1 promoter sequence.

In vivo, the DNA molecule forms a complex with proteins that allow its packaging
into chromatin. Nucleosomes are the structural units of chromatin represented by histone
octamers around which the DNA coils. The close interaction of the DNA molecule with a
nucleosome core results in condensed chromatin that is inaccessible to the transcription
machinery; hence, the transcriptional activation of a gene requires the local transition of
compact chromatin domains into decondensed loops. Nucleosome remodeling and cova-
lent modifications of histones provide the basis for epigenetic gene regulation that occurs
via the modulation of the accessibility of the genomic loci to transcriptional machinery [26].
CG-rich motifs in DNA sequences inherently disfavor nucleosomes and are referred to
as “nucleosome exclusion sequences” (NX) [27]. Shumay et al. [19] found that both the
DAT1 and the 5-HTT (SLC6A4) genes have high NX-scoring sequences near the TSS. The
predicted nucleosome positioning in the DAT1 and the 5-HTT loci notably differ: the entire
DAT1 locus comprises of numerous nucleosome-dysfavouring sequences, while in the
5-HTT, NX-peaks are sparse. It was suggested that intragenic regions with high NX Scores
might function as transcriptional enhancers.

The most notable characteristic of the human DAT1 is its high sensitivity to epigenetic
regulation: in contrast to the relative enrichment in GC nucleotides in the promoter-
proximal region as occurs in most human genes, the entire DAT1 locus has GC-bias se-
quence composition (0.55) and comprises multiple CpG sites comprising 27 bona fide CGIs
(CpG islands). [19].

Previous studies found that DAT1 methylation derived from blood correlated with
symptoms of hyperactivity and impulsivity in children and adolescents with ADHD [28]
and with impulsivity (and basal ganglia DAT availability) in monkeys [29]. Hence, in our
research, we combined methylation with personality traits. In the presented research, we
noticed that in DAT1 PAX5, CpG island 3 observed a statistically significant interaction
between the occurrence of methylation in martial arts athletes and lower results in sten
scale of NEO FFI Openness in comparison with the control group (Figure 1, 4.20 vs. 4.87,
p = 0.0026, Table 4). In DAT1 PAX5, CpG island 13 observed a statistically significant
interaction between methylation in martial arts athletes and increased results in sten scale
NEO FFI Neuroticism compared to the control group (Figure 2, 5.36 vs. 3.36, p = 0.0069,
Table 4). The part of the research shows a distinct occurrence of methylation in these
subgroups of athletes. However, we observed additionally that in particular subgroups
based on the personality traits tests, methylation does not occur. Still, in DAT1 PAX5, CpG
island 22 noticed statistically significant interaction between the shortage of methylation in
the martial arts athletes and lower results in sten scale NEO FFI Neuroticism in comparison
with the control group (Figure 3, 2.40 vs. 5.25, p = 0.0098, Table 4). In DAT1 PAX5, CpG
island 22 noticed statistically significant interaction between the shortage of methylation in
the martial arts athletes and increased results in sten scale NEO FFI Openness compared to
the control group (Figure 5, 7.80 vs. 4.92, p = 0.0004, Table 4). However, reverse interaction
was observed in the case of methylation; subjects from the martial arts athletes group
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obtained lower results in sten scale NEO FFI Openness compared to the control group
(Figure 5, 4.26 vs. 4.85, p = 0.0033, Table 4).

In DAT1 PAX5, CpG island 22 noticed statistically significant interaction between the
shortage of methylation in the martial arts athletes and increased results in sten scale NEO
FFI Agreeability compared to the control group (Figure 6, 8.40 vs. 6.25, p = 0.0494, Table 4).
However, reverse interaction was observed in the case of methylation; subjects from the
martial arts athletes group obtained lower results in sten scale NEO FFI Agreeability
compared to the control group (Figure 6, 5.06 vs. 5.60, p = 0.0322, Table 4).

Epigenetic sensitivity of the DAT1 gene increased during the process of evolution.
The genetic drift of the DAT1 sequence oriented on the accumulation of GC nucleotides
may reflect its strengthening epigenetic potential, important in the regulatory processes
resulting from more and more complex functions of the human brain [19].

We also want to emphasize that the discussed PAX5 (BSAP) functions as both a
transcriptional activator and repressor during midbrain patterning, B-cell development,
and lymphomagenesis [30].

In spite of the same genetic make-up of all cells of an organism, each tissue, and even
each cell, has its own methylation pattern that determines its identity and functions as a
result of dynamic interactions with other cells and the environment. Environmental stimuli
through the mediation of several elements/factors such as neurotransmitters, hormones,
and transcription factors modulate promoter methylation patterns and corresponding
expression levels of various genes. Since successive bindings of transcription factors to a
gene’s regulatory regions are associated with a decrease in DNA methylation level and
an increase in the capability of gene expression for a prolonged period of time in the
future, DNA methylation is considered as a mechanism for cell memory. The pattern of
DNA methylation is generally maintained throughout cell division; therefore, any DNA
methylation changes could either be global in the entire genome affecting all progenies of
the affected cell or local, affecting only specific genes in specific cells [31].

Although the effects of gene methylation on gene expression are complex, gene methy-
lation is generally seen as a ‘silencing’ epigenetic mark. That is, various studies have found
that methylation of CpG islands in the promoter area has an inhibitory effect on tran-
scription initiation, resulting in reduced gene expression [32,33]. The observed association
between the methylation of DAT1 and its expression might reflect the high concentra-
tion of CpG islands in the gene, which makes DAT expression particularly susceptible to
modulation through epigenetic mechanisms, specifically DNA methylation [19]. Because
DNA methylation is a dynamic measure, it might, however, better reflect the expression of
proteins sensitive to modification by environmental exposures. The expression of DAT1
is dynamic and sensitive to circadian rhythms [34], age [35], addictive drugs including
tobacco [36–38], medication exposures [39], among others. Although multiple factors regu-
late DAT expression, methylation of DAT1 is of particular interest as it changes dynamically
in response to various environmental influences [19].

5. Conclusions

Although the effects of gene methylation on gene expression are complex, gene
methylation is generally seen as a ‘silencing’ epigenetic mark. When analyzing genetic
conditioning or associations in sport, it is also important to take into consideration the
factors connected with the functioning of the human brain. Individual personality traits
can differ in the area of methylation factors’ sensitivity. However, the tested group and the
number of tested promotor islands in the DAT1 gene are still too small to make explicit
conclusions, so it still needs further analysis.
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